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Abstract

We have investigated some of the basic principles that influence generation of protein structures using a
fragment-based, random insertion method. We tested buildup methods and fragment library quality for
accuracy in constructing a set of known structures. The parameters most influential in the construction
procedure are bond and torsion angles with minor inaccuracies in bond angles alone causing >6 Å C�RMSD
for a 150-residue protein. Idealization to a standard set of values corrects this problem, but changes the
torsion angles and does not work for every structure. Alternatively, we found using Cartesian coordinates
instead of torsion angles did not reduce performance and can potentially increase speed and accuracy. Under
conditions simulating ab initio structure prediction, fragment library quality can be suboptimal and still
produce near-native structures. Using various clustering criteria, we created a number of libraries and used
them to predict a set of native structures based on nonnative fragments. Local C�RMSD fit of fragments,
library size, and takeoff/landing angle criteria weakly influence the accuracy of the models. Based on a
fragment’s minimal perturbation upon insertion into a known structure, a seminative fragment library was
created that produced more accurate structures with fragments that were less similar to native fragments than
the other sets. These results suggest that fragments need only contain native-like subsections, which when
correctly overlapped, can recreate a native-like model. For fragment-based, random insertion methods used
in protein structure prediction and design, our findings help to define the parameters this method needs to
generate near-native structures.
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landing angles

By predicting the regular secondary structure elements, Co-
rey and Pauling helped to simplify the complexities of a
protein fold into a collection of smaller, more tractable parts
(Pauling and Corey 1951; Pauling et al. 1951). The theo-
retical community did not immediately accept and apply
this idea that a protein’s fold is made up of fragments
(Johnson et al. 1994). Not until a method using known folds
to aid in structure refinement (Jones and Thirup 1986) was
developed that fragment-based structure prediction methods
began being developed. The underlying approach uses parts
of known proteins, or protein fragments, as the building
blocks to construct and predict new protein structures. Sev-

eral groups independently of each other developed such
fragment-based structure prediction methods that showed a
great deal of promise (Jones and Thirup 1986; Claessens et
al. 1989; Unger et al. 1989; Simon et al. 1991; Levitt 1992;
Sippl et al. 1992; Wendoloski and Salemme 1992; Bowie
and Eisenberg 1994). Continual development of this ap-
proach, refinement of fragment libraries (Han et al. 1997;
Kleywegt 1999), the increase in structural information pro-
vided by the Protein Data Bank (Berman et al. 2002) even-
tually produced an algorithm, Rosetta (Simons et al. 1997),
that showed significant and consistent improvement at pre-
dicting new protein folds (Simons et al. 1999a; Bonneau et
al. 2001) as well as success in accurately designing new
folds (Kuhlman et al. 2003). Effectively, Rosetta splits
structure prediction up into two steps: generation of a set of
models, and selection of the nearest native structures. Al-
though Rosetta certainly generates ensembles of near native
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structures, especially for globular helical proteins (Bonneau
and Baker 2001), the advancements made by the Rosetta
algorithm have primarily been in potential functions and
filtering schemes for selecting correct models (Plaxco et al.
1998; Shortle et al. 1998; Simons et al. 1999b; Bonneau et
al. 2002; Ruczinski et al. 2002; Schueler-Furman and Baker
2003; Tsai et al. 2003). Improvements to structure genera-
tion have been more difficult to address because they in-
volve more fundamental issues such as adequate sampling
of conformational space. As one step towards understanding
these issues, we have studied some of the factors that limit
the accuracy of fragment-based structure generation methods.

