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Abstract

Methods that predict the topology of helical membrane proteins are standard tools when analyzing any
proteome. Therefore, it is important to improve the performance of such methods. Here we introduce a novel
method, PRODIV-TMHMM, which is a profile-based hidden Markov model (HMM) that also incorporates
the best features of earlier HMM methods. In our tests, PRODIV-TMHMM outperforms earlier methods
both when evaluated on “low-resolution” topology data and on high-resolution 3D structures. The results
presented here indicate that the topology could be correctly predicted for approximately two-thirds of all
membrane proteins using PRODIV-TMHMM. The importance of evolutionary information for topology
prediction is emphasized by the fact that compared with using single sequences, the performance of
PRODIV-TMHMM (as well as two other methods) is increased by approximately 10 percentage units by
the use of homologous sequences. On a more general level, we also show that HMM-based (or similar)
methods perform superiorly to methods that focus mainly on identification of the membrane regions.
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Integral �-helical membrane proteins constitute an impor-
tant subset of the proteins encoded by a genome, making up
∼20%–25% of the proteome (Krogh et al. 2001). These
proteins are crucial for many cellular processes including
signaling and transport processes. They are also the target
for the majority of all drugs, making them important for the
pharmacological industry (Chen et al. 2002). For several
experimental reasons, it is more difficult to obtain the struc-
tures of TM proteins than of globular proteins. A conse-
quence of this is that <1% of the 3D structures in the Protein
Data Bank (Berman et al. 2000) are of TM proteins. How-
ever, “low-resolution” information about the structures of
TM proteins can be obtained by determining the topology,
that is, the location in the sequence of the TM regions and

the orientation of the protein relative to the membrane. This
can be done protein by protein using experimental methods
such as gene fusion, proteolytic digestion in situ, antibody
binding, and chemical modification; on a larger scale using
automated prediction methods (Krogh et al. 2001); or via a
combination of the two (Kim et al. 2003). Today, such
experimental low-resolution information is available for
∼500 proteins. A correctly determined topology can provide
important knowledge in further structural and functional
studies, including the detection of homologous membrane
proteins (Hedman et al. 2002).

The first predictors for �-helical TM proteins only used
the fact that TM helices are on average more hydrophobic
than the loop regions of TM proteins and all regions of
globular proteins. These methods classified each segment
that was sufficiently hydrophobic as a TM helix. Although
these simple methods worked surprisingly well, many re-
gions were wrongly classified. A significant improvement
was obtained with the observation that positively charged
amino acids are more common in the cytoplasmic than
in the external loop regions (the positive inside rule; von
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Heijne 1986, 1994). This was included in the Toppred pre-
diction method (von Heijne 1992; Claros and von Heijne
1994). In Toppred, regions that are of intermediate hydro-
phobicity can be classified either as membrane regions or
as loop regions to optimize the number of positive residues
in the cytoplasmic loops. Later, the same information
was included in statistical optimization methods such as
MEMSAT (Jones et al. 1994), which is built on propensity
scales and uses a dynamic programming algorithm to find
the optimal topology. Information from multiple sequence
alignments has been included in machine learning methods
(for example, PHD_htm; Rost et al. 1996) and statistical
methods (TMAP; Persson and Argos 1994). Recently,
HMMs (HMMTOP [Tusnády and Simon 1998, 2001];
TMHMM [Sonnhammer et al. 1998; Krogh et al. 2001])
have been used to extract the significant features of different
regions in TM proteins.

The predictors can roughly be divided into two classes,
those that primarily focus on a residue-based evaluation of
the propensity of each amino acid to be in a particular
region (Toppred, TMAP, THUMBUP [Zhou and Zhou
2003], PHD_htm) and those that focus on aligning the se-
quence with a membrane protein model (the HMM methods
and MEMSAT). As the topology of a membrane protein is
determined both by the composition of the membrane re-
gions and the loops, it could be assumed that the best per-
formance should be achieved by methods that fully use this
information.

Several groups have published independent measure-
ments of the performance of different predictors. But as of
yet, no prediction method has distinguished itself as being
indisputably better than all others in all tests. Chen et al.
(2002) concluded that “no method(s) performed consis-
tently better than all others by more than one standard er-
ror.” Differences between the evaluations are due to what is
being measured (per residue accuracy, per protein accuracy,
etc.) and perhaps more important, the composition of the
data set used in the comparison, which may be more or less
similar to the data set for which a particular method has
been optimized. However, Ikeda et al. (2002) observed that
“model-based methods perform better than non-model
based ones,” and Chen et al. concluded that “methods based
on alignments were superior to those based on single se-
quences.” As far as we can tell, neither of these studies
tested the multiple sequence version of HMMTOP, nor was
this done by Möller et al. (2001) or Jayasinghe et al. (2001).

