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Abstract

We develop a simple but rigorous model of protein—protein association kinetics based on diffusional
association on free energy landscapes obtained by sampling configurations within and surrounding the
native complex binding funnels. Guided by results obtained on exactly solvable model problems, we
transform the problem of diffusion in a potential into free diffusion in the presence of an absorbing zone
spanning the entrance to the binding funnel. The free diffusion problem is solved using a recently derived
analytic expression for the rate of association of asymmetrically oriented molecules. Despite the required
high steric specificity and the absence of long-range attractive interactions, the computed rates are typically
on the order of 10*~10° M™" sec™', several orders of magnitude higher than rates obtained using a purely
probabilistic model in which the association rate for free diffusion of uniformly reactive molecules is
multiplied by the probability of a correct alignment of the two partners in a random collision. As the
association rates of many protein—protein complexes are also in the 10°~10° M~" sec™ range, our results
suggest that free energy barriers arising from desolvation and/or side-chain freezing during complex for-
mation or increased ruggedness within the binding funnel, which are completely neglected in our simple
diffusional model, do not contribute significantly to the dynamics of protein—protein association. The
transparent physical interpretation of our approach that computes association rates directly from the size and
geometry of protein—protein binding funnels makes it a useful complement to Brownian dynamics simu-
lations.

Keywords: protein—protein interactions; diffusion-limited association rates; orientational constraints; rota-
tional diffusion; long-range interactions; Brownian dynamics

The calculation of rates of protein—protein association is of
great interest to biology. These rates span a wide range of
values, from ~10° to 10'° M~ sec™. If the two proteins are
modeled as uniformly reactive spheres, the diffusion-lim-
ited rate constant is simply given by the classical Smo-
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luchowski expression (Smoluchowski 1917), k., = 4wDR
(where D is the relative translational diffusion constant and
R is the sum of the radii), which yields rates of 10°~10'°
M sec™" for associations relevant to proteins. Usually,
however, proteins exhibit a highly anisotropic distribution
of reactivity over their surface. This can be modeled by
localized reactive sites on the surface of the proteins that
have to be sufficiently precisely aligned for the complex
formation to occur.

Purely probabilistic models have tried to account for such
steric constraints by multiplying the Smoluchowski rate for
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uniform spheres by the probability that, in a random en-
counter, the two molecules are properly aligned (“geometric
rate”; Janin 1997 gives an example of this method). This
yields rate constants that are typically several orders of
magnitude lower than the Smoluchowski diffusion-limited
rate and are usually much smaller than the values experi-
mentally observed for biological complexes. It has been
found that this discrepancy can be moderated by taking into
account the effect of rotational diffusion (Shoup et al. 1981;
Northrup and Erickson 1992); additional rate enhancements
are brought about by the presence of attractive interparticle
forces (“electrostatic steering”; see Schreiber and Fersht
1996; Gabdoulline and Wade 1997; Vijayakumar et al.
1998), and the formation of a weakly specific, loosely bound
encounter complex that subsequently evolves into the final
bound state (Selzer and Schreiber 1999; Camacho et al. 2000).

To replace the estimation of protein—protein association
rates via the geometric rate by a more accurate method,
most authors have pursued a computational approach by
carrying out explicit numerical simulations of the diffu-
sional association of macromolecules, commonly referred
to as Brownian dynamics (BD) simulations (for an excellent
review, see Gabdoulline and Wade 2002). Here, the protein
molecules are modeled in varying detail, from a simple
spherical approximation up to full atomic detail. In the
simulation, the molecules are initially placed in random
orientations at a fixed initial separation b. Diffusional tra-
jectories, with or without the presence of an interparticle
force (such as electrostatic interactions), are then generated
by means of the Ermak—McCammon algorithm (Ermak and
McCammon 1978). A trajectory is ended either when the
molecules have come together in proper orientation to suc-
cessfully form a complex, or when their separation has ex-
ceeded a certain truncation value ¢ > b such that the prob-
ability for an encounter has become vanishingly small. The
fraction of “successful” trajectories is then used to compute
the association rate k.