An effective structure generation method should produce
a set of candidate models highly populated with native like
members, so that the selection method has a higher prob-
ability of choosing a near native model. Limitations to gen-
erating near-native structures using a fragment-based
method depend upon two factors: the construction proce-
dure and the fragment library. Obviously, given values
matching a particular target structure, the construction pro-
cedure should be able to exactly recreate a target protein’s
structure. Because the construction procedure also needs to
build thousands of models to adequately sample conforma-
tional space, the level of accuracy is usually balanced
against speed in building models. Approaches satisfying
this balance must make certain approximations. Usually,
structures are built in torsion angle space using a standard
set of bond angles and bond lengths for the protein main
chain atoms with a centroid replacing the entire side chain.
The centroid approximation reduces the total number of
atoms per residue to exactly five (four main chain and the
centroid) from an average of 10. Also, using torsion angles
instead of Cartesian coordinates reduces the minimum num-
ber of parameters needed to properly place a residue to three
torsion angles (�–�–�, since � is not always exactly 0° or
180°) from nine Cartesian coordinates (x, y, and z of three
atoms—N, C�, and C). Another significant difference be-
tween building with torsion angles versus Cartesian coor-
dinates is the reliance of torsion angles buildup routines on
an ideal/regular backbone geometry, which is usually the
values calculated by Engh and Huber (1991). Although
backbone regularization is well accepted in protein structure
refinement (Linge et al. 2003; Wedemeyer and Baker 2003),
and validation (Lovell et al. 2003), the effects of idealiza-
tion on backbone accuracy have not been rigorously as-
sessed in methods predicting protein structure. In this study,
we compare building models using torsion angles versus
Cartesian coordinates to find the limitations of each method
in adequately constructing native-like structures.

The fragment library also sets limits to how well a frag-
ment-based method can recreate native protein structures.
For ab initio predictions, fragment libraries are constructed
to sample as many protein folds/environments as possible.
From such libraries, the standard procedure is to select a

subset of fragments that best matches the native fragment in
order to build near-native models. Therefore, a number of
fragments (usually in the hundreds) are selected to cover
every stretch of residues in the target protein (based on the
size of the fragment). Optimally, one if not most of the
selected fragments closely matches the same stretch of
amino acids or fragment in the native structure. As a test of
the coverage necessary for a fragment library, recent work
has shown that fragments from a fragment library clustered
based on shape can closely approximate the local structure
of proteins (Hunter and Subramaniam 2003). In another
quite rigorous study, clustering fragments using a k-means
method and using an optimized building procedure further
showed that fragment library size does not need to be very
large to approximate local structure as well as construct near
native models (Kolodny et al. 2002). To find the best model
structure from their fragments, both of these studies used an
optimized method (fragment addition guided by the native
structure) to generate their models. We wanted to test frag-
ment libraries under the same conditions used in predictive
studies (where the target is not known). Therefore, struc-
tures were built using only nine residue fragments (9mers)
and with a search algorithm similar to the one used by the
Rosetta method (Simons et al. 1997). This algorithm is
meant to test the capabilities of each fragment library under
conditions similar to those encountered in ab initio predic-
tion. It consists of randomly inserting fragments into a pro-
tein, and comparing to native after each insertion (see Ma-
terials and Methods). Using this approach, we investigated
what characteristics of a fragment are required to accurately
rebuild a native structure. The common assumption is frag-
ments in a library that are closer to the native fragment
(local similarity) will generate more native-like models
(global similarity). The standard measure of this similarity
is backbone �-carbon root-mean-squared deviation or
C�RMSD. For local structure, we find that similarity in
C�RMSD shape is part of the criteria, but takeoff and land-
ing angles also play an important role. Another important
aspect of a good fragment library is how well do its mem-
ber’s cover fold space? A number of fragment libraries that
differed in coverage and complexity were created to test the
depth required to accurately reproduce native backbones.
Overall, these tests of the construction procedure and frag-
ment library help to understand the limitations in using a
fragment-based method for the prediction and design of
protein structures.