In this study, we will focus on the evaluation of topology
prediction, that is, the ability to correctly identify all mem-
brane regions as well as to correctly predict the orientation
of the protein in the membrane. There are two reasons for
this: First, we think that this is the type of information that
will provide the most useful information about an unknown
membrane protein. Second, it seems as if this is the most
challenging part of membrane protein predictions and that

for this reason, differences in performance might only be
seen by studying topology prediction accuracies.

A common property of most TM protein prediction meth-
ods is that they depend on statistical information from se-
quences with known topology for parameter optimization.
A well-established method to improve the statistical stabil-
ity of protein sequence data is to use evolutionary informa-
tion in the form of multiple sequence alignments instead of
single sequences. For instance, this is known to improve
prediction performance of secondary structure prediction
for globular proteins by several percentage units (Rost and
Sander 1993). Of these methods, TMAP and PHD_htm are
the only methods that use multiple sequence alignment data.
Further, HMMTOP can use the information from a set of
homologous sequences when predicting the topology of a
particular query sequence. However, these sequences are
used as single sequences and not in the format of a profile.

Recently, sequence profiles created from multiple se-
quence alignments have been used as inputs to HMMs
(Martelli et al. 2002; Edgar and Sjölander 2003). However,
for �-helical TM proteins, it is not obvious a priori that
multiple sequence alignment information should improve
the predictions, because it is not certain that membrane
proteins from the same family all share the same topology.
For instance, homologous sequences of the same protein
family that have inverted topologies have been shown to
exist (Sääf et al. 1999). It is also well known that homology
detection of membrane proteins is more difficult than for
globular proteins (Hedman et al. 2002). Finally, the optimal
way to use sequence profiles with HMMs is still not well
understood. The two implementations by Martelli et al.
(2002) and Edgar and Sjölander (2003) are quite different
from each other and it is our belief that the optimal way to
use sequence profiles with HMMs depends on the properties
of the problem to which the HMM is applied.

In this study, we show that a novel HMM-based method,
PRODIV-TMHMM, which is an alignment-based HMM
using sequence profiles that includes the best features of
TMHMM and HMMTOP, achieves ∼66% accuracy in to-
pology predictions, whereas methods that do not use both
HMMs and evolutionary information achieve at best 52%
accuracy.

PRO-TMHMM and PRODIV-TMHMM

An HMM is a first-order Markov chain, where in each state
a symbol is emitted. Transition probabilities are the prob-
abilities of moving from a model state s to some other
model state s�, and the emission probabilities are the prob-
abilities of emitting an alphabet symbol a when in state
s of the model. Given an HMM with model parame-
ters �, the probability of a sequence x being produced by the
HMM using a particular state path p, can be written
P(x,p|�) � �l − 1

i � 0tpi,pi+1
× �l

i � 1epi
(xi), where tj,k is the tran-
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sition probability from state j to state k, ej(a) is the emission
probability for letter a in state j, and l is the sequence length.
When using HMMs for topology prediction, the basic idea
is to label each state as either “Membrane,” “Inside,” or
“Outside.” Then, using sequences with experimentally
known topology, the objective is to adjust the transition and
emission probabilities in such way that the most likely path
for a TM protein through the HMM is one where its TM
residues are emitted in states labeled “Membrane,” and so
forth.

The principle for the architecture of both TMHMM (Fig.
1; Sonnhammer et al. 1998; Krogh et al. 2001) and
HMMTOP (Tusnády and Simon 1998, 2001) is that there
are separate compartments (sets of states and state transi-
tions) for modeling the TM regions, the loop regions on the
cytoplasmic side (inside), and the loop regions on the
periplasmic side (outside). The composition and arrange-
ment of the compartments differs slightly between the two
methods, but the principle remains the same. The transitions
within the TM compartments limit the lengths of these re-
gions to somewhere around 15–35 residues. Inside and out-
side regions are built so that arbitrarily long loops are al-

lowed but somewhat less likely than shorter ones. Intercom-
partmental transitions are restricted so that transitions
directly between inside and outside regions are not allowed.
An outside region followed by a TM region must be fol-
lowed by an inside region and vice versa. Using the archi-
tecture of TMHMM2.0, we have created two new variants
of HMM-based prediction methods, PRO-TMHMM and
PRODIV-TMHMM, as well as a retrained version of
TMHMM, referred to as S-TMHMM. The reason for using
a retrained version of TMHMM and not TMHMM2.0 is to
get a cleaner comparison between our novel methods and
the single sequence method by using the same sequence
data for parameter optimization.

