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Abstract

A new method for analyzing three-state protein unfolding equilibria is described that overcomes the
difficulties created by direct effects of denaturants on circular dichroism (CD) and fluorescence spectra of
the intermediate state. The procedure begins with a singular value analysis of the data matrix to determine
the number of contributing species and perturbations. This result is used to choose a fitting model and
remove all spectra from the fitting equation. Because the fitting model is a product of a matrix function
which is nonlinear in the thermodynamic parameters and a matrix that is linear in the parameters that specify
component spectra, the problem is solved with a variable projection algorithm. Advantages of this procedure
are perturbation spectra do not have to be estimated before fitting, arbitrary assumptions about magnitudes
of parameters that describe the intermediate state are not required, and multiple experiments involving
different spectroscopic techniques can be simultaneously analyzed. Two tests of this method were per-
formed: First, simulated three-state data were analyzed, and the original and recovered thermodynamic
parameters agreed within one standard error, whereas recovered and original component spectra agreed
within 0.5%. Second, guanidine-induced unfolding titrations of the human retinoid-X-receptor ligand-
binding domain were analyzed according to a three-state model. The standard unfolding free energy changes
in the absence of guanidine and the guanidine concentrations at zero free-energy change for both transitions
were determined from a joint analysis of fluorescence and CD spectra. Realistic spectra of the three protein
states were also obtained.

Keywords: three-state protein unfolding equilibria; global analysis method; denaturant perturbation; sepa-
rable least squares; macrophage colony-stimulating factor; retinoid receptor

Equilibrium titrations of protein state as a function of de-
naturant concentration are a valuable means of identifying
the minimal set of intermediates in mechanistic models of
folding/unfolding pathways, and of measuring parameters
that describe the thermodynamic stabilities of the native
protein and any intermediates that are present. The two

techniques most commonly used to characterize and quan-
titate native and unfolded protein states in solution are far-
UV circular dichroism (CD) and fluorescence spectrosco-
pies, which are complementary because CD spectra at
wavelengths below 250 nm are a measure of protein sec-
ondary structure (Greenfield 1996; Johnson Jr. 1999),
whereas fluorescence spectra are responsive to the environ-
ment of tryptophan and tyrosine residues (Lakowicz 1999).
If intermediate states are also present in the equilibrium
mixture, it is likely that they will differ from the native and
unfolded states by their respective secondary structure con-
tents and/or fluorophore environments. Therefore, an un-
folding titration should be monitored by both forms of spec-
troscopy as a means of detecting and measuring these in-
termediates. In addition, uncertainties in the estimates of the
thermodynamic parameters of transitions between these
states can often be reduced by the simultaneous analysis of
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titrations with multiple spectroscopic techniques (Beecham
1992).

CD and fluorescence spectra each consist of multiple
bands that derive from different transition dipoles with dis-
tinct sensitivities to secondary structure and fluorophore en-
vironment, respectively (Callis 1997; van Holde et al.
1998). Maximizing the coverage of structural changes be-
tween protein folding states in an equilibrium titration ex-
periment thus requires measurement of as many of these
bands as possible, a goal that is best achieved by collecting
data in the form of entire spectra.

In addition to their effect on conformation, denaturants
can directly perturb the spectra of protein chromophores via
an unknown mechanism, and the protein-folding literature
does not include any extensive study of the phenomenon.
Consequently, procedures for separating this effect from
signal changes resulting from denaturant-induced confor-
mational changes are often based on arbitrary assumptions,
especially when two equilibrium transitions are analyzed.
This perturbation phenomenon is strongest in UV absor-
bance and fluorescence spectroscopies (Royer 1995;
Schmid 1997), although it has also been observed in CD
spectra (Kuwajima 1995).

Titrations of N-acetyl tryptophanamide (NAWA) and N-
acetyl tyrosinamide (NAYA) with urea reveal a linear de-
pendence of fluorescence intensities on denaturant concen-
tration (Harder et al. 2001). Schmid (1997) also observed
changes in fluorescence when free tyrosine and tryptophan
are titrated with urea and guanidine, although the degree of
linearity can depend on instrumental settings. Thus, direct
interaction of denaturants with tryptophan and tyrosine resi-
dues can account for the concentration-dependent perturba-
tion of protein fluorescence spectra by denaturants. Judging
from unfolding titrations of two-species systems observed at
single wavelengths (Royer 1995), the magnitude of this per-
turbing effect is generally found to be directly proportional
to concentrations of the protein species and denaturant to-
gether, with a slope that is characteristic of each state and
the wavelength chosen. In the case of two-state equilibria,
the slopes of the two perturbations can usually be measured
at the beginning and endpoints of the titration, and the un-
perturbed signal can be recovered by extrapolation of per-
turbation contributions and subtraction from the signal. It
is reasonable to expect that in the case of three-state un-
folding equilibria the intermediate state would also be as-
sociated with its own perturbation effect. Unlike the pre-
transition and posttransition regions of two-state titrations,
the region of the titration in which the intermediate state
predominates is usually too narrow to construct the reliable
linear fit and extrapolation needed to calculate the unper-
turbed signal changes in the transitions to and from the
intermediate.

Because the sensitivities of the perturbations vary with
wavelength (e.g., Royer 1995), the perturbation effect for

any species in a titration may be described as a spectrum
giving the magnitude at each wavelength of the perturbation
per unit of denaturant concentration per unit protein con-
centration. The intensity-weighted average wavelengths of
fluorescence spectra of NAWA and NAYA titrated with
urea (Harder et al. 2001) increase linearly with urea con-
centration. Intensity-weighted average wavelength is a sen-
sitive and stable measure of the shape and position of spec-
tra. This result shows that perturbation spectra for these
fluorescent residues are not simply multiples of the corre-
sponding species spectra. Furthermore, perturbation spectra
are not necessarily linearly dependent on the set of the spec-
tra of the other species (see below). Consequently, they
must be counted as part of any basis set employed in factor
analyses of the experimental data. The importance of this
phenomenon to factor analysis of unfolding titration data
has not heretofore been appreciated in the literature. This
has caused some confusion in data interpretation, especially
in determining the number of states in equilibrium.

This report describes a procedure for analyzing equilib-
rium unfolding data in the form of entire spectra. It accom-
modates global analyses of sets of spectra of more than
one type collected at every denaturant concentration in an
unfolding titration. Singular value decomposition (SVD;
Branham Jr. 1990; Press et al. 1992; Noble and Daniel
1988) of the matrix of spectra and other tests are used to
estimate the minimum number of linearly independent spec-
tra required to span the space containing all the experimen-
tal spectra and their underlying components. From this re-
sult, the number of protein states in equilibrium can be
determined.

