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OBSTRUCTIVE SLEEP APNEA (OSA) IS CHARACTER‑
IZED BY RECURRENT NARROWING AND OCCLUSION 
OF THE UPPER AIRWAY DURING SLEEP, RESULTING IN 
sleep fragmentation and intermittent hypoxemia.1 In the context 
of the current epidemic of obesity, it has been estimated that ap‑
proximately 17% of adults have mild or worse OSA, and 5.7% 
have moderate or worse OSA.2 It is associated with increased 
morbidity and mortality from cardiovascular complications.3 
The underlying pathophysiology of OSA is complex and not 
fully understood. However, it is generally accepted that ana‑
tomic changes of the upper airway and functional abnormalities 
of upper airway dilating muscles may play important roles.1

The air flow passing through the nose and nasopharynx is lim‑
ited by its shape and diameter.4,5 In OSA patients, the narrowed 

and collapsible upper airway facilitates a high resistance in the 
upstream segment of upper airway. Many studies have shown 
a positive association between nasal obstruction and OSA.6‑9 
Zwillich and associates found that artificial nasal obstruction 
induced by a balloon cannula was associated with a significant 
increase in the number of episodes of apnea and arousals in 
normal men.6 Other studies have also found an increase in the 
number of sleep related respiratory events during a night of na‑
sal obstruction.7,8 Surgical correction of nasal obstruction has 
been used in the treatment OSA, however the response to such 
treatment is often limited and unpredictable.10‑12

The growing literature regarding the benefits of oral appli‑
ances in the treatment of OSA has spawned a growing enthu‑
siasm for their use in clinical practice.13,14 Recently updated 
practice parameters from the American Academy of Sleep 
Medicine recommend their use in the treatment of mild to mod‑
erate OSA.15 A number of predictors of treatment response have 
been reported, including age, obesity, gender, supine dependent 
OSA, baseline apnea-hypopnea index, flow-volume curve ab‑
normalities, and a range of craniofacial characteristics such as 
longer maxilla, shorter soft palate, decreased distance between 
hyoid and mandibular plane.16‑19 Since high nasal resistance is 
known to induce or exacerbate OSA, it is plausible that high 
nasal resistance could negatively affect oral appliance treat‑
ment outcome. Marklund et al noted that subjective complaints 
of nasal obstruction were associated with reduced efficacy 
of MAS amongst female patients.20 To date, no studies have 
evaluated this possibility by objective measurement of nasal 
resistance. Hence the primary aim of this study was to com‑
pare nasal resistance in MAS responders and nonresponders. 
Moreover, imaging studies suggest that mandibular advance‑
ment is associated with an increase in velopharyngeal caliber.21 
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ers in the sitting position compared to nonresponders (6.5 ± 0.5 vs 9.4 
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data suggest that higher levels of NAR may negatively impact on treat-
ment outcome with MAS.
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Our own MRI work suggests that this airway change is differ‑
ent between responders and nonresponders to MAS treatment.22 
Studies have reported that tongue protrusion in OSA patients23 
and mandibular advancement in nonapneic subjects24 are asso‑
ciated with a reduction in nasal resistance, consistent with a 
decrease in retropalatal resistance. We questioned whether this 
change in nasal resistance could assist in the prediction of treat‑
ment outcome. Hence, a secondary aim was to assess whether 
the effect of mandibular advancement on nasal resistance could 
differentiate treatment response.

MATERIALS AND METHODS

Subjects

Patients were recruited from a multidisciplinary sleep dis‑
orders clinic in a university teaching hospital. Inclusion crite‑
ria were the presence of ≥ 2 symptoms of OSA, and evidence 
of OSA on polysomnography. Patients were excluded if there 
was periodontal disease, insufficient teeth, or an exaggerated 

gag reflex. The study was approved by the institutional ethics 
committee, and written informed consent was obtained from all 

patients.

Oral Appliance

A custom-made 2-piece oral appliance was used (Som‑
noMed MAS, SomnoMed Ltd, Australia), the design features 
and effectiveness of which have been previously published.25‑27 
The appliance was initially fabricated at approximately 60% of 
the patient’s maximal advancement, and titration screws were 
subsequently used to provide additional advancement. Accli‑
matization occurred over a period of approximately 6 weeks, 
during which the appliance was incrementally advanced until 
the maximum comfortable limit of mandibular advancement 
was reached.

Nocturnal Polysomnography

Standard nocturnal polysomnography was performed to de‑
termine treatment outcome and was scored according to stan‑
dard criteria and blinded to the patients’ treatment status, as pre‑
viously described.25‑27 In brief, apnea was defined as cessation 
of airflow for ≥ 10 sec. Hypopnea was defined as a reduction in 
amplitude of airflow, measured as pressure change at the nares, 
or thoracoabdominal wall movement of greater than 50% of the 
baseline measurement > 10 sec with an accompanying oxygen 
desaturation ≥ 3% and/or associated with an arousal.