For predicting the topology of a TM protein, the tradi-
tional approach is to find the most probable path for the
particular sequence through the HMM, and in each state of
this path, emit the label of that state. This sequence of state
labels is the topology prediction. Variants of this approach
are used by both PRO-TMHMM and S-TMHMM. The
method introduced with HMMTOP (Tusnády and Simon
1998, 2001) describes another possible procedure for mak-
ing a prediction. Here, the input sequence is first used to

Figure 1. The layout of TMHMM. Each box corresponds to a compartment. Arrows correspond to possible intercompartmental
transitions.
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estimate new model parameters. This model is then used to
make the prediction in the same way as described earlier.
The objective of this approach is to maximize the diver-
gence of the amino acid distributions of the different re-
gions. A version of this procedure is used in PRODIV-
TMHMM.

Both PRO-TMHMM and PRODIV-TMHMM are pro-
file-based HMMs. A straightforward way of including mul-
tiple sequence information into TMHMM is to create a mul-
tiple sequence alignment based on the query sequence and
its homologs and to calculate the geometric mean of the
probabilities of the single aligned sequences, using the
alignment to force the residues of each particular column to
be emitted in the same state. In principle, this is the scoring
method developed by Edgar and Sjölander (2003). In prac-
tice, the only difference between multiple sequence align-
ment scoring and the standard HMM single sequence scor-
ing method is the way of calculating the “probability” of a
particular alignment column being emitted in a particular
state. Strictly, this is not a probability, but the term is used
here in analogy with the corresponding term “emission
probability” in the single sequence context. For alignments,
this is calculated as �A

j � 1es(aj)
Xi(aj), where A is the alpha-

bet size, es(a) is the emission probability of letter a in state
s, and Xi(a) is the fraction of letter a in alignment column Xi.
This means that profiles can be used both for predictions
and for estimating model parameters. For a detailed descrip-
tion, refer to Materials and Methods.

This method differs from how multiple sequence infor-
mation is used in HMMTOP. In HMMTOP, a set of se-
quences that are homologous to the query sequence are used
in the prediction phase, so that the divergence-optimizing
parameter reestimation is done on the set of homologous
sequences rather than on the query sequence alone. The
important difference between using single homologous se-
quences and multiple sequence alignments is that when us-
ing alignments, the amino acids of a particular column are
forced to be emitted in the same state. This is not necessarily
the case for single homologous sequences that may take
separate paths through the model.

Results

Prediction performance

In Table 1, a comparison of the performance of two novel
methods (PRO-TMHMM and PRODIV-TMHMM) with
several well-tested methods and one less well-tested method
(HMMTOP_multi) is shown. The performance of the meth-
ods can be divided into three groups: methods that neither
use multiple sequence information nor are “model-based”
predict 32%–39% of the topologies correctly; methods
that are either model-based (S-TMHMM, HMMTOP,
MEMSAT, TMHMM2.0) or use multiple sequence infor-
mation (PHD_htm2.1) predict 41%–52% of the topologies
correctly; and finally, methods that are both model-based

Table 1. Comparison of the prediction performance of different prediction methods on a data set of 147 sequences

Prediction results for the 3D + 1D data set, 147 seqs

Method Topo Model-based Multi Over Under Q3 Q2

PRODIV-TMHMM 97 (66%) Yes Yes 28 11 82% 88%
PRO-TMHMM 90 (61%) Yes Yes 21 26 82% 87%
HMMTOP2.0_multi 88 (60%) Yes Yes 25 26 76% 87%
HMMTOP2.0 76 (52%) Yes No 33 28 74% 87%
S-TMHMM 72 (49%) Yes No 20 40 79% 88%
MEMSAT1.8 71 (48%) Yes No 25 40 70% 87%
PHD_htm2.1_msa 67 (46%) No Yes 26 48 72% 86%
TMHMM2.0 61 (41%) Yes No 19 49 70% 88%
TopPred2.0 58 (39%) No No 25 49 68% 87%
PHD_htm2.1 52 (35%) No No 31 46 70% 86%
THUMBUP 47 (32%) No No 12 74 67% 84%
ERROR 4% — — — — 2% 1%