Results

Evaluating construction procedure
in torsion angle space

Historically, torsion space has been used to reduce the
memory requirements of building up a protein backbone by
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eliminating six parameters (nine Cartesian coordinates to
three torsion angles). This decrease in parameters was also
assumed to provide an increase in speed upon construction
of a peptide backbone. In this section, we show the results
from a test of the accuracy of torsion angle space by using
increasing levels of information about the native protein to
rebuild its structure. A list of 1894 native proteins were
taken, in part, from previous work (Kolodny et al. 2002),
and will be further referred to as the Kolodny set. Each
protein in the Kolodny set was rebuilt based on three levels
of information about the native structure, and standard or
ideal values for each residue (Engh and Huber 1991) were
used in the absence of native bond angles and bond lengths
(Ramachandran et al. 1974). Figure 1A shows the distribu-
tion of backbone deviations for each of the builds over the
Kolodny set. First, only native �–�–� torsion angles were
applied. The average C�RMSD of rebuilt structures to na-
tive was 6.2 Å and highly dependent upon the length of the
protein (Fig. 1A, inset). The addition of native bond lengths
did not improve the accuracy. The addition of native bond
angles helped tremendously and decreased the C�RMSD to
0.1 Å. As a control, all native torsion angles, bond angles,
and bond lengths were applied in reconstructing the protein
and the limit of our precision was reached at a C�RMSD of
0.0005 Å.

We repeated the same reconstruction experiment on the
idealized structures from the Kolodny set. Idealized struc-
tures are the result of minimizing the native backbone to
ideal or standard bond angles and bond lengths by changing
the backbone torsion angles. Although not all the bond
angle and lengths converge to a single value, the distribution
is much smaller. Because the idealized structures differ
slightly from native (see Discussion), we compared our re-
built structures to the idealized fold, because we used ide-
alized torsion/bond angles and bond lengths. Results of the
various builds are shown in Figure 1B. Because of the stan-
dardization of bond angles and lengths, this allowed for a
much more accurate reconstruction with less information.
Using only the �–�–� torsion angles from idealized struc-
ture reproduced the idealized native structures to an average
of 0.03 Å C�RMSD. Once again, adding bond length in-
formation does not improve the accuracy, although in this
case it is to be expected as the bond lengths have been
standardized. Adding the bond angle information makes the
rebuilding more accurate by an order of magnitude to an
average of 0.003 Å C�RMSD. Again, we reach the accu-
racy limit of 0.0006 Å C�RMSD when we use torsion
angles with bond angle and length information.

Fragment libraries

In this section, we created a number of different fragment
libraries to understand the qualities that make a fragment
library optimal for building near-native models in the con-

text of ab initio prediction. Each library and their results are
shown in Table 1. To properly assess such attributes of a
good fragment library, the construction procedure needs to
(1) mimic realistic prediction conditions, and (2) provide a
true measure of how well the fragment library approximates
a native structure. To accomplish the first objective, we
decided to use a method imitating Rosetta (Simons et al.
1997), where the scoring function is based on structural
similarity to native. To address the second goal, our con-
struction procedure built backbones in Cartesian space.
Building in Cartesian space tests the absolute accuracy of a
fragment library’s ability to reproduce a native structure.
We also chose to construct proteins in Cartesian space be-
cause it provides a speed enhancement with rebuilds. Al-
though it has been commonly thought that Cartesian space
rebuilds are slower, we conservatively find an order of mag-
nitude increase in speed. This increase in speed is a trade off
with heavier requirements on memory: nine coordinates for
three atoms instead of three torsion angles. A more detailed
discussion explaining the reasons for this speed up is in
Materials and Methods.