Once the number of states has been determined, appro-
priately dimensioned models of the equilibrium pathways
between these states can be chosen. The model equation
containing the thermodynamic parameters and spectra to be
fit to the experimental data is cast in a simple bilinear form
amenable to parameter estimation by least squares or mini-
mization of the 1-norm of the errors using a variable pro-
jection algorithm (Björck 1996). The only independent pa-
rameters in the model are the standard free-energy changes
of unfolding and midpoint concentrations of denaturant for
each equilibrium transition as given in the linear model for
denaturant-induced unfolding (Schellman 1978). Spectra
for each species and their perturbations are also recovered
from the fit. The reasonableness of these spectra (e.g., non-
negativity of species’ fluorescence spectra, a resemblance
between derived CD species spectra and other protein spec-
tra, and relative magnitudes of species and perturbation
spectra) is used as a final test of the dimensions chosen for
the model. The nature of the structural changes that accom-
pany each equilibrium step may be inferred from the spectra
of the individual species. This program is easily adapted for
global fitting of CD and fluorescence, or other measures of
protein state during unfolding equilibria.
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In addition to describing this methodology and its theo-
retical justification, we also present the analyses of unfold-
ing titrations of two dimeric proteins, one of which unfolds
in two steps. The linear dependence of the native and un-
folded spectra on denaturant concentration was determined
by least squares fitting of linear and quadratic models to
pretransition and posttransition regions of the titrations. The
accuracy of the unfolding parameters and component spec-
tra recovered from three-state unfolding titrations is dem-
onstrated by analysis of simulated titrations. Finally, an ex-
ample of the application of our methodology to the global
fitting of fluorescence and CD spectra from the unfolding
titration of a dimeric protein that unfolds via a three-state
mechanism is presented.

Results

To test the methods described in the Theory section, analy-
ses of the equilibrium unfolding data for a two-state system,
the unfolding of recombinant human macrophage (rhm)
colony-stimulating factor (CSF)-� by urea, and a three-state
system, the unfolding of recombinant human RXR� recep-
tor E domain by guanidine HCl were undertaken. Descrip-
tions of these spectra, with an emphasis on the effect of the
perturbation phenomena on spectra of the native and dena-
tured proteins, are presented first.

Macrophage colony-stimulating factor,
a two-state unfolder

A recombinant form of an N-terminal fragment consisting
of residues 4–220 of rhm CSF-� was subjected to denatur-
ation by urea under conditions that preserve the native di-

sulfides. Fluorescence and CD spectra from this titration are
shown in Figure 1, A and B. Relative fluorescence intensi-
ties at 340 nm and CD ellipticities at 222 nm are shown in
Figure 2, A and B, respectively. Sharp transitions in the
shapes and magnitudes of both sets of spectra are observed
between 7.2 M and 8.4 M urea. From CD spectra of native
rhm CSF-�, an �-helix content of 32% was estimated, in
agreement with the X-ray crystal structure (Pandit et al.
1992). The spectrum of protein in the absence of urea has a
double minimum between 208 nm and 225 nm, and changes
very slightly in the pretransition phase below 6.2 M urea.
Above 8.4 M urea, the CD spectra lack this shape and are
smaller in magnitude than the native spectrum. They re-
semble CD spectra of other denatured proteins.

The fluorescence emission spectra shown here were col-
lected using an excitation wavelength of 280 nm. At urea
concentrations below 7.5 M, the spectra are bimodal (Fig.
1A). The shoulder at 305 nm is not present in the emission
spectrum of native protein upon excitation at 290 nm. Ty-
rosine residues, which absorb weakly compared with tryp-
tophan at 290 nm, are plentiful in rhm CSF-�. Therefore,
the 305-nm shoulder is assigned to the fluorescence of ty-
rosine residues. Between 0 M and 7 M urea, the intensities
of the peak and shoulder regions increase significantly, and
there is a slight shift of the centroids of the spectra towards
longer wavelengths as judged by their intensity-weighted
mean wavelengths (from 353 to 354 nm). Between 7.5 M
and 8.4 M urea, the peak intensity increases monotonically
with urea concentration. At 8.4 M urea and above, the 305-
nm shoulder is no longer visible. Note that this change in the
relative contributions of tryptophan and tyrosine residues to
the overall spectra cannot be observed at a single wave-
length (e.g., 340 nm, Fig. 2A). Between a urea concentra-
tion of 8.4 M and the end of the titration at 9.2 M, CD and

Figure 1. rhm CSF-� titration spectra. rhm CSF-� (0.3 mg/mL) was titrated with urea, as described in Materials and Methods. Heavy lines are spectra
collected at the urea concentrations shown in the legends. The thin solid lines are spectra identified as pretransition and posttransition spectra. Thin dotted
lines are spectra measured over the structural transition. (A) Fluorescence spectra. (B) CD spectra.
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fluorescence spectra do not change significantly at any
wavelength. Together, these data imply that macrophage
colony-stimulating factor (MCSF) unfolds in urea solutions
via a single equilibrium between the native and unfolded
states.

As noted above, reports of other two-state unfolding tran-
sitions generally attribute linear dependencies to the pre-
and posttransition phases of denaturant. To construct a
model of denaturant titrations that includes the direct effects
of denaturant, it is necessary to have at least an approximate
functional form for the dependence of this perturbation on
the concentration of denaturant. To test whether the depen-
dence of pretransition and posttransition spectra of rhm
CSF-� on urea concentration is linear or not, fluorescence
and CD spectra from these regions of the titrations were fit
to first-degree and second-degree polynomials. Stars and
diamonds in Figure 2, A and B, indicate the pretransition
and posttransition points selected for fitting. The residuals
of these fits were compared using an F-test (Bevington
1969). In all cases, the improvement in fit from linear to
quadratic was significant at less than the 90% level. There-
fore, linear functions are considered adequate models for the
urea concentration dependence of the perturbation spectra
of rhm CSF-�.

Retinoid X receptor, a three-state unfolder

The second system examined is the denaturation by guani-
dine hydrochloride of the ligand-binding domain of human
recombinant retinoid X receptor-� (RXR�), which binds

9-cis-retinoic acid and homologs. The protein exists as a
homodimer in solution (Egea et al. 2001), and the X-ray
crystal structure (Bourguet et al. 1995) indicates that it has
an �-helical content of 66%. The CD spectrum of native
dimer (Fig. 3A) displays twin minima at 222 nm and 208
nm. Three phases of guanidine-induced RXR� unfolding
are evident in Figure 3A: a pretransition phase (native struc-
ture) below 0.8 M guanidine, a transition followed by a
nearly unchanging phase from 2 M to 2.65 M, and another
transition followed by the posttransition phase representing
the unfolded structure above 4.1 M guanidine. The interme-
diate spectra are missing the minimum at 222 nm and
intersect the unfolded spectra at ∼205 nm, consistent with
a transition to a distinct, mixed �-helical-unfolded second-
ary structure in the presence of 2.5 M guanidine. The three-
phase structure of RXR� unfolding is not as evident when
observed with fluorescence spectra (Fig. 3B). The first pre-
transition phase results in a blue-shifted spectrum (0.9 M
guanidine). Above 1 M guanidine, all spectra lose inten-
sity and become increasingly red-shifted as the protein un-
folds. A clear posttransition phase occurring between 4.1 M
and 5 M guanidine displays spectra that are sharply red-
shifted compared to the native and intervening spectra, and
therefore are assigned to unfolded protein, in agreement
with the CD results. However, it would not be possible to
detect and demarcate intermediate phases in the unfolding
of RXR�, were it not for the CD titration. As reference
points, the fluorescence spectra that demarcate the interme-
diate phases of unfolding according to CD are indicated in
Figure 3B.