Northrup and Erickson (1992) have used such a BD simu-
lation to compute the association rate of spherical molecules
with a reactive patch, consisting of four contact points in a
17 A x 17 A square arrangement on a plane tangential to the
surface of the molecules. A reaction is then assumed to
occur if three of the four contact points are correctly
matched and within a specified maximum distance. In the
absence of any interparticle forces, the authors find an as-
sociation rate of k,, = 10° M~' sec™", about two orders of
magnitude higher than the geometric rate. Gabdoulline and
Wade (2001) compute association rates for five protein—
protein complexes using full-atom structures in the presence
of long-range electrostatic forces. The reaction condition is
defined by formation of subsets of the polar contacts ob-
served in the native complex structure.

In this paper, we present a different route toward estima-
tion of rates of bimolecular association. Instead of using a

computer-simulation-based approach such as the method of
BD simulations outlined above, we use a recently derived
analytical expression (Schlosshauer and Baker 2002) for the
association rate of two spherical molecules with anisotropic
reactivity in the absence of any interaction forces. The re-
action condition is formulated by specifying the ranges of
mutual orientations of the two molecules for which complex
formation will occur. We thus do not require an exact mu-
tual alignment of the binding partners, but instead assume
that favorable short-range interactions “guide” the mol-
ecules into their final bound configurations once the mol-
ecules are oriented within specified angular tolerances (see
Fig. 1). These tolerances can therefore be viewed as an
implicit modeling of attractive short-range forces. We de-
rive estimates for the tolerances from free energy land-
scapes obtained by sampling configurations within and sur-
rounding the native binding funnel. These values are then
used in our analytical expression to compute the corre-
sponding association rates. By determining the size and ge-
ometry of the aperture in phase space that must be entered
for binding to occur, and rigorously solving the problem of
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Figure 1. Simple model of binding dynamics. Attractive short-range
forces produce a funnel in the free energy landscape leading into the native
complex. Once the molecules descend several k7 into the funnel, they are
effectively captured and binding occurs rapidly. In our simple model, the
rate of association is approximated by the rate of free diffusion into a
reactive zone in phase space, as indicated schematically in the XY plane of
the drawing. To compute the rate of association, we need first to determine
the dimensions of the reactive zone, and second, to compute the rate of free
diffusion into this zone. A more general model would include long-range
(electrostatic) interactions that would bias the diffusion process toward the
funnel entrance.
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diffusion through this aperture, our approach provides a
physically transparent complement to BD simulations for
computing binding rates from structures of protein—protein
complexes.

Results

To compute protein—protein association rates from the
three-dimensional (3D) structures of protein—protein com-
plexes according to the simple diffusive model described
above and in Figure 1, three ingredients are required. The
first is a general theory for computing the diffusion-limited
association rate as a function of the orientational constraints
associated with properly aligning the two binding sites (the
size and shape of the reactive zone in Fig. 1). The second is
a method for transforming a diffusion in a potential problem
into a free diffusion problem—in the context of Figure 1, an
estimate of how deeply the reactive zone lies within the
binding funnel (i.e., how far molecules must descend into
the binding funnel before they are effectively captured). The
third is a method for mapping the binding funnel for two
proteins given the crystal structure of the protein—protein
complex. We address these issues in the next three sections
and then, in the fourth section, use the results to compute
approximate diffusion limited association rates from the
structures of protein—protein complexes.

Theory for the diffusion-limited association rate with
general orientational constraints

Here, we restrict ourselves to a brief outline; the full deri-
vation of our expression for the association rate constant in
the presence of general orientational constraints can be
found in Schlosshauer and Baker (2002).