Our base or Unclustered fragment library was constructed
from a more current set of 686 nonhomologous proteins
structures chosen using the PISCES server (Wang and
Dunbrack Jr. 2003), which is further referred to as the
PISCES set (see Materials and Methods). This Unclustered
library consists of 135,298 9mer fragments created from the
PISCES set (Table 1). For the construction of models,
the subset of fragments chosen to build models differed,
but generally, the closest fragment to the native based
on C�RMSD was chosen, where the native fragment was
properly jackknifed out of the selection. Fragment lib-
raries have been assessed on average local fit of the frag-
ments to the native ones and the average global fit of the
best model to the native structure using C�RMSD. Local fit
indicates how close the replacement fragment is to the na-
tive fragment, while global fit reflects how well the con-
struction procedure was able to use the fragment library in
reconstructing the native backbone. Global fits were an av-
erage of the best model generated for each of the proteins in
the PISCES set. If we used all 135,298 fragments, we found
an average local fit of 0.41 Å for all the fragments and an
average global fit of 11.35 Å of the best models to the
PISCES set (Table 1). To test the effects of idealization on
model building, we idealized the PISCES structure set (see
Materials and Methods) to create an idealized fragment li-
brary (Unclustered IDL in Table 1). As explained in more
detail in the methods, this library had fewer fragments be-
cause we had to break some structures up into domains to
idealize them. Local and global fits were very similar for the
idealized structures at 0.41 Å and 11.29 Å, respectively
(Table 1).

In the following sections, we created a number of differ-
ent fragment libraries from the above library based on cer-
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tain criteria for clustering, such as backbone C�RMSD or
takeoff/landing angles. The centers of clusters were used as
representatives for selection of the subset of fragments used

to build models. In this way, we were able to test a fragment
library’s complexity as well its effects on building native-
like models.

Figure 1. Testing parameters used to build models with torsion angles. Both box-and-whisker plots indicate the effect on the global
C�RMSD (between the original structure and reconstructed model) of specifying precise bond angles and bond lengths instead of
using ideal values (Engh and Huber 1991). The R statistical computing environment was used to create all box-and-whisker plots
(http://www.rproject.org/). The whiskers are set to either 1.5 the interquartile length or the most extreme data point if it is less. (A)
Distribution of the C�RMSD for 1894 native protein structures rebuilt using increasing amounts of native information. The length
dependence of the reconstruction routine is shown in the inset. In all of the box plots, we saw longer proteins near the high extremes
of C�RMSD and smaller proteins near the lower extremes. (B) The same plot as the previous, except it was created using 1894
idealized protein structures.

Basics of fragment-based structure generation

www.proteinscience.org 1639



Backbone C�RMSD space clustering

Before clustering on C�RMSD, we first grouped the 9mer
fragments into superclusters based on their secondary struc-
ture make up. We used a three-state secondary structure
model (�-helix [H], �-sheet [E], coil [C]) as defined by
PROMOTIF (Hutchinson and Thornton 1996). The distri-
bution of each type of secondary structure from all 135,298
fragments was very even: 33% H, 32% E, and 35% C.
Based on this three-state model, a possible 19,683 (39) sec-
ondary structure combinations exist for each 9mer. How-
ever, the fragments from the PISCES set only populated
1982 (10%) out of the possible 19,683 superclusters. Of the
unpopulated superclusters, 95% consisted of superclusters
composed of all three secondary structure states occurring at
least once in the 9mer fragment. These types of fragments
containing all three secondary structure types were also
scarce in the existing superclusters and populated only 7%
of the 1982 groups. As expected, we did not find superclus-
ters containing isolated helical residues such as CCC CCC
CHC, because the definition of a helix requires four adja-
cent helical residues. Therefore, we only found consecutive
helical residues of less than four at the beginning or end of
a fragment. On the other hand, sheets and coils could occur
individually. Of the existing superclusters, 63% contained
an isolated sheet residue and 65% contained an isolated coil
residue. Sheet and coil residues generally were more likely
to be isolated next to coils and sheets, respectively, than in
helical stretches (67% and 62% when isolated, respec-
tively). Fragment libraries using these super-clusters are de-
noted with an SC for superclustering in Table 1.