Treatment Outcome

We defined “Responders” as patients who had a ≥ 50% re‑
duction in AHI and “Nonresponders” as patients with a < 50% 
reduction in AHI. Reflecting differences in the clinical defini‑
tion of treatment success, we used additional definitions for 
comparative purposes, as follows: ≥ 50% reduction in AHI and 
residual AHI ≤ 5/hr (Complete Responders); and ≥ 50% reduc‑
tion in AHI and residual AHI > 5/hr (Partial Responders).

Nasal Airway Resistance (NAR)

NAR was measured by posterior rhinomanometry in a stan‑
dardized fashion28 in the afternoon prior to the standard noc‑
turnal polysomnography. This method involves measurement 
of posterior oral pressure via a tube placed in the back of the 
mouth while airflow is measured for both nasal cavities simul‑
taneously.28 Since an aim of our study was to evaluate the ef‑
fect of mandibular advancement on retropalatal resistance as 
a means of predicting treatment outcome, the posterior rhino‑
manometry technique was specifically chosen over other na‑
sal resistance techniques because it combines transnasal and 
transpalatal resistances. Specifically, nasal airflow was deter‑
mined via a sealed nose mask connected to a pneumotacho‑
graph. A catheter (4 mm internal diameter polyethylene tubing) 
was used to determine mask pressure via a sampling site in the 
nose mask. Mouth pressure was determined by using a similar 
catheter (with six 14-gauge holes at the distal end) placed as 
far posteriorly in the mouth as was comfortable. The pressure 
transducer was calibrated with a water manometer. The trans‑
ducer was demonstrated to be linear to ± 20 cm H2O. Patients 
were coached so that reproducible pressure-flow curves were 
obtained. Simultaneous pressure and flow signals were record‑
ed in real time and monitored on an X-Y plot on a breath-by-
breath basis using an established in-house acquisition program, 
and subsequently analyzed to derive resistance measurements 
(at a flow of 0.5 L/s) based on the Rohrer equation: ∆P =K1 × V 
+ K2 × V2.29 NAR was measured in both sitting and supine posi‑
tions, with and without MAS in situ. For each condition, NAR 
measurement consisted of ≥ 5 consecutive breaths. NAR was 
calculated as the mean of the 3 most consistent measurements. 
Values of nasal resistance were expressed as cm H2O/L/s.

Statistical Analysis

Analyses were carried out using a statistical package (SPSS 
version 14; SPSS Inc, Chicago IL). All descriptive statistics are 
presented as mean ± SEM. Differences between two groups 
were tested by independent samples Student’s t tests. One-way 
analysis of variance (ANOVA) was used to compare groups. 
Receiver operating characteristic (ROC) curves were construct‑
ed to derive cut-off predictive values of NAR. The Chi-squared 
test was used to compare the distribution of predictive values of 
NAR between the response groups. A P value < 0.05 was con‑
sidered significant. Multivariable logistic regression analysis 
was performed, with MAS treatment outcome as the dependent 
variable and independent variables including sitting NAR, su‑
pine NAR, body mass index (BMI), neck circumference, age, 
gender, baseline AHI, and amount of mandibular advancement 
induced by the oral appliance. A stepwise forward selection 
procedure was also performed to examine the effects of differ‑
ent variables and identify the important explanatory variables.

RESULTS

Table 1 shows the clinical characteristics of the 38 eligible 
patients recruited into the study (29 men, 9 women), at baseline 
and after MAS treatment, as well as the results of the base‑
line NAR parameters. MAS treatment was well tolerated by 
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all patients with only mild and transient side effects, including 
temporomandibular joint pain (10%), salivation (50%), teeth 
tenderness (40%), and gum irritation (8%). The mean (± SEM) 
mandibular advancement with MAS was 6.5 ± 0.4 mm (range 
2.5–12 mm), representing a mean 70% of maximal mandibular 
protrusion.

The majority of patients had an elevated NAR, with 78% 
of responders and 100% of nonresponders having NAR values 
exceeding 3.5 cm H2O/L/s, which is considered to be the upper 
limit of the normal range.4,5 There were significant differences 
in baseline NAR between MAS responders and nonresponders 
in the sitting position, with a lower NAR in MAS responders 
(6.5 ± 0.5 vs 9.4 ± 1.0 cm H2O; P < 0.01). However, there was 
no significant difference in baseline NAR between response 
groups when measured in the supine position (Table 1). Using 
more rigorous definitions of treatment outcome revealed a con‑
sistently lower NAR in both complete and partial responders, 
compared to nonresponders (Figure 1).