We consider translational and rotational diffusional mo-
tion of two spherical molecules A and B with radii R, and
Ry. To derive an expression for the association rate con-
stant, we solve the steady-state translational-rotational dif-
fusion equation describing the diffusional motion of the two
spheres, subject to a reaction condition that ensures that
binding can only occur if the mutual orientation of the two
spheres is sufficiently close to the orientation in the bound
configuration that defines the optimal alignment.

The reaction condition is implemented as follows (see
Fig. 2): The centers of “reactive patches” on the two spheres
are defined by the intersection of the center-to-center vector
with the surfaces of the spheres in the native bound con-
figuration. Each sphere carries its own body-fixed coordi-
nate system {x,, y,, z,}, s = A, B, where the z, axis points at
the center of the reactive patch. The angles 6, and 6, then
quantify the distance of the center of each reactive patch to
the center-to-center vector, whereas the Euler angles d¢ and
dx denote relative torsional angles between the body-fixed
coordinate systems (x4, ¥4, 24) and (xz, ¥z, 2p).
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Figure 2. The axes and angles relevant to the reaction condition, equation
1. The angles 6, and 6, measure how close the center of each reactive
patch (coinciding with the respective body-fixed z-axis) is to the center-
to-center vector (dashed line). The Euler angles 8¢ and dx denote relative
torsion angles of the two body-fixed coordinate systems (x4, y4, 24) and
(xg, Vg zp)- For the sake of easier visualization of these two angles, the
origin of the x, and y, axes (belonging to the coordinate system of sphere
A) has been shifted such as to coincide with the origin of the coordinate
system of sphere B. Our reaction condition, equation 1, requires near-
optimal alignment; that is, all angles 6,, 0,, db, and dx must be below
given limits.

At a first glance, one might assume that a fifth parameter
is required to fully describe the mutual orientation of the
two spheres—namely, an azimuthal angle ¢, in addition to
the polar angle 6, to fix the location of the reactive patch on
the surface of sphere A. For the formulation of the reaction
condition, however, four angles suffice, because the posi-
tion of the center of the reactive patch is automatically
specified through its coincidence with the z, axis. This
leaves only one free parameter, namely, the “width” of the
patch, which is described by the angle 6.

The optimal alignment is then defined by
0, = 65 = 8 = dx = 0 (additionally, the length r of the
center-to-center vector must be equal to the sum of the radii
of the spheres). Our reaction condition requires that all these
angles are sufficiently close to zero for the reaction to occur;
that is, the following conditions are fulfilled:

r=R,+Rz=R
eA,BSeg,B

3 = dd,
dX = dXo

(€]

Using the constant-flux approximation introduced by
Shoup et al. (1981), we obtain for the association rate con-
stant (Schlosshauer and Baker 2002):
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where D = D™ + D% is the (relative) translational dif-
fusion constant, a, = (4m)? d3ddx0(1 — cos 89)(1 — cos 0%),
Gug, = QL+ 1DQ2L + D2l + 1)/167, and k quantifies the
extent of diffusion control in the reaction. Furthermore,
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where &’ (0) denotes the Wigner rotation function (1l lsy
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is the Wigner 3-j symbol, and &* = R[(DY'ID)L,(L, + 1) +
(D'D)ly(15 + 1)]'2, where D' and D'* are the rotational
diffusion constants. d, = a,/(4m x 87 x 87°) represents
the fraction of angular orientational space over which the
reaction can occur, and the geometric rate is thus given by
ko, = 4mwDR X 4.

Transformation of the diffusion in a potential problem
into a free diffusion problem

A crucial point in the application of equation 2 is the esti-
mation of the angular constraints 89, 8%, 8¢, and Sx,. We

would like to estimate the ranges in mutual orientation of
the two proteins for which short-range attractive forces be-
tween the atoms are sufficiently dominant to guide the two
molecules into the final bound configuration, and then
translate the problem of diffusional association in the at-
tractive potential into free diffusion with an absorbing re-
gion in configurational space. To motivate this mapping, we
first study two simple toy models for translational and ro-
tational diffusion, respectively. We then use these ideas to
explicitly obtain the angular constraints for real protein—
protein complexes.