Figure 2. rhm CSF-� titration spectra at single wavelengths. Intensities of spectra at single wavelengths were selected for plotting (open circles). Points
in the pre- and posttransition zones, marked with asterisks and diamonds, respectively, were fitted with linear and second order polynomials. Relative
improvements in fitting were gauged with one-sided P-values for the F-statistic (see Results). (A) Relative fluorescence intensities at 340 nm. Pretransition
F-test: PF � 0.39 for quadratic vs. linear fits. Posttransition F-tests: insufficient data, fit to constant shown. (B) CD ellipticities at 222 nm. Pretransition
F-test: PF � 0.14 for quadratic vs. linear fits. Posttransition PF � 0.44 for linear vs. constant fit.
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In Figure 4A, fluorescence intensities at 340 nm are plot-
ted against guanidine concentrations, and the pre- and post-
transition points that were selected for fitting with poly-
nomials are marked for comparison. Comparison of the re-
siduals from fitting first-degree and second-degree polyno-
mials to the pretransition points reveals that improvement of
the fit through addition of one polynomial coefficient is not
warranted at the 90% significance level. Similarly, there is
no significant improvement to be gained from adding an
extra parameter to a constant polynomial model of the un-

folded state perturbation. Since, as shown in this plot, no
intermediate state can be found, no model for its denaturant
perturbation could be derived. Identical tests were applied to
the ellipticities measured at 222 nm (Fig. 4B). Here, CD
spectra were collected at each of the guanidine concentra-
tions shown, and the spectra (averages of intensities at 220–
224 nm and standard error bars are shown in the figure)
were subjected to the singular value analysis procedures
described below to determine how many distinct spectra are
needed to generate all the spectra in the data set. This analy-

Figure 3. RXR titration spectra. RXR� (1.4 �M monomer) was titrated with guanidine HCl, and spectra were collected as described in Materials and
Methods. Heavy lines are spectra collected at the concentrations shown in the legends. Thin solid lines are spectra identified as pretransition and
posttransition spectra. In the case of fluorescence spectra between 2.10 M and 2.71 M guanidine, identification was made on the basis of the behavior of
CD spectra in that range. Thin dotted lines and dashed-dotted lines are spectra measured over the structural transitions. (A) CD spectra. (B) Fluorescence
spectra.

Figure 4. RXR� titration spectra at single wavelengths. (A) Fluorescence at 340 nm. Pretransition points and posttransition points are designated by plus
signs and times signs, respectively. For other details, see Results. (B) CD ellipticities at 222 nm. Filled circles with error bars are results of SVD estimation
of whole spectra at the indicated guanidine concentrations (see Results).
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sis implies that native and unfolded spectra themselves are
sufficient to account for the pretransition and posttransition
spectra. Given that so few spectra could be collected over
such short ranges in guanidine concentration, this is not
surprising. The occurrence of titrations having narrow
ranges of stability such as this is a major disadvantage to
fitting denaturant titrations with graphical extrapolation
methods.

Although there appears to be an interruption in the curve
in the range of 2–2.5 M in guanidine concentration, no
attempt was made to choose between perturbation models
based on so few points located near an intersection of two
curves. Because the amplitudes of the perturbation spectra
of tryptophan and tyrosine peptide analogs and the native
and unfolded states in two-state and three-state titrations in
urea and guanidine solutions are all adequately represented
by linear functions of denaturant concentration, a linear
model was chosen for the intermediate state of RXR�. How
this model of the origin of the titration backgrounds is in-
tegrated with the fitting procedure is described in the
Theory section.

Recovery of parameters and spectra from
a simulation of three-state unfolding

In order to demonstrate the effectiveness of a method of
data analysis, it is necessary to simulate one or more data
sets using the model process that is presumed to generate
that data, including sources of noise and error, and choices
of adjustable parameters. Those parameters should then be
recovered according to the method in question. In this study,
amplitudes and locations of fluorescence and perturbation
spectra of the pure states of RXR� were adjusted to produce
titrations with clearly separated native, intermediate, and
unfolded phases. A set of thermodynamic parameters were
also chosen (Table 1), and the mole fractions of each state
were calculated for 42 equally spaced concentrations of de-

naturant according to the linear models for the dependencies
of free energy and perturbation on denaturant concentration,
as described in the Theory and Materials and Methods sec-
tions. The mechanism chosen was that of a native dimer
converting to a monomeric intermediate, followed by the
complete unfolding of the intermediate. Noise was then
added to the collection of spectra. In the laboratory, mixing
protein and concentrated denaturant solutions is a source of
significant systematic error. To simulate this error, random
deviations in denaturant concentration were added to the
model concentrations. These errors were distributed accord-
ing to a normal function with a variance of 67% of the
denaturant concentration interval. Experimental spectra
contain random noise of two kinds: counting error, and
dark current noise. The former was simulated with Gaus-
sian random noise with standard deviation equal to 0.5% of
the square root of the fluorescence intensity, and the latter
with a standard deviation of 0.1% of the maximum fluores-
cence intensity. With these choices of error magnitudes,
the resulting spectra resembled those collected from the
guanidine denaturation of RXR�, that is, a “typical” data
set. In order to estimate the sensitivity of the uncertainties
in fitted parameter values to measurement noise, 32 datasets
drawn from the same model parameters and random error
distributions were generated. Each simulated titration was
fit according to the procedure described in Analytical Pro-
cedures, assuming a six-dimensional basis set. The gener-
alized hill-climbing global optimization procedure was em-
ployed with 100 initial points contained in the parameter
intervals being searched for minimum error (0 � �G°(0) �
30 kCal/M and 0 � cm � 12 M ). By searching this volume
starting from a large number of initial points, this algorithm
avoids entrapment in local minima. If multiple minima are
present, a search from a large number of initial points will
detect them. The 100 solutions from each simulation were
sorted according to their median residuals, and the 60 values
with the smallest residuals were retained. Table 1 lists the
medians of the retained solutions together with the param-
eter values used to generate those data. Standard errors cal-
culated from the fits are less than 10% of the corresponding
parameter values, except for the free-energy change of the
second equilibrium. In all cases, agreement between the
simulation values and recovered values was well within one
standard error. Figure 5 compares the component spectra
recovered from the data analysis with those used to generate
the data. Note the different scales in the two graphs. Errors
in recovering species spectra are less than 1% of the simu-
lated spectra. The recovered perturbation spectra are sys-
tematically smaller than the originals; however, the errors
are at most 0.5% of the corresponding species spectra. In
Figure 6, fluorescence intensities at 340 nm from all simu-
lations are compared with intensities calculated from the
recovered median parameter estimates and component spec-
tra (solid curve).

Table 1. Simulated and recovered thermodynamic parameters

Parameter Simulated Median ± S.E. Mean ± S.E.