HMMTOP2.0 (Tusnády and Simon 1998, 2001) is the single sequence version of HMMTOP. HMMTOP2.0_multi is the multiple sequence version of
HMMTPO. The input sequences used were the homologous sequences found in the BLAST search at E-value cutoff 10−5. PHD_htm2.1 (Rost et al. 1996)
is the single sequence version of PHD, PHD_htm2.1_msa is the multiple sequence alignment version of PHD. The alignments used were those created by
the BLAST search at E-value cutoff 10−5. MEMSAT1.8 (Jones et al. 1994), THUMBUP (Zhou and Zhou 2003), and TopPred2.0 (von Heijne 1992; Claros
and von Heijne 1994) were all run with default parameter settings. PRODIV-TMHMM and PRO-TMHMM were run on the same multiple sequence
alignments as PHD. The column Topo shows the number of (share of) correctly predicted topologies. The columns Over and Under describe the number
of overpredictions and underpredictions that were made by each method. The column Model-based refers to the classification of each method as either
residue-based or model-based (see introduction). Multi refers to whether a method includes multiple sequence information or not. Q3 is the per protein
average of the share of residues that are correctly predicted using a three-state prediction evaluation (helix, inside, outside). Q2 is the per protein average
of the share of residues that are correctly predicted using a two-state prediction evaluation (helix, nonhelix). The results of PRODIV-TMHMM, PRO-
TMHMM, and S-TMHMM were all obtained using the cross-validation procedure described in Materials and Methods.
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and use multiple sequence information predict 60%–66% of
the topologies correctly. The difference between the third
group and the previous two is statistically significant, as the
error rate is ∼4% for all methods. The only difference be-
tween S-TMHMM and PRO-TMHMM is that the latter uses
multiple sequence alignment data, whereas the former does
not. This means that both TMHMM and HMMTOP im-
prove their prediction accuracy when including evolution-
ary information, from 49% and 52% to 61% and 60%, re-
spectively. The usefulness of evolutionary information is
emphasized further by the increased performance of
PHD_htm (from 35% to 46%). It is possible that using
alignments/profiles is more efficient than using single ho-
mologous sequences, because the performance increase for
TMHMM is slightly larger than for HMMTOP. Using se-
quence profiles is often computationally more efficient than
using homologous sequences.

The PRODIV-TMHMM method is an extended version
of PRO-TMHMM, which also includes the reestimation
procedure for maximum divergence described earlier. This
leads to a performance increase of another five percentage
units.

Comparing the different methods on the basis of the per-
residue scores (Q2 and Q3) shows that there is no significant
difference between most of the methods regarding two-state
(helix, nonhelix) predictions. However, the results for the
three-state per-residue predictions (helix, inside, outside)
seem to correlate with the results for the overall topology
predictions; that is, methods using model-based approaches
and/or multiple sequence information perform better than
the simpler hydrophobicity-based methods.

The topology prediction accuracies obtained here agree
with the results obtained by Käll and Sonnhammer (2002)
and Melén et al. (2003), who both showed that earlier stud-
ies had overestimated the accuracy of the methods. In ad-
dition, the “completely correct” measure in the study by
Chen et al. (2002) agrees very well with the topology pre-
diction results, and the Q2 results agree with their conclu-
sions that there are no significant differences between the
best methods using “per residue” measures.

Creation of profiles

The performance of a profile-based HMM method is depen-
dent on the quality of the profile. Our initial hypothesis was
that only relatively close homologs should be included in
the profiles, because it is important that the aligned se-
quences share the same topology as the query sequence.
However, the sequence relationship should also be distant
enough to provide additional evolutionary information. To
compare different types of profiles, we created multiple
sequence alignments running BLAST (Altschul et al. 1990)
and PSI-BLAST (Altschul et al. 1997; for five iterations)
with E-value cutoffs between 10−1 and 10−9. HMMs were

then created and evaluated using these alignments and the
PRO-TMHMM training and scoring method.

As can be seen from Figure 2, the profiles from BLAST
clearly outscore those of PSI-BLAST, and the PSI-BLAST
profiles tend to score better with more conservative cutoffs.
It is well known that there is a significant risk of high-
scoring false-positive hits when using PSI-BLAST and
membrane proteins because all membrane regions, in some
sense, are similar to each other (Hedman et al. 2002). Here
it seems as though even a very restrictive E-value cutoff
makes PSI-BLAST profiles drift too much from the query
sequence and thereby pick up too remotely related se-
quences to be optimal for topology prediction purposes.
Moreover, the scores for the BLAST profiles peak around a
quite conservative E-value cutoff, 10−5.

Specificity

Using a measurement method developed by Melén et al.
(2003), it is possible to calculate the reliability of a predic-
tion. Figure 3 shows that this prediction reliability is also
improved using multiple sequence information compared
with using single sequences. With PRO-TMHMM, the cov-
erage is ∼70% for a prediction accuracy of 75%, compared
with using S-TMHMM, where the coverage is ∼40% for the
same prediction accuracy.