Toy model for translational diffusion

The reaction rate for diffusion-controlled bimolecular as-
sociation of uniformly reactive spheres in the presence of a
potential U(r) can be calculated exactly and is given by the
expression

o -1
KD = 4TrD[ f fdre/ rz] 3)

where (3 = 1/kT, and R, is interpreted as the center-to-center
distance between the associating partners at which the re-
action is assumed to occur. Equation 3 is the classical result
derived by Debye (1942). In the absence of any potential
(U =0), this simplifies to the Smulochowski rate constant
for free diffusion with an absorbing region of width R,,
given by k) = 4wDR, (in the following we use the label
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Figure 3. Mapping of translational diffusional association in a short-range attractive potential onto the problem of free diffusion with
an absorbing region. A Lennard—Jones potential with parameters appropriate to protein—protein association (¢ = 10 kcal/mole, o = 3
A, R, = 40 A) is shown in the figure, together with the corresponding free diffusion “capture radius” R,,. The capture radius is defined
as the radius for which the free diffusion rate k., is equal to the association rate in the presence of U(r), k,,". Evaluating U(r) at

the capture radius yields the energy drop AE = U(%) —
in € and o.

U(R,) = 0.3 kcal/mole (i.e., of order k7); this is quite insensitive to large changes
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“0” to refer to the free diffusion problem, and the label “1”
to refer to the diffusion in a potential problem).

It is clear that for R, = R,, k1) > k9 because the pres-
ence of the (attractive) potential will increase the associa-
tion rate. To find the free diffusion analog of diffusional
association in an attractive potential, we increase R, until
k9 > kD In other words, for a given potential, we can
determine the size of the absorbing region (the “capture
radius”) required in the case of free diffusion to obtain an
association rate equivalent to that of diffusion in the poten-
tial. A similar redefinition of the effective absorbing radius
to account for the presence of the potential was first intro-
duced by Debye (1942).

A concrete illustration of this procedure is described in
Figure 3 for a Lennard—Jones potential. For a broad range of
parameter values, we find that it is sufficient to drop down
by an energy amount of only O(AE) = kT to enter the cap-
ture zone, corresponding to <5% of the total depth of the
potential. The capture radius R,, is found to be relatively
insensitive to the depth & of the potential well, whereas its
dependence on the width o is much stronger—as it must be,
because R, is an indirect measure of the range of the po-
tential.

The model calculations show that the effect of an attrac-
tive potential U(r) on the association rate can be effectively
represented by an increase in the radius of the interacting
spheres, but that in the relevant case of protein—protein in-
teractions, the relative increase is very small (~7% in our

example). Because the association rate (equation 2) is
largely insensitive to small changes in the value of R, we
conclude that the approximation of using a fixed value
r = R, + Rz = R for the center-to-center distance of the two
proteins required for the reaction to occur (see our reaction
condition, equation 1), rather than using a range of allowed
values (such as demanding that r = R, + Rz + 3R [in equa-
tion 1]), is not unreasonable.

Toy model for rotational diffusion

As another illustration of our mapping procedure, we
consider two-dimensional (2D) rotational diffusion on a
spherical surface in an attractive Gaussian potential
U®) = —¢ exp[—(o-ﬂ)z], with & > 0. Again, we would like
to translate this problem into that of free rotational diffusion
with an absorbing region at 6 = 0,

Solving the rotational diffusion equation in the presence
of a potential U(0) yields in the diffusion-controlled limit

K = 21D, PV [ ) o do eBU(e)]_l, )
1

where we let 6, — 0 for U # 0 (diffusion in potential). In
the case of free diffusion (U = 0), equation 4 becomes:

2wD
(0) _ = "rot
kon - T — 90’ (5)

where we now choose 0,>0. As before, we equate the

energy (kcal/mol)

/ 8 (free diffusion)
p L 1 1

"~ Gaussian potential U(8)= - ¢ exp[-(c8)7] &

0 20 40 B0 80

100 120 140 160 180
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Figure 4. Mapping of the problem of diffusion in a potential onto that of free diffusion with an absorbing region for rotational diffusion
on a spherical surface. We use an attractive Gaussian potential U(8) = —& exp[—(c0)?] with & = 10 kcal/mole and ¢ = r, where the
latter corresponds to a (half) width of the potential of VIn(2)/c = 15°, a reasonable assumption for a short-range potential. Equating
the resulting association rate (equation 4) with the rate for free diffusion in the presence of an absorbing region at 6 = 6, (equation
5), we obtain 6, = 33° for the width of the absorbing region, corresponding to an energy drop of AE = U(w) — U(6,) = 0.4 kcal/mole.
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Figure 5. (Continued on next page)

association rates, equations 4 and 5, to obtain an estimate
for the width 8, of the absorbing region.

For a range of parameter values, we again find that an
energy drop of AE = U(w) - U(6,) of the order of kT suf-

fices to enter the capture zone (Fig. 4). We find that 6, is
insensitive to the choice of & but increases as expected with
increasing o: The range of the absorbing region reflects the
range of the potential.
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Figure 5. Free energy funnels around the native structure. The energy € and rmsd (A), the energy € and the angular deviations 6 ,°
(B), and 8x,, (C) are shown for a set of randomly perturbed structures of the protein—protein complex 1FIN. States of lower energy are
seen to be associated with smaller angles, suggesting that the angles are a reasonable measure for the deviation from the correctly
complexed structure. The two parallel lines represent the two energy cutoffs €. = €, and €. = €, — 5kT, where €_, is the average
energy of the five lowest energy complexes with an rmsd above 10 A. The vertical lines in the plots indicate the resulting angular
constraints 0,° and 8y, corresponding to €, = €,, (dashed line) and €. = €,, — 5kT (dotted/dashed line).

Discussion of the toy model results

The analysis of the toy models demonstrates that trans-
lational and rotational diffusional association in a short-
range potential (as it occurs in protein—protein complex for-
mation when the two proteins are close to each other) can be
modeled as free diffusion in the presence of absorbing re-
gions of suitably chosen size. The size of the absorbing
regions is relatively insensitive to the precise shape (that is,
the functional form) and magnitude of the chosen potential
function; only the range of the potential must be chosen
roughly right in estimating the angular constraints. The en-
ergy drop itself required to enter the capture zone (binding
funnel) is found to be robust toward changes in the shape,
depth, and range of the potential, and can therefore be re-
garded as an essentially universal quantity that is largely
independent of the particular form of the interaction poten-
tial used in the mapping problem.

Because our toy models have only a one-dimensional
(1D) reaction condition—that is, a constraint on a single
degree of freedom—the question arises to what extent the
relative influence of the potential on the reaction rate would
change in the case of higher-dimensional reaction condi-
tions (as used in our subsequent treatment of protein—pro-
tein interactions where we impose constraints on r, 04 z, 8¢,
and &x). The results obtained by Zhou (1997) suggest that

1666 Protein Science, vol. 13

the influence of the interaction potential on the associa-
tion rate constant is more significant for the case of two
diffusing spheres bearing a circular reactive patch on each
surface (i.e., where a 2D reaction condition is used for both
spheres) than for the situation in which one of the spheres is
taken to be uniformly reactive (i.e., where a 2D reaction
condition is imposed on one sphere, but only a 1D reaction
condition is used for the second sphere). Generalizing these
findings, we may anticipate that an attractive interaction
potential will affect reaction rates to a larger extent when
the number of constrained variables in the reaction condi-
tion is increased. Because our toy models have shown that
it suffices to enter the potential well by a relatively small
amount to be “captured,” we can conclude that for the case
of a higher-dimensional reaction condition as considered in
the following, an even smaller energy drop will be sufficient
to enter the capture zone. From the point of view of tran-
sition state theory, our approach corresponds to identifying
the transition region and then computing the flux into this
region.