Within each supercluster, we chose to cluster based on
the C�RMSD between 9mer fragments. Table 1 gives a

description of each of these supercluster (SC) libraries that
were created by showing the relationship between the cut-
offs used and the number of clusters produced. Increasing
the C�RMSD cutoff allows for more members to be in-
cluded in a cluster. Figure 2A is an example of one such
cluster from the all �-strand supercluster (EEE EEE EEE).
Every member of the cluster possesses the same bent shape,
which is to be expected from a Cartesian space-based clus-
tering method. As a validation of our clustering, we found
results similar to previous studies (Han et al. 1997), which

Table 1. Clustered libraries loosely ordered by number of clusters

Cluster library

C�RMSD cutoff/Å
Number of

clusters
Average local

C�RMSD
Average global

C�RMSD
Number <7 Å

to native
Average C�RMSD
of <7 Å structuresHelix Non-Helix

Unclustered — — 135,298 0.41 11.35 110 3.63
Unclustered IDLa — — 127,275 0.41 11.29 113 3.71
SC stringent 0.75 1.75 53,002 0.48 11.77 101 3.99
SC Loose 1.75 2.50 20,995 0.56 12.06 88 3.90
SC 2.50 2.50 2.50 11,300 0.62 12.27 81 4.11
SC 5.00 5.00 5.00 2308 0.78 12.49 78 4.11
SC 7.50b 7.50 7.50 1982 0.82 12.46 73 4.02
General clustering 2.25 2.25 187 1.08 13.37 110 5.63
To/L clusteringc 13.00 49,800 2.24 13.50 49 4.37

a IDL: Idealized Native Proteins are used to create fragment library.
b The SC 7.50 cluster basically had a cluster cutoff so large that all fragments sorted into their superclusters.
c Distance cutoff specific for To/L (Takeoff/Landing) clustering. The cutoff used for the summation of N1 to N1 when overlaying the ninth residue and C9

to C9 distances while overlaying the first residue was 13 Å (see Materials and Methods). All other libraries are created from native-fold proteins. Each
clustered library is shown with its C�RMSD cutoff (exception To/L clustering; see above) in Ångstroms. The average local C�RMSD when selecting the
best nonnative replacement fragment is shown as well as the average global C�RMSD from the best models generated for each of the target structures in
the PISCES set when reconstructing using each library (see Materials and Methods). Both of these columns are reported in Ångstroms. Because our global
average was so high and differences were so slight, we also counted the number of the target proteins where a model was generated under 7 Å as well as
the average C�RMSD of these best models. The values are reported in the last two columns, respectively.

Figure 2. A �-strand (EEE EEE EEE) fragment cluster. This is one cluster
from the all �-strand supercluster. (A) The 9mers are shown superimposed.
It is in this position that a C�RMSD between two 9mers is calculated and
clustering is executed. (B) The cluster is shown when the first residue of
each 9mer is artificially superimposed. The latter more closely represents
the effect of inserting 9mers into a protein structure.
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are to be expected, such as helical fragments cluster more
tightly together than other fragments. Because of this more
compact helical clustering, we set the cluster width (cutoff
point at which two fragments are sorted into the same clus-
ter) lower for helical fragments in the two SC libraries with
most clusters. The SC Stringent possesses helix and nonhe-
lix C�RMSD cutoffs of 0.75 Å and 1.75 Å, respectively,
and the SC Loose has values of 1.75 Å and 2.50 Å, respec-
tively. The remaining clusters used the same value for helix
and nonhelix superclusters stepping up from 2.50 Å to 5.00
Å to 7.50 Å. Because a single fragment represented each
cluster, the total number of members in a library decreases
until the SC 7.50 library, where there is one fragment for
every supercluster at a C�RMSD cutoff of 7.50 Å. For this
extreme, the SC 7.5 library has the minimum of 1982 mem-
bers or basically the number of superclusters. To create a
library with even fewer fragments, we clustered without
superclusters based on a 2.25 Å C�RMSD cutoff to create
the General Clustering library with 187 members.