Discussion

Training and using profile information in TMHMM

The results for S-TMHMM and PRO-TMHMM in Table 1
were achieved using the same method both for parameter
optimization (training) and evaluation (scoring). A funda-

Figure 2. Comparison of prediction scores (Y-axis) for sequence align-
ments created using different E-value cutoffs (X-axis) and different search
methods (BLAST, PSI-BLAST).
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mental question is whether it is sufficient to use the multiple
sequence alignments only in the evaluation phase (scoring
on an HMM trained on single sequences). It turns out that
this is not the case. There is a slight improvement (54%
correct predictions) using alignment scoring versus single
sequence scoring (51%). This means that the extra informa-
tion gained from the profiles is as important for estimating
a good model as it is for the prediction itself. The results
when using single sequence scoring on a model trained
using the profile method (57%) gives further evidence for
the hypothesis that the model estimated using the profiles is
indeed better than the one estimated from single sequences.

Analysis of prediction differences between
PRO-TMHMM and S-TMHMM

A comparison between the predictions of PRO-TMHMM
and S-TMHMM (Table 2 shows an overview of this com-
parison) shows that 22 sequences are predicted correctly
with PRO-TMHMM and predicted wrongly with
S-TMHMM, whereas for 4 sequences the prediction results
are the opposite. Of the 22 sequences, 11 are predicted
correctly by S-TMHMM (the single sequence scoring
method) if the model used for scoring is trained using the
alignment method. We interpret this type of improvement as
being due to the estimated model becoming better when
training using alignments for the reasons discussed earlier.

For the remaining 11 sequences, there is also some in-
formation in the alignments themselves, which causes the
correct prediction. When studying the properties of these
alignments, it is clear that they fall into two categories. The
first category, which contains five sequences, consists of
proteins for which more than half of the aligned sequences
can be correctly predicted, that is, predicted to have the
same topology as the query sequence by S-TMHMM. In

particular, many of the sequences whose sequence identity
with the query sequence is low (<35%) are predicted cor-
rectly by S-TMHMM. Here, it seems reasonable to believe
that it is the averaging property of the multiple sequence
alignments that is the cause of the prediction becoming
correct using PRO-TMHMM; that is, the profile represen-
tations of the sequences include more of the typical statis-
tical properties for a sequence with this particular topology
than the query sequence alone. The remaining six sequences
make up the second category. Here, it is not clear that the
average of the sequences should have more of the typical
properties for the topology, because <30% of all sequences
can be predicted correctly by S-TMHMM. For these se-
quences, the difference in prediction is usually caused by
something subtler, such as small changes in the sizes of the
hydrophobic regions, which lead to avoided false splits or
false merges. The four additional mispredictions that appear
when including multiple sequence information are also
caused mainly by this type of subtle change.

Data set composition: Single-spanning versus
multispanning TM proteins

Two recent studies (Käll and Sonnhammer 2002; Melén et
al. 2003) point out that the data sets used in many earlier

Table 2. Classification of the data set into different categories
to illustrate the effect of including multiple sequence information
in the prediction procedure

Prediction comparison of S-TMHMM vs. PRO-TMHMM, 147 seqs

Sequence category No. seqs

Whole data set 147
Both correct 68
Both false 53
Only PRO_TMHMM correct 22

False S-THMMM when multioptimized 11
>50% correct aligned sequences 6
<30% correct aligned sequences 5

Correct S-THMMM when multioptimized 11
Only S_TMHMM correct 4

Indented lines mean that these categories are subsets of the category of the
nonindented line directly above. The four outer categories divide the se-
quences into those that are correctly predicted by both PRO-TMHMM and
S-TMHMM, those that are predicted correctly by one method, and those
that are wrongly predicted by both methods. The sequences that are pre-
dicted correctly only by PRO-TMHMM are divided into two groups: those
that are predicted correctly using the S-TMHMM prediction method, the
model using multiple sequence alignments, and those having been opti-
mized are predicted falsely using this procedure. Further, the sequences of
the last category are divided into two categories: sequences for which more
than half of the aligned sequences are predicted to have the correct topol-
ogy of the query sequence (when predicted as single sequences using the
single sequence optimized model) and sequences for which less than 30%
of the aligned sequences are predicted to have the correct topology of their
respective query sequence.