Mapping the protein—protein interaction funnel from
the structure of a protein—protein complex

Now we apply the idea outlined above to an estimate of the
angular constraints Gg, 09, ddy, and dx,, needed for the
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application of our expression for the rate constant, equation
2. For this purpose, we have directly taken the 3D structures
of the considered complexes from the Protein Data Bank
(PDB).

First, the side chains of the native complexed structure
were repacked by minimizing a full-atom energy function €
dominated by Lennard-Jones interactions, an orientation-
dependent hydrogen-bond potential, and an implicit solva-
tion model (Gray et al. 2003). As with all current potential
functions for macromolecules, there are likely to be consid-
erable inaccuracies in this model, but it should be empha-
sized that the angular constraints and rates computed here
are relatively insensitive to the details of the interactions—
the toy examples clearly demonstrate that once the binding
funnel has been entered (which has been found to require
only a small drop down in energy), the detailed form of the
interaction potential has only little influence.

Second, a set of 1000 alternative structures was generated
from the native complex by performing random small per-

turbative movements around the native conformation, and
the interaction energy of these structures was evaluated us-
ing the same energy function € as used in the repacking
procedure. The energy landscapes defined by these alterna-
tive structures exhibit clear funnels around the native mini-
mum.

The toy model calculations show that diffusion in such
landscapes can be modeled as free diffusion with an effec-
tive “capture” region several kT into the energy funnels. To
define the capture energy cutoff €_ below which the part-
ners are committed to bind, we compute the average é,, of
the energies of the five lowest-lying structures >10 A root
mean square deviation (rmsd) from the native complex (and
hence outside of the native energy funnel). Because the
energy cutoff cannot be determined exactly, we obtain two
different estimates of the association rate setting €_ to either
é,, or é,, —S5kT. We selected the 10 structures with the
largest values of 63 + 0% in the set of structures with € < €,
and took the averages of their values of 0%, 6%, 3, and Sy,

Table 1. Association rates computed from equation 2 in the fully diffusion-controlled limit (x — ) for the set of investigated

protein—protein complexes

koy M7 sec™)
Ry Rp
PDB Protein 1 (A) Protein 2 (A) 09 0% ddb, dx, Calculated  Geometric
1AVW  Porcine pancreatic trypsin 20.2  Soybean trypsin inhibitor 18.7 8.8 6.1 4.0 29 85x10* 4.4 x 10"
44 20 1.8 20 22x10* 37x10"
1BTH Human a-Thrombin 22.6  Haemadin 13.8 9.5 4.7 4.5 9.1 1.8 x 10° 1.2 x 10?
5.6 2.1 1.3 8.4 6.0x 10* 2.1
1DFJ Ribonuclease A 31.8  Ribonuclease inhibitor 18.1 9.3 86 409 196 9.8x10° 7.4 % 10°
5.8 65 296 109 33x10° 6.6 x 10°
IEFU  Ef-Tu 30.0  Ef-Ts 307 114 33 23 82 16x10°  35x10'

1FIN Cyclin-dependent kinase 2 249  Cyclin A

1FSS Acetylcholinesterase 28.2  Fasciculin-II
1GOT Gt,/Gi, chimera 263 Gty
IMAH  Acetylcholinesterase 28.3  Fasciculin-1I

1SPB Subtilisin Bpn" Prosegment ~ 20.6  Subtilisin Bpn’