N2 ⇀↽ 2I
�G0(0) 14.0 13.7 ± 1.0 14.2 ± 1.1
CM 4.2 4.3 ± 0.3 4.2 ± 0.4

2I ⇀↽ 2U
�G0(0) 11.0 11.6 ± 4.4 14.0 ± 4.9
CM 4.0 4.0 ± 0.1 4.0 ± 0.1

Thirty-two simulated fluorescence data sets with random errors added were
analyzed according to procedures outlined in Materials and Methods. Me-
dians and means of estimates of thermodynamic parameters recovered by
analyzing the 32 data sets are listed together with the parameters with
which the data were simulated. Units for �G0 (0) are in units of kCal
mole−1; CM is in units of molar concentration.
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Determining the number of unfolding states
with singular value analysis

In the analysis of the simulated data, the number of protein
states was given a priori, so the determination of this num-
ber from the data itself was not needed. A method for de-
riving this number from experimental results will now be
described.

The spectra of an equilibrium titration among n species
will be combinations of as many as 2n component spec-
tra. In practice, experimental spectra are sampled at a dis-
crete set of wavelengths, representing the spectra as vec-
tors (ordered lists) of intensities. If these 2n vectors are
not linear combinations of each other, they form a basis

set for all the spectra collected in the titration, and it fol-
lows from the fundamentals of linear algebra (Hoffman
and Kunze 1971) that any other basis for this space
must also contain 2n vectors. The first 2n columns in the U
and V matrices of the SVD of the data matrix are such a
basis.

Because noise is a component of experimental data, no
singular values in the SVD of its data matrix are null. In-
stead, the relative information content of the columns in
the U and V matrices in the SVD expansion is indicated
by singular values that asymptotically approach zero along
the diagonal of the S matrix. In parallel with the singular
values, the first few columns of the U and V matrices
contain most of the information in the experimental spectra.

Figure 5. Comparison of simulated and recovered three-state fluorescence spectra. The three species spectra and three perturbation
spectra used to simulate a three-state titration are shown with line plots. A three-state model was fit to 32 simulated data sets with
random noise as described in Results. The median parameter estimates were used to calculate expected spectra, shown as symbols. (A)
Species spectra. (B) Perturbation spectra.
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These are also the smoothest abstract spectra and titration
curves in the set, as the SVD procedure concentrates ran-
dom (uncorrelated) noise in the latter abstract basis spectra
and titration curves. The task of distinguishing signal from
noise, and the ambiguity thereof, lies mainly in the identi-
fication of the threshold between the significant singular
values, that is, those signifying signals, and those represent-
ing noise.

Figure 7A is a semilogarithmic plot of the singular values
derived from one of the simulated datasets discussed above.
The fifth and higher singular values denote the noise-domi-
nated components of the SVD of these data. The first three
values are unambiguously greater in magnitude. The fourth
singular value is greater than the fifth by only 0.01, or 0.1%
of the maximum singular value. To decide whether the
fourth set of components of SVD represent signal content in
the data, we used SVD to fit the abstract basis spectra in U
to the observed spectra incrementally. Analogous to fitting
polynomials of incrementally increasing degree to an arbi-
trary function, we fit to the data matrix one U-column at a
time, measuring the sum-of-squares residuals of the fit at
each degree of complexity and comparing the improvement
of each fit to those that preceded it. Eventually, the residuals
consist entirely of noise, and adding more dimensions
merely creates a model that improves the fit to noise in the
data. The F-test (Bevington 1969; Wackerly et al. 2002)
compares the effect of the addition of one parameter (or
basis vector, in this case) on the sum-of-squares residuals
and the number of degrees-of-freedom of the fit. The F-test
returns the probability (as a one-sided P-value) that the

residuals of the fit obtained with n basis vectors and those
obtained with n−1 basis vectors are drawn from the same
distribution. A high P-value implies that there has been no
improvement in fitting the correct signal underlying the
noise. Because SVD sorts singular values in decreasing or-
der, P-values will become less sensitive to increases in
model complexity once the boundary between signal-fitting
and noise-fitting has been passed. P-values (PF) for the fits

Figure 7. Singular value analysis of simulated and RXR� data. Loga-
rithms of singular values from SVD of data matrices (solid symbols, solid
lines) are plotted vs. their rank order (N) within the SVD. Open symbols
with dashed lines represent one-sided P-values (PF) for the F-statistic that
compares a rank N approximation of the data matrix with the rank N−1
approximation. (A) Simulated fluorescence data. (B) Fluorescence spectra
from the RXR� denaturation. (C) CD spectra from the RXR� denaturation.

Figure 6. Simulated and recovered fluorescence intensities at 340 nm.
Fluorescence intensities from simulated data are plotted vs. denaturant
concentration (circles). Intensities were recovered from fitting a three-state
model to 32 simulated data sets that differ by random noise. One of these
is shown (solid line). Intensities recovered from fitting a two-state model
are shown as a dashed curve.
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to the matrix of simulated data are also shown in Figure 7A.
The PF for a fit with four s-values is 0.039. There is a break
in the curve at five s-values, where PF � 0.108. With a
larger basis, PF increases more slowly and levels out at
∼0.16. Using the foregoing principles, we conclude that
PF � 0.1 is the natural threshold between significant and
insignificant s-values sought for the simulated data. Beyond
this point, improvements in representing spectra cannot be
distinguished from better fits to noise, and we conclude that
a four-dimensional model is needed to reconstruct spectra of
the titration, but that more complex models are not justified
by these analyses.

A similar analysis of the s-values and F-test results of the
fluorescence and CD observations of the titrations of RXR�
with guanidine HCl was also performed. Figure 7, B and C,
shows the relationships of s-values and PF levels to the
number of dimensions in SVD reconstructions of the data
matrices from these titrations. The transitions from large but
decreasing s-values to small and approximately constant
values are more gradual than for the simulated data. Again,
breaks in the PF curves occur around PF � 0.1, where
N�6. In the case of these titrations, analysis of s- and
PF-values justify a five-dimensional SVD reconstruction of
the data.

The simulated data were created with a six-dimensional
model, yet only four dimensions were indicated by the sin-
gular value analysis (Fig. 7A). There are two related expla-
nations for this discrepancy. First, some protein component
spectra, most likely perturbation spectra, may be too small,
compared with experimental noise, to be detected by a sin-
gular value analysis. This would certainly be the case when
the perturbation effect on the spectrum of one of the protein
states is very small. Second, one or more component spectra

may be nearly linearly dependent on the other component
spectra. In that case, a basis vector in the SVD expansion of
the experimental data matrix could be weighted by an s-
value sufficiently small that it would be lost in the SVD
representation of experimental noise. Nevertheless, under-
estimating the number of SVD components required to span
the dataset will result in a faulty estimation of the thermo-
dynamic and spectral parameters. When the simulated
dataset was analyzed with a two-state model, and the cal-
culated fluorescence intensities at 340 nm were compared
with observed intensities, there were obvious trends in the
errors, as shown in Figure 6 (dashed curve). The statistical
significance of trends in the residuals generated by fitting
two-state and three-state models to the reduced simulated
data were quantified with runs tests (Wackerly et al. 2002),
which determined that, while any runs in residuals of the
three-state are random, runs in the two-state fit are system-
atic (data not shown).