Using these libraries, we explored reconstructing proteins
from nonnative 9mer fragments. We chose one nonnative
9mer fragment to replace each native 9mer fragment. Table
1 also reports the average values for the local and global fits
over the PISCES set in addition to the description of each
library. As expected, and has been shown previously
(Kolodny et al. 2002; Hunter and Subramaniam 2003), an
inverse relationship exists between the number of cluster
members and local fit of fragments to native 9mers. De-
creasing the number of cluster members increases the local
C�RMSD or fit of the representative fragment to the native
fragment from 0.41 Å for the Unclustered library with the
most members to 1.08 Å for the General Clustering library
with the fewest members. Surprisingly, the average global
fit of the rebuilt structure to the native structure seems to
only have a slight dependence on the average local fit: in-
creasing from an average of 11.35 for the Unclustered li-
brary to 13.37 for the general clustering library. To provide
more detail, we compare in Figure 3 the results of rebuilding
native structures from the Unclustered library to the general
clustering library. As shown in Figure 3A, the best structure
rebuilt from either fragment library depends strongly on the
length of the native target, where longer proteins generally
produce higher C�RMSD values. Figure 3B depicts the
poor local similarity of the fragments from the general clus-
tering library in comparison to the Unclustered library, but
the distribution in global C�RMSD is very similar between
the two as plotted by the Y-axis. Because of the magnitude
of the global C�RMSD values and their relatively minor
differences with each other, we decided to calculate the
number and average of good models generated (those below
7 Å C�RMSD), as shown in the last two columns of Table
1. The general trend is that the number of accurate models
decreases and the average C�RMSD increases as the frag-
ment library complexity decreases. However, the General

Clustering library produces the same number (110) of good
models as the Unclustered library, albeit with a worse av-
erage C�RMSD of 5.63 Å.

Takeoff/landing angle space clustering

An interesting consequence of clustering in Cartesian space
is that large perturbations in the initial � (takeoff) and final
� (landing) angles can radically redirect the way in which a
fragment affects the protein topology upon insertion. As
illustrated in part B of Figure 2, the same fragments as in the
cluster pictured in Figure 2A are displayed, but this time,
the first residue of every fragment is overlaid. Portraying the
fragments in this manner provides a better picture of the
effect of inserting these fragments into the middle of a pro-
tein. Because these differences in the takeoff/landing angles
do not move the �-carbons, they are not considered in our
C�RMSD based clustering (Fig. 4). To address the influ-
ence of takeoff and landing angles, we created a clustering
score that solely focused on these angles (see Materials and
Methods). We clustered this takeoff/landing (To/L) library
to a width of 13 Å (Table 1). The To/L library contained
49,800 members. Even though the To/L score exhibits the
worst local C�RMSD score of all the libraries at 2.24 Å, the
average global RMSD of 13.50 Å is not much worse than
the other libraries. The poorer local fit is plainly evident by
the X-axis in Figure 3B, while the similarity in global fit
average and distribution is shown by the Y-axis. Also in
Table 1, the number of good models was the worst of any
library at 49.

Artificial takeoff/landing angle libraries

To further investigate the influence of takeoff and landing
angles on the performance of a fragment library, we created
a set of artificial libraries based on 9mers taken from the
native structure that differ in their initial takeoff, � angle or
in their final landing, � angle. Figure 4 depicts one set of
fragments with their initial � angle changed by 45° incre-
ments from the native fragment. Including the native frag-
ment, seven synthetic fragments are overlaid, where all
eight �-carbons are also superimposed exactly on top of
each other (large spheres in Fig. 4). We had seven angle
changes for each torsion angle that gave a total of 14 per-
mutations of a native fragment. This basically created 14
artificial libraries. Initially, we wanted to measure how a set
of fragments (all native but with a single takeoff or landing
change) would affect the construction of models in the
buildup procedure. Doing this produced essentially native
structures. The result is not so surprising once we thought
about it. For a given library, all the native torsion angles
were present. To obtain a native structure with a random
insertion method, the structure needed enough moves to
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insert all native angles and move the nonnative permutation
to one of the termini. (A sequential fragment insertion
method would have found this result immediately, depend-

ing on which side it started from and which type, � or �, of
angle change was made.) Therefore, we decided to look at
this effect in a more straightforward manner.