1STF Papain 20.4  Papain inhibitor Stefin B
1TGS Trypsinogen 20.2  PSTI

2SIC Subtilisin BPN’ 20.9

2TEC Thermitase 21.0  Eglin-C

3HHR Human growth hormone 26.1

4HTC Hirudin 21.9  Thrombin

Streptomyces subtilisin inhibitor 16.6 12.1 189 4.2 6.6

Human growth hormone receptor  21.2  13.6  14.8 1.9 32

6.9 x 10* 1.2
19x10° 6.6 x 10!
6.0x10* 39
30x10° 4.9 x 10?
8.0 x 10* 2.1 x 10
5.8 x 10* 1.3 x 10
1.2 x 10* 34 x 1074
8.6x10* 79

3.0 x 10* 7.4 x 1072
20x10° 2.6 x 10
56x10° 2.7x10°
6.9 x 10* 8.6
54x10% 3.8

1.6 x 10° 1.1 x 10?
3.6x10* 35

5.7 x 10° 1.9 x 10°
2.3 x 10° 3.1 x 10%
14x10° 89 x 10!
32x 10 26
29%x10° 3.3 x10?
1.5 x 10° 3.1 x 10!
9.5x 10" 5.5 x 10"
8.2 x 10* 3.9 x 10"

8.6 1.7 0.8 5.1

229 137 5.8 6.1 1.3
8.2 4.2 3.4 0.7

14.1 8.8 10.6 4.2 9.0
42 6.5 3.1 6.2

279 75 4.1 2.5 4.1
1.4 0.6 0.4 0.9

142 7.0 5.1 52 0.8
4.0 3.6 1.2 0.2

151 169 173 109 21.1
128 11.1 72 139

16.4 8.4 4.4 39 12
7.7 4.0 3.0 1.0

13.5 9.1 4.9 9.4 4.2
4.7 3.5 4.1 2.3

70 139 44 5.5
13.9 8.2 6.5 2.5 9.0
4.1 4.1 2.7 2.5

10.1 127 2.0 0.7
20.0 9.3 7.4 3.1 2.8
8.5 4.9 39 43

The radii R, and R of each protein in the complex were estimated based on the radius of gyration. The angular constraints 63, 8%, 3dy, and 8y, were
determined as described in the text. The geometric rates, shown for comparison, are given by k,, = 4mDR x 3ddxo(1 — cos03)(1 — cosd%)/dm?.
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to obtain estimates for the angular tolerances used in com-
puting the association rates.

An example is shown in Figure 5. We see that the funnel-
like dependence of the energy on the rmsd and on the an-
gular deviations is akin to the shape of the attractive poten-
tials used in the toy models for translational and rotational
diffusion discussed above. Furthermore, the location of the
angular constraints resembles the position of the absorbing
regions of the toy models. These similarities support our
approach of deriving the angular constraints 05, 0%, dd,,
and 98y, from the interaction energy of perturbed protein
complex structures in general, and from our method of
choosing suitable energy cutoffs in particular.

Computation of diffusion-limited association rates from
structures of protein—protein complexes

With the angular constraints determined as described in the
preceding section, we use equation 2 in the fully diffusion-
limited limit (k — %) to compute protein—protein associa-
tion rates. The effective radii R, and Ry of the spheres
representing the proteins are taken to be equal to the radius
of gyration, R, = (1/N)X,d; (where N is the number of at-
oms in the protein and d; is the distance of the i-th atom
from the geometric center of the protein), multiplied by a
correction factor of (5/3)"? to obtain the desired result
R, = R, for the limiting case of a homogeneous sphere of
radius R,. The sum R, + Ry is used as the value for the
distance R between the centers of the two proteins at which
reaction is assumed to occur; compare with equation 1. The
study of our toy model for translational diffusion in the
second section above has shown that this serves as a good
estimate for R because the presence of short-range attractive
interactions increases the effective reaction radius only
slightly. The translational and rotational diffusion constants
D = D™ + D" and D, ", respectively, are com-
puted from the Stokes—Einstein relations D, ;™" = k,T/
6TNR, 5 and D,y ;" = kzT/8TMR, 5, withm = 8.9x 107*
Nsec/m? (water) and 7' = 300 K.