When the RXR� experimental unfolding data were sub-
jected to singular value analysis, the data appeared to be
spanned by a five-dimensional basis, and a two-state model
would only be four-dimensional. When a two-state model
was fit to these data, the recovered fluorescence spectrum
for the native species was negative over a range of wave-
lengths (Fig. 8A), a clear impossibility. CD ellipticities at
222 nm that were calculated from the results of fitting two-
state and three-state models are compared with observed
ellipticities in Figure 8B. The systematic errors in the two-
state fit were confirmed with runs tests. Thus, the two-state
model could be rejected on the basis of three criteria—the
number of significant singular values, the presence of sys-
tematic errors in the fit, and the unreasonable fluorescence
spectra of the calculated pure species.

Figure 8. Comparing two-state and three-state fits to RXR� titration data. (A) Fluorescence spectra recovered from fitting a two-state model. (B) Circles
are CD ellipticities measured at 222 nm (from Fig. 4B). Ellipticities were reconstructed using median estimates of the thermodynamic parameters (see Table
2) and transformed data (S � VT) for a three-state model (solid curve). The dashed curve shows ellipticities reconstructed from fitting a two-state model.
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Results of fitting the unfolding titration
of RXR� with a three-state model

The thermodynamic parameters recovered from fitting a
three-state model to the CD and fluorescence titrations of
RXR� are shown in Table 2 together with the results of a
joint analysis of both datasets. The same procedure em-
ployed for the analysis of the simulated data (including
parameter search by global optimization) was used to derive
an estimate of thermodynamic parameters and to calculate
residuals. In order to obtain confidence intervals for the
parameter estimates, a collection of data drawn from the
same distribution of residuals as the original was generated
and analyzed as follows: Thirty-two new sets of residuals
were simulated by resampling the residuals of the original
set, and these were added to the calculated spectra to create
32 sets of bootstrapped data (Press et al. 1992). These were
fit as before, and medians of the 32 sets of parameters, their
standard errors, and matrices of correlation between the
parameters were computed. Note that the standard errors of
results of the joint analysis are an order of magnitude
smaller than the standard errors of the individual fits (Table
2). This increase in precision is what one would expect from
adding two error surfaces that possess elongated minima
that intersect over a smaller and more isotropic volume of

parameter space. This interpretation is confirmed by com-
paring the correlation matrices of the individual and joint
analyses (Table 3). With the exception of the correlation
between the midpoint concentration and the free-energy
change of the first equilibrium, none of the correlations
among the parameters derived from the joint analysis are
strong, and most are roughly half the magnitude of the
correlations among parameters derived from analyses of the
individual datasets.

Figure 9 shows the species and perturbation spectra re-
covered from the analysis of RXR� data. Note that the
fluorescence spectrum of the intermediate species is slightly
more intense at its maximum than the native spectrum, and
is slightly blue-shifted. The close resemblance of these two
spectra and the magnitude of the perturbation spectrum of
this species accounts for the apparent absence of a distinct
intermediate state in the fluorescence titration of RXR�
(Figs. 3A, 4A). The spectrum of the unfolded species is
distinctly less intense and red-shifted compared to the other
two spectra. The CD spectra of the three species are more
distinct than the fluorescence spectra. The experimental
spectra and the species spectra follow the same trend—from
a native spectrum with evident �-helical character to a char-
acteristic denatured state spectrum via an intermediate form.
The perturbation spectra are very weak, as expected from
the near-zero slopes of the pre- and posttransition elliptici-
ties at 222 nm (Fig. 4B).

Discussion

To be useful, a method for the analysis of experimental data
must enable the experimentalist to accurately estimate the
values of parameters that quantify important physical char-
acteristics of the system under study. To accomplish this,
the analytical procedure must separate the signals that carry
pertinent information about the system from extraneous el-
ements that distort or obscure the signal. In the case of
spectroscopic observations of protein unfolding equilibria,
counting error, photo-detector noise, and mixing error make
random contributions to the observed spectra. The random
noise in these measurements is uncorrelated within and
among the spectra of a titration. In the method described

Table 2. Recovered values of the thermodynamic parameters
from bootstrapped unfolding titrations of RXR�

Fluorescence
Circular

dichroism
Joint

analysis

N2 ⇀↽ 2I
�G0(0) 14.3 ± 0.1 11.2 ± 0.2 13.10 ± 0.05
CM 4.7 ± 0.1 5.4 ± 0.1 3.75 ± 0.02

2I ⇀↽ 2U
�G0(0) 13.2 ± 0.2 9.2 ± 0.3 11.77 ± 0.07
CM 3.1 ± 0.0 3.5 ± 0.1 3.55 ± 0.00

Units are the same as those in Table 1. Thirty-two hypothetical data sets
were created by adding randomly permuted selections of the residuals from
the initial fit to data calculated from the fit. These were reanalyzed using
the same procedure. Results shown are medians of the 32 resampled data
sets and their standard errors. The first two columns list the results from
fitting fluorescence spectra and CD spectra individually. The third column
lists results from joint fitting of both data sets.

Table 3. Correlation coefficients between thermodynamic parameters

Fluorescence Circular dichroism Joint analysis

N2 ⇀↽ 2I �G0(0) 1 �G0(0) 1 �G0(0) 1
CM 0.63 1 CM 0.68 1 CM −0.96 1

2I ⇀↽ 2U �G0(0) −0.28 0.94 1 �G0(0) 0.69 0.94 1 �G0(0) 0.39 −0.4 1
CM −0.86 −0.92 0.38 1 CM 0.89 0.92 0.93 1 CM 0.31 −0.42 −0.05 1

Matrices of correlation coefficients were computed using the parameter estimates saved from fitting bootstrap-resampled data. Correlation matrices are
symmetric; only the subdiagonal matrices are shown. Parameter designations are the same as in Table 2.
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herein, the influence of random noise and error on the analy-
sis is minimized by fitting to the weighted columns of the V
matrix of the SVD of the data. The weights are the singular
values given by the S matrix, which SVD sorts in decreasing
order. Thus, the first few columns of the transformed data
matrix have the greatest magnitude and will, therefore,
dominate the fitting process. Random noise is pushed back
into the many smaller components of the transformed data,
in effect filtering the most important determinants of the
fitting results.