There was no significant change in NAR (from baseline) 
with MAS in either response group while in the sitting position. 
However, in the supine position NAR increased significantly 
with MAS in the nonresponder group (11.8 ± 1.5 vs 13.8 ± 1.6; 
P < 0.01), but not the responder group (Table 2).

A NAR cut-off value of ≤ 6.4 cm H2O/L/sec was derived 
using ROC curves. The sensitivity and specificity of this cut-
off value were 65% and 75%, respectively. Comparison of the 
distribution of predictive values of NAR between the response 
groups was significant (χ2 = 5.34, P < 0.05).

Multivariable logistic regression revealed that NAR (sitting) 
and BMI were significant independent predictors of MAS treat‑
ment outcome, but neck circumference, age, gender, baseline 
AHI, and amount of mandibular advancement were not (Table 
3).

DISCUSSION

Although oral appliances are now considered an acceptable 
treatment option for mild to moderate OSA, there remains un‑
certainty about how to reliably predict treatment outcome.13,14 
We examined the influence of nasal resistance on oral appli‑
ance treatment outcome, and found that high nasal resistance 

may have a negative impact on treatment response. This, when 
combined with other reported predictors, could assist clinicians 
in assessing the likely response of patients to MAS treatment.

The key finding of this study is the observed significant dif‑
ference in baseline NAR between MAS responders and non‑
responders. These data suggest that OSA patients with lower 
NAR have a greater likelihood of responding to MAS treatment. 
This is entirely consistent with the literature on nasal resistance 
in OSA. Many studies have shown that nasal obstruction can 
induce or increase apnea frequency in OSA patients.6‑9 When 
nasal resistance is high, a greater pressure drop is required to 
achieve the same flow, and hence collapse of the pharynx is 
facilitated and this could mitigate the effect of mandibular ad‑
vancement. Moreover, high nasal resistance is associated with 
mouth breathing, which could potentially limit the beneficial 
effect of mandibular advancement. However, the therapeutic 
implications of this have not been realized, since many studies 
show limited and unpredictable efficacy of nasal surgery in the 
management of OSA.10‑12 Whether reducing nasal resistance is 
a worthwhile strategy to improve the outcome of oral appliance 
treatment is not resolved by our study, but merits investigation. 

Table 1—Clinical Characteristics of Patients and Baseline NAR 
According to Treatment Outcome

Variables	 Responders	 Non-Responders
Patients	 26 (68%)	 12 (32%)
Sex (male/female)	 21/5	 8/4
Age (yr)	 50.9 ± 2.2	 55.0 ± 2.1
BMI (kg/m2)	 28.7 ± 0.8	 34.3 ± 1.1*
Neck Circumference (cm)	 39.9 ± 0.6	 41.8 ± 1.1
AHI baseline (h-1)	 29.0 ± 2.9	 23.9 ± 3.0
AHI with MAS (h-1)	 6.7 ± 1.2	 22.0 ± 4.3*
Sitting NAR (cm H2O/L/s)	 6.5 ± 0.5	 9.4 ± 1.0*
Supine NAR (cm H2O/L/s)	 10.7 ± 1.2	 11.8 ± 1.5
Amount of mandibular
  advancement (mm)	 6.4 ± 0.4	 7.1 ± 0.7

Results are presented as mean ± SEM; * P < 0.01.

Table 2—Effect of Mandibular Advancement on Nasal Airway 
Resistance (NAR)

		  NAR (cmH2O/L/s)
		  Baseline	 With MAS
Sitting position
	 Responders	 6.5 ± 0.5	 6.4 ± 0.6
	 Nonresponders	 9.4 ± 1.0	 8.9 ± 0.9
Supine position
	 Responders	 10.4 ± 1.2	 11.0 ± 1.2
	 Nonresponders	 11.8 ± 1.5	 13.8 ± 1.6*

Results are presented as mean ± SEM; * P < 0.01.
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Figure 1—Comparison of NAR (sitting) According to Treatment 
Outcome Category. Complete Responders (Complete R): >50% 
reduction in AHI and residual AHI <5/hr; Partial Responders 
(Partial R): >50% reduction and residual AHI >5/hr; and Nonre‑
sponders (Non-R): <50% reduction in AHI. Results are presented 
as mean ± SEM; * P < 0.01 versus Complete R; † P < 0.01 versus 
Partial R.
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In conclusion, our study suggests that higher levels of NAR 
may negatively affect treatment outcome with MAS. This in‑
formation may be useful to clinicians when assessing the likely 
outcome of treatment with an oral appliance. Further work is re‑
quired to study the relationship between nasal function and treat‑
ment outcome, and particularly whether methods to lower nasal 
resistance can improve the outcome of oral appliance treatment.
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