Table 1 lists the 15 investigated protein—protein interac-
tions, together with the estimated effective radii R, and Ry,
the angular orientational constraints eg, 09, 3, and dx,,
and the association rate constants k,, determined from our
theoretical expression, equation 2. For comparison, we also
state the association rates obtained from a purely probabi-
listic model (geometric rates).

First of all, it is worth noting that both the angular toler-
ances and the corresponding rate constants are relatively
insensitive (given the approximations involved) to the par-
ticular choice of the energy cutoffs €. = €,, and €, =
€,y — SkT. For the protein complexes under study, the rates
computed from the two energy cutoffs vary in average by a
factor of 3, and no rates differ by more than a factor of 5 for
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a given complex, thus indicating the robustness of our
method of estimating these rates.

We observe that the angular constraints vary significantly
among the investigated complexes, which suggests that our
procedure of estimating these tolerances yields, indeed,
characteristic and distinguishable values.

The association rate constants obtained using these angu-
lar constraints range from 10* to 10° M™' sec™ and are
significantly higher than the corresponding geometric rates.
Whereas the experimentally determined association rates of
many protein—protein complexes are in this range, consid-
erably faster rates are also observed, likely because of sig-
nificant long-range interactions neglected in our model.

Discussion

We have presented a simple model for the association of
proteins. The molecules are modeled as diffusing spheres,
no forces are assumed to act between them, and the reaction
condition is based on an estimate of angular constraints on
the mutual orientation of the molecular interfaces based on
the assumption of short-range guiding forces. This proce-
dure allows for an application of an explicit mathematical
expression for the association rate constant that we have
previously derived (Schlosshauer and Baker 2002). In this
paper, we have used this method to estimate association
rates of a set of 15 different protein—protein complexes.

The computed rates all lie within 10°-10° M~ sec™,
which can thus be taken as the typical diffusion-limited
protein—protein association rate in the absence of attractive
interactions, in good agreement with what is experimentally
known for such interactions. This is several orders of mag-
nitude higher than the geometric rate that had previously
been used by various authors. Our result, therefore, shows
that typical diffusion-limited association rates of proteins
where no or only weak long-range interactions are present
can essentially be explained with a model that is solely
based on translational and rotational diffusion. Experimen-
tally observed significantly higher rates typically suggest
the presence of electrostatic steering forces, whereas much
lower rates may indicate a reaction that is opposed by free
energy barriers and is thus not fully diffusion-limited.

The advantage of our method over the traditional ap-
proach of BD simulations lies in the fact that our technique
provides a more physically transparent insight into the re-
sulting association rates. The differences in rates among
protein complexes can be directly traced back to the sizes
and shapes of the respective reactive zones in configura-
tional space, which are determined by mapping out the bind-
ing funnel in the interaction energy landscape.

The model completely neglects possible free energy bar-
riers caused by desolvation and/or side-chain freezing dur-
ing complex formation as well as a possible slowing down
of diffusion within the binding funnel caused by increased
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ruggedness of the landscape. Our finding that the associa-
tion rates obtained with the simple diffusional model are in
the range of those of many protein—protein complexes (10°-
10° M™" sec™!) suggests that free energy barriers and land-
scape ruggedness do not have a significant impact on the
dynamics of protein—protein association.

Our model provides a zeroth-order estimate of protein—
protein association rates in the absence of long-range inter-
actions. This contrasts with most previous work, which has
sought to account for changes in association rates accom-
panying sequence changes, rather than the absolute associa-
tion rate. By incorporating long-range electrostatic interac-
tions into our diffusional model, it should be possible to
develop a complete theory of association kinetics that can
account for both the sequence dependence and the absolute
magnitude of protein—protein association rates.
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