In the ordered set of singular values, SVD also provides
perhaps the most important resource for estimating the di-
mensionality of the model description of the equilibrium
system. With noise-free data, this task is trivial—the num-

ber of nonzero singular values will equal the number of
independent signals (spectra and titration curves) that gen-
erate the data set. In the presence of noise, all singular
values will be nonzero and any choice of demarcation be-
tween signal and noise is approximate. The first few singu-
lar values are sufficiently above the magnitudes of the trail-
ing values that they can be enumerated by inspection. A
finer discrimination is provided by an analysis of the series
of residual vectors resulting from incremental approxima-
tion of the data matrix with SVD bases. The procedure is
identical to choosing a degree of orthogonal polynomial or
the number of Fourier components to use when approximat-
ing noisy data. With each addition of component, the sta-
tistical significance of the loss of residual magnitudes is
determined. The use of the F-test for this purpose (see Re-
sults) provided more definite cutoffs for approximating data
matrices than singular values alone. Unfortunately, F-test
results indicated fewer components than expected for the
three-state data we analyzed. Information from runs tests
can confirm the significance of perceived systematic runs in
residual vectors, and underfitting results in nonphysical
fluorescence spectra. Therefore, we conclude that use of this
hierarchical analysis has resulted in reasonable and, in the
case of simulations, accurate model assignments.

The presence of denaturant in the solvent influences the
structure of tryptophan and tyrosine fluorescence emission
bands and CD ellipticity. We have shown that when unfold-
ing titrations are observed as entire spectra, this perturbation
takes the form of difference spectra that are characteristic of
each species. Because the mechanism of this phenomenon is
not understood, the relationship between the magnitude of a
perturbation spectrum and denaturant concentration must be
represented by an empirical function. This function was
assumed to be a polynomial in denaturant concentration.
The responses of intensities of fluorescence and CD spectra
of NAWA, NAYA, and the pure native and unfolded states
of rhm CSF-� and RXR� to denaturants were adequately
described with linear functions of urea and guanidine con-
centrations. We also assume that the perturbation spectrum
of the intermediate species of RXR� depends linearly on
guanidine concentration.

Once an approximation to the data matrix is chosen on
the basis of a singular value analysis, the separable linear-
nonlinear regression is performed as described in the
Theory, Materials and Methods, and Results sections. The
results of this fit, especially the species and perturbation
spectra, are then examined. If a data matrix is reconstructed
with too few SVD components, information is lost and the
recovered parameters and spectra will not be accurate. For
this reason, we reject models if the fluorescence spectra for
pure species are negative, if the perturbation spectra are too
large (comparable in magnitude to species spectra or larger),
or if the CD species spectra assume an atypical shape for a
protein (e.g., unusually large positive peaks at wavelengths

Figure 9. Species and perturbation spectra from fitting RXR� with the
three-state model. Species and perturbation spectra from fitting RXR�

titrations were reconstructed using median estimates of the thermodynamic
parameters (Table 2) and transformed data. Filled symbols are species
spectra. Half-filled symbols are corresponding perturbation spectra. (Top)
Fluorescence spectra. (Bottom) CD spectra.
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longer than 200 nm, with large negative troughs in the cor-
responding perturbation spectra that compensate for the ab-
errations during the fitting). The residuals of the fit are also
inspected for systematic trends that indicate that a portion of
the titration curve has not been accurately fit, as was the
case with the two-state analysis of the data simulated with a
three-state model. In the event of failure, a model with a
different number of intermediates is chosen, and the fitting
and evaluation process is repeated.

The chance that an incorrect result will be accepted is
further reduced when identical titrations are carried out us-
ing multiple structural probes. In the case of our studies of
rhm CSF-� and RXR� unfolding, CD and fluorescence
were both employed as probes. Because the thermodynam-
ics of unfolding are properties of the sample, recovered
thermodynamic parameters should not depend on the modes
of observation. Significant discrepancies in standard free-
energy changes or midpoint concentrations would indicate
an erroneous fit, probably from choosing a model of insuf-
ficient complexity.

Simultaneous analysis of multiple experiments with dif-
ferent probes can also reduce the dispersion in values of the
thermodynamic parameters. This is especially true if the loci
of the minima in the distinct error surfaces are orthogonal to
each other, in which case the long trough-like minima
caused by interparameter correlations will be rendered more
symmetrical and less extensive (Beecham 1992). The joint
analysis of CD and fluorescence observations of RXR� un-
folding reduced the standard errors of most parameters com-
pared to the separate analyses (Table 2).

No procedure for analyzing equilibrium titrations, includ-
ing that described above, can distinguish between different
mechanisms of unfolding. The mechanism we assumed in
simulating and analyzing the three-state titrations described
in this report is the on-path unfolding model in which dis-
sociation of the dimer in the first step, followed by unfold-
ing of the monomeric intermediate in the second step. An
alternative pathway involving a dimeric intermediate fol-
lowed by dissociation to unfolded monomers was also fit to
the data from the RXR� unfolding titrations. The free-en-
ergy differences between native and fully unfolded protein
are in agreement when the results of the two fits are com-
pared. Other techniques such as stop-flow refolding and
unfolding kinetics and thermal denaturation may also be
useful in resolving mechanistic questions such as this. Re-
sults of these studies will be described in future publica-
tions.

The methods described in this report have been subjected
to two critical tests. First, a titration of a three-state system
was simulated using thermodynamic parameters and com-
ponent fluorescence spectra similar to those yielded by the
analysis of RXR�. Random noise and errors with compo-
nents commonly encountered in spectroscopic observations
of denaturant-induced protein unfolding were included in

the data. As described in Results, the agreement between the
parameters and spectra used to simulate the data and those
estimated from the fit were excellent, demonstrating that
data generated by the assumed model could be successfully
analyzed according to these methods. Second, if the model
used to develop the methods described herein is valid, then
it should be possible to demonstrate that those methods
yield reasonable results when real three-state systems are
analyzed. This was done by obtaining reasonable spectra
and thermodynamic parameters from analyzing RXR� un-
folding as described above. The reasonableness of compo-
nent spectra was discussed above. The overall free-energy
change of unfolding of RXR� is compared with those of
three other proteins with 190 residues or more in Table 4.
Only glutathione S-transferase is a monomer; the others are
homodimers. cAMP receptor also unfolds via a three-state
mechanism. The free-energy change calculated for RXR� is
in the middle of this range. The changes in free energy per
unit denaturant concentration are also comparable to those
of other proteins in this molecular weight range—between 1
and 5 kCal/mole·M for each transition.

Although designed to fill the need for methods of analysis
of three-state titrations, these global methods yield the same
results as the graphical background-subtraction-and-linear-
extrapolation method applied to the unfolding of rhm CSF-
�. The latter method yielded 21.6 ± 0.89 kCal/mole for
�G0(0) and −2.71 ± 0.11 kCal/mole M for the slope of free
energy versus urea concentration. The corresponding values
for fitting by nonlinear fitting to whole-spectra data were
�G0(0) � 23.0 ± 2.8 kCal/mole, m � −2.96 ± 0.37 kCal/
mole M.