Figure 3. Relation between test-set cumulative coverage and the fraction
of correct topology predictions for S-TMHMM and PRO-TMHMM.
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studies are not representative for TM proteins taken across
whole genomes and that this has led to a general overesti-
mation of prediction accuracies. For this reason, we wanted
to use a data set with an internal diversity as large as pos-
sible. When studying Table 1, there are two striking obser-
vations. First, the prediction results of all methods are rather
poor in comparison with earlier studies, in agreement with
the estimations made by Melén et al. (2003) and Käll and
Sonnhammer (2002). Second, all methods but HMMTOP
and PRODIV-TMHMM have a tendency for underpredic-
tions.

We believe that these observations can be explained
largely by the composition of the data set we used. First, our
data set was homology-reduced at 30% sequence similarity
to make its internal diversity as large as possible. Second, it
contained a fairly large amount of eukaryotic TM proteins
(35%), for which the positive inside rule is generally re-
garded as being less prominent. Third, our data set con-
tained no single-spanning TM proteins, that is, proteins with
only one TM helix. This is something that in particular
affects the balance between overpredictions and underpre-
dictions. There are two reasons for this. First, in single-
spanning TM proteins, the TM regions are generally more
hydrophobic than in multispanning TM proteins, which will
make these regions easier to find; that is, the risk for un-
derpredictions is generally greater in multispanning TM
proteins. Second, single-spanning TM proteins often have
large globular domains, something that increases the risk for
overpredictions; that is, overpredictions are generally more
common for TM proteins with few TM helices and large
globular domains. The fact that HMMTOP and PRODIV-
TMHMM are the only exceptions to the underprediction
consensus is also reasonable, because their prediction meth-
ods are based on maximal divergence in a way, which
makes them more insensitive to absolute differences in hy-
drophobicity level.

Consequently, PRODIV-TMHMM is not optimal for dis-
tinguishing membrane proteins from nonmembrane pro-
teins, as it will try to fit any sequence to a TM protein HMM
architecture to maximize the likelihood of the sequence be-
ing produced by the model. This weakness can be seen most
clearly when comparing the prediction results for the dif-
ferent methods on a set of 1087 globular proteins (data not
shown). For 856 (79%) of these, PRODIV-TMHMM pre-
dicted at least one TM helix. The corresponding number for
PRO-TMHMM was 11 (1%). Together with PHD_msa (14)
and TMHMM2.0 (13), PRO-TMHMM had the lowest num-
ber of false positives of all methods in our comparison.
Therefore, PRODIV-TMHMM should be combined with
PRO-TMHMM if used for large-scale detection and topol-
ogy prediction of membrane proteins.

For comparison, we also ran all prediction methods on a
smaller data set with different properties than our original
set (Zhou and Zhou 2003. Parameter estimation for all
TMHMM-methods was done using the original data set).
This data set contained only TM proteins for which a 3D
structure has been determined and consisted of single-span-
ning TM proteins to a degree of ∼50%. On this data set,
prediction results are generally better than for our original
data set (Table 3), but the ordering of the methods is exactly
the same, except for THUMBUP (Zhou and Zhou 2003),
which has been optimized using this data set. Further, there
is a better balance between overpredictions and underpre-
dictions using the smaller data set, indicating that overpre-
dictions are more common on single-spanning TM proteins.
For instance, 8 of the 12 overpredictions made by PRO-
TMHMM were made on single-spanning proteins.

Because of the apparent difference in prediction on mul-
tispanning versus single-spanning TM proteins, a conclu-
sion is that the prediction accuracy of PRODIV-TMHMM
may be increased further by adding a separate “path” for
single-spanning proteins to the TMHMM architecture.

Table 3. Comparison of different prediction methods on a “high-resolution” 3D data set of 73 sequences

Prediction results for the 3D data set, 73 sequences

Method Topo Over Under Q3 Q2

PRODIV-TMHMM 56 (77%) 13 1 82% 87%
THUMBUP 55 (75%) 1 7 72% 83%
PRO-TMHMM 53 (73%) 12 7 79% 85%
HMMTOP2.0_multi 50 (68%) 8 3 78% 88%
HMMTOP2.0 44 (60%) 14 5 75% 86%
S-TMHMM 44 (60%) 13 10 74% 85%
MEMSAT1.8 44 (60%) 9 5 71% 86%
PHD_htm2.1_msa 38 (52%) 8 14 71% 85%
TMHMM2.0 42 (58%) 10 12 76% 86%
TopPred2.0 38 (52%) 15 8 69% 86%
PHD_htm2.1 35 (48%) 12 14 70% 85%
ERROR 5% — — 3% 1%

All methods were run as described in Table 1.
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Conclusions

In this study, we show that topology predictors that use both
HMMs and multiple sequence information perform superi-
orly to other methods. In particular, we introduce a new
method, PRODIV-TMHMM, which is based on the best
features of the earlier HMM predictors TMHMM and
HMMTOP and adds the ability to use sequence profiles.
PRODIV-TMHMM correctly identifies 66% of all topolo-
gies, whereas the best methods that do not use both HMMs
and multiple sequence information (HMMTOP and
TMHMM) only identify 52%. We show that the best results
are obtained using quite conservative profiles; otherwise, it
is likely that proteins with different topologies are included
in the profile.