Figure 3. Testing the accuracy of fragment libraries. We analyzed the impact of the size of our fragment library as well as the method
used to select the best replacement fragment. (A) The relationship between protein size and the global C�RMSD is shown. (B) The
relationship between local C�RMSD (9mer to 9mer) and global C�RMSD is shown.
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To measure the influence of takeoff or landing angle
changes on the buildup of structures, we used these frag-
ments to rebuild each structure in the PISCES set of pro-
teins. For each structure, every 9mer fragment was replaced
with a permuted native fragment. In effect, the structure was
rebuilt with one of its � or � angles changed, and the
resulting structure was then compared to the native structure
by C�RMSD. For a given 45° � or � angle permutation, we
averaged over all C�RMSD changes in a structure and over
all structures. Averages and standard deviations of the glob-
al fit from rebuilding these structures using each of the 15
fragment libraries (14 synthetic + 1 native) are shown in
Table 2. Because only the takeoff or landing angle was
changed, the local C�RMSD was 0.0 between the native
and permuted fragment (for every 45° change). As a control
of our buildup procedure, the native 9mer fragments always
reconstructed a perfect native structure. The other 14 librar-
ies exhibited expected behavior. The farther from native �
or � angles that we moved the fragments, the worse the
model structures became with the peak being at a change of
180°. Additionally, like the previous libraries, the global
C�RMSD depended highly upon protein length, where the
maximum and minimum global C�RMSDs were the largest
and smallest protein tested, respectively (data not shown).

Native insertion fragment selection

Based on the previous results, the selection of the best frag-
ment at a position is a balance in matching the native frag-
ment’s backbone as well as its takeoff/landing angles.
Knowing the native structure, a simple yet optimal approach
that considers a fragment’s local fit to the native fragment
with its global effects on the structure is to identify the
fragment that makes the smallest perturbation to a native
backbone. To find such fragments, we inserted a fragment

into a native backbone, rebuilt the structures, and measured
the overall C�RMSD back to native. The fragment produc-
ing the smallest C�RMSD was considered the best frag-
ment. This was repeated at each position in every native
structure for all 135,298 fragments of the Unclustered li-
brary. Eventually, for larger structures, calculating the
C�RMSD for every fragment at every position became
computationally prohibitive. We hit a limit at 434 residues,
and so we only used 161 proteins from the PISCES set.
From these 161 proteins, the distribution of C�RMSD to
native for the nearest native rebuilt structures using the na-
tive insert selection is compared to the Unclustered library’s
C�RMSD selection in Figure 5. What is striking from the
plot is that the global fit is better for fragments selected
using the native insertion method than the C�RMSD (8.61
Å versus 10.25 Å over the 161 proteins, respectively), even
though the native insertion fragments’ local fit is worse than
C�RMSD ones (1.51 Å versus 0.40 Å over 161 proteins,
respectively).

Discussion

Building in torsion space versus Cartesian space

Although it is commonly assumed that native folds can be
rebuilt by only using information from their backbone
�–�–� torsion angles, our results indicate that torsion angle
information is not enough to accurately reproduce the native
backbone. Using �–�–� torsion angles, 90% of the native
structures could be reconstructed under 13 Å (Fig. 1A), and
this inaccuracy only worsens with longer proteins (Fig. 1A,
inset). Because building proteins using only torsion angles
must assume standard bond angles and lengths, inconsisten-
cies in native bond angles and lengths are the fundamental
cause of this imprecision. Although While these deviations
have been characterized previously (Laskowski et al. 1993),
we show average values and deviations for bond lengths and
angles in Table 3. Of the two, we have found that the vari-

Table 2. Values and deviations from takeoff and landing
angle permutations

Angle
permutation

Takeoff Landing

Average Std. Dev. Average Std. Dev.

0° 0.00 0.00 0.00 0.00
45° 4.45 1.04 4.43 1.03
90° 8.34 1.95 8.83 1.93

135° 11.18 2.62 11.18 2.58
180° 12.31 2.88 12.31 2.84
225° 11.25 2.61 11.25 2.58
270° 8.40 1.94 8.39 1.92
315° 4.46 1.03 4.45 1.02

Values and deviations are in Å based on a C�RMSD comparison to the
native structure.