Global data fitting—treating spectra as data and combin-
ing experiments using different kinds of spectroscopy—is a
well established procedure for analyzing titrations where it
is not necessary to correct for the perturbation background.
Correcting for the perturbation background prior to nonlin-
ear regression for the remaining parameters in the single-
wavelength case is standard procedure for two-state equi-
libria. This has also been accomplished for three-state
equilibria, provided arbitrary assumptions are made about

Table 4. Comparison of standard free energy changes of
unfolding in the absence of denaturant

Protein
�G0 (0)

(kCal/mole) Residues
�G0 (0)/residue
(kCal/residue)

RXR� 26.4 244 0.11
Human pituitary growth

hormone 27.8 191 0.15
Porcine glutathione

S-transferase 25.3 207 0.12
E. coli cAMP receptor 19.2 209 0.09

RXR� results are from this study. All others are cited in Neet and Timm
(1994).
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the slope of the background for the intermediate species.
However, when pure native-state or unfolded-state spectra
are only available over a short range of denaturant concen-
trations, accurate measurement of background slopes may
not be possible, and the slope parameter for the perturbation
must be derived as part of the regression for the other pa-
rameters. In the present case, perturbation spectra and spe-
cies spectra are always determined concurrently. To our
knowledge, the integration of all these features in one ana-
lytical procedure is unique to the method presented here.

The integration of all these goals—global fitting of mul-
tiwavelength spectra of different types with concomitant
correction for denaturant perturbation—is made possible by
the compact linear-algebraic formulation of the fitting prob-
lem as described in the Theory and Materials and Methods
sections and by the use of a global optimization routine to
minimize the error function over the parameter space with-
out calculation of explicit derivatives. The most important
features of the former are the elimination of any spectra
from the fitting expression so that the fitting can be done
entirely in the space spanned by the V-vectors, with con-
comitant savings in time and reduction of computational
error, and the separable formulation of the model in which
the matrix of coefficients of component spectra with respect
to the U-vectors is postmultiplied by the matrix function of
the nonlinear thermodynamic parameters. For every step
that the global minimization routine takes in the space of the
(nonlinear) thermodynamic parameters, the linear param-
eters that minimize the total fitting error are determined. In
this manner, the solution is reached by iteration in the ther-
modynamic parameter space. Casting the problem in sepa-
rable form is also convenient for fitting combined data sets,
as the thermodynamic parameters are properties of the pro-
tein-denaturant system and must be shared among all those
sets.

In summary, this report describes a novel method for
analyzing the thermodynamics of three-state protein unfold-
ing titrations. Rather than estimate baselines, the effects of
denaturants on the spectra of the individual components are
obtained directly from the data analysis as perturbation
spectra. Using this approach in combination with single
value decomposition methods and a global analysis of data
sets obtained by different spectroscopic techniques, the
methodology was successfully applied to simulated data
and experimental two- and three-state unfolding systems.
This procedure should allow more precise estimation of
thermodynamic parameters of three-state unfolding systems
without unwarranted assumptions regarding baseline behav-
iors.

Theory

In a titration experiment, one measures changes in the con-
centrations of species at equilibrium as a function of the

concentration of some titrant on which the free-energy
changes of the component equilibria depend. The object of
analyzing protein denaturation titrations is to estimate the
values of parameters that characterize the relationship be-
tween experimental observations and thermodynamic prop-
erties of the system, according to some model of the dena-
turation process. The discussion that follows describes the
most common thermodynamic model of protein denatur-
ation, its transformation into a form amenable to solution of
the problem, and the regression algorithm used to obtain the
adjustable parameters of the model.

According to the most commonly used model for the
stability of proteins in the presence of denaturants (Schell-
man 1978), the standard free-energy change of unfolding is
a linear function of two parameters: the free energy change
in the absence of denaturant [(�G0(0)] and a constant de-
rivative of the free-energy change as a function of denatur-
ant concentration. An alternate form of the same relation-
ship, in which the concentration dependence is replaced by
a unitless term, is better suited to fitting these experimental
data:

�G0(c)��G0�0��1 − c�cm� (1)

In equation 1, cm is the concentration of denaturant at which
�G0(c), the standard free-energy change as a function of
denaturant concentration, is zero. In the case of multistate
equilibria, a separate �G0(0), cm pair characterizes each
transition.

The intensities of absorbance, fluorescence, and CD spec-
tra of a pure chemical species are proportional to the con-
centration of the species and the molar signal for that spe-
cies. As shown in Results, each species spectrum is accom-
panied by a perturbation spectrum whose magnitude is
proportional to the concentration of denaturant. Thus, at
each denaturant concentration, the measured spectrum con-
tains contributions from n species at equilibrium, where
species i contributes two spectra: �i, the spectrum per mole,
and �i, the corresponding perturbation spectrum per molar
concentration of denaturant. The latter spectrum is addition-
ally weighted with the denaturant concentration. If we let cj

be the j-th concentration of denaturant, and let yj be the total
signal per mole of protein generated at the j-th denaturant
concentration, then

yj = �
i=1

n

�fj,i�i + fj,icj�i�,

where fj,i is the mole fraction of species i at the j-th con-
centration of denaturant. This expression can be cast in
block-matrix form as follows: Let Y be a matrix with yj in
column j, and let � and � be matrices with species and
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perturbation spectra as columns. Then the model function
for this system becomes

Y = ����� ●� F
���

C ● F
�, (2)

where F � [fi,j], the matrix of mole fractions, and
C � [ci,j], a diagonal matrix of denaturant concentrations.

For any choice of mole fractions and component spectra,
the model function approximates the data matrix with a
matrix of errors, E:

data = Y + E. (3)

Considerable simplification of the data fitting problem is
achieved using the singular value decomposition (SVD) of
the data matrix. The SVD is an eigenvector/eigenvalue ex-
pansion of the data matrix in terms of the product of three
matrices: Matrix U consists of an orthonormal set of column
vectors that span the space containing the measured spectra
(the column space). Matrix S is the diagonal matrix of sin-
gular values arranged in order of descending magnitude, and
VT is the matrix whose rows span the row space of the data
matrix (the titration curves at every wavelength). The sin-
gular values in S act as coefficients that weight the terms of
the expansion. Substituting for data in equation 3 results in

U ● S ● VT = Y + E = ����� ●� F
���

C ● F
� + E (4)

Equation 4 can be simplified by multiplying through by UT.
Define [P�Q] ≡

UT ● [���] and G ≡� F
���

C ● F
�.

We now have

S ● VT = [P�Q� ● G + UT ● E. (5)

Matrix [P�Q] contains the projections of the species and
perturbation spectra on the row space of UT. As such, it
contains the coordinates of those spectra with respect to the
column vectors in UT. The error matrix is also dotted by UT,
so the product is the projection of the error matrix onto the
row space of UT (i.e., the column space of U). Because the
columns of U are an orthonormal basis for the columns of E,

UT • E�	, where 	 is the matrix of coordinates of the
errors in the space spanned by U. The left side of equation
5 is the projection of the data matrix onto the column space
of UT. Thus, equation 5 expresses the approximate relation-
ship in “V-space” between the reduced data (S ● VT), the
model function ([P�Q] ● G), and the errors of the approxi-
mation. Note that no spectra appear in this expression, a
desirable feature in that it minimizes computational work
and the attendant numerical errors in the fit. In this form, the
model is a separable linear/nonlinear function in which a
linear term, [P�Q], multiplies the matrix of mole fractions,
which are nonlinear functions of the thermodynamic param-
eters.