Materials and methods

Data sets

The larger 3D + topology data set of 147 sequences was provided
by Johan Nilsson and created from proteins with experimentally
determined topologies. This data set is homology-reduced at 30%
sequence identity using the Hobohm 2 algorithm (Hobohm et al.
1992) and includes only multispanning TM proteins.

The smaller 3D data set of 73 sequences was created by Zhou
and Zhou (2003). It contains only TM proteins with experimentally
determined 3D structures. This data set contains 39 single-span-
ning proteins and 34 multispanning proteins and is not reduced for
homology.

The set of globular proteins used for the discrimination test
consists of 1087 sequences extracted from SWISSPROT (Käll et al.
2004).

Multiple sequence alignments were created running BLAST/
PSI-BLAST on the combined nrdb90 and SCOP1.57 database.
PSI-BLAST was run for five iterations with E-value cutoffs set
regarding both final inclusion and inclusion after each iteration.

HMM training and scoring

All HMM training and scoring was performed using the program
modhmm, which is available from the authors. The scoring method
described in the article was implemented using the N-best algo-
rithm (Krogh 1997). Multiple sequence alignment scoring in-
creases the time complexity of this algorithm with a factor the size
of the alphabet compared with using single sequences. When the
score of an alignment is calculated, only the columns correspond-
ing to the query sequence residues are used.

It is possible to derive the alignment scoring method from the
standard single sequence scoring method in the following way:
Given an HMM with model parameters �, the joint probability of
a set of sequences (x1, . . ., xn) being emitted using a particular state
path p is the product of the probabilities of the single sequences,

P�x1,x2, . . . , xn, p��� = �
j=1

n

P�xj, p���,

which can also be written

P�x1,x2, . . . , xn, p��� = �
i=0

l−1

�tpi,pi+1
�n*�

i=1

l

�
j=1

n

epi
�xi

j�,

where tk,k� is the transition probability from state k to state k�, ek(a)
is the emission probability for letter a in state k, and l is the
sequence length. This is the same as calculating the joint prob-
ability for the sequences in a multiple sequence alignment. To
normalize for the size of the alignment, we raise this expression to
the power of 1/n. This means that the expression can be written

S�X,p��� = �
i=0

l−1

tpi,pi+1
* �

i=1

l

�
j=1

A

epi
�aj�

Xi�aj�,

where A is the size of the alphabet and Xi is the profile vector
calculated from column i of the multiple sequence alignment. Note
that S(X,p|�) is no longer a probability because of the normaliza-
tion operation, hence the notational switch from P to S. The only
practical difference between doing calculations using this method
and the standard single sequence method is the emission “prob-
ability” (or score) of a column of a sequence profile being calcu-
lated as

�
j=1

A

epi
�aj�

Xi�aj�.

Except for the normalization part, this scoring method follows the
same basic principle as the scoring method developed by Edgar
and Sjölander (2003). Informally, this method calculates the geo-
metric mean of the probabilities of the sequences in the alignment,
which means that it will tend to prefer paths where all sequences
have a fairly high probability to paths where some sequences have
high and others have low probabilities; therefore, we refer to this
scoring method as GM-score (Geometric Mean).

Note that this derivation is only completely accurate when there
are no gaps in the alignment. Two approaches are available for
handling gaps. The first is to add “GAP” as a letter of the alphabet.
The second is to artificially set each gap letter of a column to a
pseudoletter, which is interpreted as consisting of all of the original
letters of the alphabet to a share corresponding to the distribution
of the particular profile column.

For parameter optimization, the Baum-Welch training algorithm
(Durbin et al. 1998) was used, with the only addition being the
calculation of the emission score, as described earlier, for the
forward and backward algorithms and the calculation of the ex-
pected number of times each emission is used. For the profile
method, this was calculated as

Ek�a� = �
d∈D

1

P�d���
*�

i=1

ld

f k
d�i� * bk

d�i� * di�a�,

where D is the set of profiles, ld is the length of profile d, and di(a)
is the share of letter a in column i of profile d.

The procedure used for training a model was the same regard-
less of the scoring method used and in most aspects identical to the
procedure used by Krogh et al. (2001) when creating TMHMM2.0;
that is, training was done in five steps using labeled sequences
(Krogh 1994, 1997). First, the labels of the sequences were made
flexible around the region borders so that the 12 residues around a
border were allowed to match any state. Model estimation was
then done using the Baum-Welch algorithm with noise injection as
described by Hughey and Krogh (1996). In the third step, the label
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boundaries were reestimated using the model from step two. Next,
a new model estimation was done using the relabeled sequences
and the Baum-Welch training algorithm (without noise injection).
In the fifth and final step, the model was once again reestimated
using conditional maximum likelihood training as described by
Krogh (1994). For a more thorough description of the training
procedure used, refer to the original TMHMM articles (Sonnham-
mer et al. 1998; Krogh et al. 2001).

For the comparison between the different E-value cutoffs, the
noise injection step was skipped to achieve nonrandom compa-
rable models.

As an alternative to the geometric mean, an approximation of
the arithmetic mean of the joint probabilities can be calculated by
using the correlation coefficient between the two profiles. This and
several other comparison methods were also tried (data not
shown), but the best performance was obtained using the geomet-
ric mean. For computational efficiency, the alignments are repre-
sented as frequency profiles.

During model estimation, a nine-component Dirichlet mixture
density created by Sjölander et al. (1996) was used to avoid over-
fitting the emission probabilities. We also tried adding prior in-
formation to the profiles during both model estimation and pre-
diction, but this did not seem to improve the prediction perfor-
mance, nor did including gap information in the multiple sequence
alignments (data not shown).

Cross-validation

For the results obtained for S-TMHMM, PRO-TMHMM, and
PRODIV-TMHMMM, 10-fold cross validation was used. For this,
the training set was divided into 10 equally sized subsets. A model
was then optimized for each of the 10 subsets using the other 9/10
of the data set and evaluated using the remaining 1/10.

This procedure was not used on the models created for E-value
cutoff comparison. Here, both training and scoring was done using
the original data set.

Evaluation methodology

The requirement used for a correct topology prediction is that the
correct number of TM helices is predicted and that the positioning
of the predicted helices overlaps the experimentally determined
positioning with at least five residues. Furthermore, the prediction
of the orientation of the N and C termini must be correct.

Because we evaluate prediction performance on sequence basis,
we have defined the categories of prediction errors to be as fol-
lows:

1. Overprediction: when too many TM helices are predicted.

2. Underprediction: when too few TM helices are predicted.

3. Other: The number of TM helices is predicted correctly, but at
least one TM helix is predicted in the wrong location, or the
orientation of the sequence relative to the membrane is in-
verted.

Compared with evaluating predictions (or rather the type of
misprediction) on a helix basis, an overprediction usually corre-
sponds to one or more false-positive helix predictions. These can
either be predictions of helices where none is present, or a so-
called false split, which means that one helix is incorrectly split
into two. Conversely, an underprediction corresponds to one or
more false-negative helix predictions, that is, either simply missing

a true TM helix or incorrectly joining together two adjoining TM
helices, a so-called false merge.

The standard error for the topology predictions was estimated
using the following bootstrapping approach:

BSE �AVG_PRED_RES� =

��i=1

N
�PRED_RESi − AVG_PRED_RES�2

N − 1

Here PRED_RESi is the share of correct predictions for a random
subset of the original data set of size n/2, where n is the size of the
original data set. AVG_PRED_RES is the average of the N random
predictions. In our test, N was set to 100.

For the predictions of the aligned sequences in the multiple
sequence alignments (when predicted as single sequences), the
correct topology was set to be the same as for the query sequence
of the alignment and the overlap criterion was skipped because
insertions and deletions make it difficult to know exactly where the
TM regions should be.

Q2 and Q3 are per-residue-based scores (i.e., the share of cor-
rectly predicted residues), calculated as the mean of the Q2 and Q3

scores for each protein. Q2 uses two states: helix and nonhelix. Q3

uses three states: helix, inside, and outside. The standard error for
the Q2 and Q3 predictions were calculated as SE (Qx) � √∑n

i�1(Qxi

− Qx)
2/n(n − 1), that is, Qx is the mean of the predictions for all

sequences, and SE(Qx) is the standard error of this sample mean.

Availability

The final versions of the topology predictors PRODIV-TMHMM,
PRO-TMHMM, and S-TMHMM are available at http://www.sbc-
.su.se/PRODIV-TMHMM/. All training and scoring was done us-
ing the modhmm package, which is available from http://www.s-
bc.su.se/modhmm/. modhmm is a module-based HMM package
developed to aid creating, training, and scoring HMMs, and which
implements all scoring methods described in this paper as well as
the standard HMM algorithms.
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