The nonlinear regression problem is to find the values of
the thermodynamic parameters and the elements in [P�Q]
that minimize the p-norm of the error term:

F,P,Q
min 
�	��p = F,P,Q

min 

S ● VT − [P�Q] ● G

p. (6)

A separable linear/nonlinear least squares problem such as
this can be solved by Variable Projection methods (Björck
1996) that take advantage of the interdependence of the
linear and nonlinear parameters. Kaufman and others (Kauf-
man 1975) developed quadratically convergent variable
projection methods for solving separable problems. Such
methods rely on Gauss-Newton methods, which require cal-
culations of Jacobian matrices. Because the 1-norm of the
errors is a more robust estimator in the presence of data
outliers than the 2-norm, the former was used to estimate the
fitting errors. Because the 1-norm is not compatible with
analytical derivative evaluations, a simpler, linearly conver-
gent alternative to variable projection methods (Björck
1996) was used. According to this algorithm, once F and G
have been calculated from trial values of the thermody-
namic parameters, the matrix [P�Q] that minimizes the er-
ror norm for that fixed G can be found with linear least
squares. The controlling optimization method calculates a
step in the thermodynamic parameter vector, and the pro-
cedure is iterated until a convergence criterion is met.

Spectra of the pure species and the perturbations can be
calculated by pre-multiplying the solution for matrix [P�Q]
by U. However, this procedure retains all the noise present
in the experimental spectra. The noise present in the reduced
data matrix for two-state and three-state equilibria can be
removed by deleting all rows beyond the first four or six
rows, respectively. Fitting with filtered data may introduce
bias into the adjustable parameters; but filtering noise from
signals with SVD is an acceptable procedure (Branham Jr.
1990). In order to uncover underlying information masked
by noise, the spectra reported here were filtered as follows:
A filtered version of [P�Q] was estimated from the trun-
cated version of S ● VT and the parameters estimated from
the full data. Pre-multiplying the filtered [P�Q] by a matrix
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consisting of the first four or six columns of U yields the
filtered species and perturbation spectra.

Materials and methods

Urea (Micro-select grade) was purchased from Fluka, and guani-
dine HCl (Ultrol grade) was purchased from Calbiochem. Trizma
base, sodium EDTA, and potassium chloride were supplied by
Sigma Chemicals. TCEP was purchased from Pierce, and CHAPS
was purchased from Anatrace.

Fluorescence emission spectra were collected with an SLM-
Aminco 8000 spectrofluorometer with a temperature-controlled
sample turret. The excitation wavelength was 278 or 280 nm, and
emission intensities were collected from 300 nm to either 460 nm
or 500 nm at 1-nm intervals with an integration time of 1 sec per
interval. All fluorescence intensities were collected as ratios of
emitted counts to counts from a fraction of the excitation beam
scattered from distilled water. Excitation and emission slit widths
were both 8 nm. Spectra of urea or guanidine hydrochloride in
buffer at intervals of 1 M denaturant were collected (10 replicate
spectra per sample), and interpolated to all concentrations in the
titration and smoothed in Mathematica. Following background
subtraction, an additive baseline shift for each spectrum was mea-
sured and averaged at the largest five wavelengths, and subtracted
to zero all spectra at those wavelengths.

CD spectra were acquired on a Jasco J-720 spectropolarimeter
equipped with a Peltier device for controlling the temperature of
the sample. Step scans were collected at 1 nm/step with an inte-
gration time of 1 or 2 sec. Generally, six replicate spectra were
collected for each sample and averaged by the instrument. All
scans began at 320 nm. Minimal wavelengths for the scans were
determined by the point at which sample absorbance reached 1.5
OD, or at the wavelength at which the photomultiplier voltage
exceeded 600 V. Spectra of urea in buffer at intervals of 1 M urea
were collected (10 replicate spectra per sample), and interpolated
to all concentrations in the titration and smoothed in Mathematica.
Spectra were corrected for baseline shift as above, using wave-
lengths from 315 through 320 nm for calibration.

Rhm-CSF-� was a gift from Dr. Cynthia Cowgill (Chiron Corp.,
Emeryville, CA). Lyophilized protein was dissolved in Tris buffer
(50 mM Tris HCl, 5 mM NaEDTA [pH 8.5]), and the buffer salts
were diluted by ∼3000× by repeated concentration and dilution in
Tris buffer and concentrated to 30–40 mg/mL. In this form, the
protein was stable for several days. Denaturation of the disulfide
form of rhm-CSF-� was initiated by dilution to 0.3 mg/mL with
Tris buffer with desired concentrations of urea. In all cases, protein
was added slowly to a conical vial containing buffer/urea while
stirring slowly with a spinvane. Mixing was stopped after 15 sec.
Equilibrium was achieved after 2 h at room temperature. All spec-
tra were acquired at 20°C. Denaturation under these conditions
was fully reversible, as judged by recovery of native fluorescence
and CD spectra upon refolding fully denatured protein.

The insert containing the RXR� E-domain was a gift from
Pierre Chambon (Institut de Génétique et de Biologie Moleculaire
et Cellulaire, Collège de France, Strasbourg, France). E. coli strain
BL21(DE3 plys S) was transformed with a pet15B vector (Nova-
gen) containing the insert. Cells were grown at 37°C to an OD of
0.6–0.7, chilled to 25°C, and induced for 4 h in the presence of 0.8
mM IPTG at 25°C. Cell pellets were sonicated on ice and centri-
fuged. Supernatant was equilibrated in bulk with Talon Co++ resin
in E/W buffer (50 mM KH2PO4 [pH 7.0], 0.3 M KCl), washed
with E/W buffer containing 10 mM imidazole, poured into a col-
umn, and eluted with 150 mM imidazole in E/W buffer. To obtain

a pure dimer species, the RXR� fractions were further purified by
gel filtration on a Sephacryl S-200 or Superdex 200 column.
Pooled fractions were concentrated and diluted into storage buffer
(50 mM potassium phosphate, 0.5 M KCl, 1 mM TCEP, 0.5 mM
CHAPS [pH 7.4]).

Protein in storage buffer was diluted to 1.4 �M in monomer
concentration with various concentrations of guanidine HCl in
storage buffer. Mixing was done as for rhm CSF-�. Samples were
incubated at 30°C for 2 h, and spectra were acquired at the same
temperature. Spectra of native protein were compared with spectra
of protein that had been denatured and refolded, indicating that the
unfolding was at least 95% reversible.

The mass action expressions describing the two three-state equi-
libria discussed in Results are the following:

N2 ⇀↽
KI

2I ⇀↽
KU

2U

fU =
2

1 + 1�KU + ��1 + 1�KU�2 + 8Po��KIK
2
U�

fI = fU�KU;

fN = 2 fU
2 Po��KI KU

2�; (7)

N2 ⇀↽
KI

I2 ⇀↽
KU

2U

fU =
2

1 + ��1 + 8Po �1 + 1/KI�/KU

;

fI = 2fU
2 Po�KU;

fN = fI�KI (8)

The Mathematica global optimization package was from Loehle
Enterprises (Naperville, IL).
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