Figure 4. Effect of takeoff angles on building protein models. The initial
� torsion angle of each 9mer has an effect on any protein into which it is
inserted when compared to the same fragment with a different takeoff
angle. Eight 9mers with identical main chain atoms but differ by their
initial � torsion angle. The �-carbons all perfectly overlay (large spheres),
so the C�RMSD between these would be 0 Å. The figure was created using
the Spock molecular graphics program (http://quorum.tamu.edu/spock/).
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ability found in bond angles contributes more to the inac-
curacy than the variability in bond lengths. Table 3 shows
this deviation in bond angle values (on the order of degrees)
in comparison to the deviation in the bond lengths (on the
order of thousandths of an Å). When bond angles are used
along with torsion angles, native structures can be accu-
rately rebuilt within an angstrom (Fig. 1A). However, build-
ing proteins using only torsion angle information is cur-
rently the most accepted approach to generating structures.
The common work around to the problems created by varia-
tions in bond angles and lengths is to use idealized proteins
to produce fragments, where the backbone bond angles and
lengths have been fit to standard values. Reproducing the
native idealized fold is much more accurate, where 90% of

the idealized structures were rebuilt under 0.06 Å C�RMSD
to the idealized, native fold. Of course, to accomplish this
standardization, the backbone torsion angles are changed.
As shown in Figure 6, the idealized fold is not exactly like
the native fold. For the Kolodny set, the average C�RMSD
of the idealized structure to native is 0.5 Å. Thus, the ab-
solute limit for predicting a protein structure using torsion
angles and a standard set of bond angles and lengths is at
least 0.5 Å or worse. Although this is a small effect on
modeling protein backbones, the change in torsion angles
will have an impact on correctly positioning and packing
side chains (Chung and Subbiah 1996). On the other hand,
constructing proteins using torsion angles and idealized
fragments has proven successful at approximating native
folds in tests of ab initio, protein structure prediction (Si-
mons et al. 1999a; Bonneau et al. 2001), and design (Kuhl-
man et al. 2003).

Although moves in torsion space are described by fewer
parameters than moves in Cartesian space (per residue it is
three torsion angles versus nine coordinates, respectively),
both types of moves describe the same complexity. For
torsion angle moves, idealization of the backbone angles
and lengths helps to reduce the search space, but as shown
by comparing the results from the Unclustered to the Un-
clustered IDL libraries in Table 1, idealization does not
significantly help in finding the native fold. Although the
advantage of working in torsion angle space is that it re-
duces memory requirements, Cartesian space builds allow a
conservative 10-fold speed up in builds (see discussion in
Materials and Methods). In the absolute sense, building with
Cartesian coordinates can exactly reconstruct a native pro-
tein, so Cartesian space models have the potential to be
more accurate than models built with torsion angles and
idealized residues. This ability to exactly build a native fold
has a downside, because structures have to be able to match
the deviation seen in protein backbone angles and lengths as
shown by Table 3. To be able to build all native folds, a
fragment library would be expected to contain every pos-
sible residue variation in every combination. Although such
a library could be constructed artificially, searching through
such a large space is impracticable and approaches the same
complexity as predicting a protein’s overall fold. Realisti-
cally, the fragment library will need to be more tractable, so
Cartesian space builds will be just as approximate as torsion
angle builds with idealized fragments. Although building
models in Cartesian space is slightly more favorable be-
cause of faster model construction, overall, these advan-
tages and disadvantages do not strongly favor one method
over the other one.

Characteristics of a fragment library
for generating near-native models

Ideally, a good fragment library should be able to recon-
struct native folds from nonnative fragments, that is, contain

Figure 5. Testing of the native insert algorithm. The native insert 9mer
selection algorithm (where 161 proteins from the PISCES set were used) is
compared to the C�RMSD selection algorithm. The numbers under the
X-axis labels indicates the average local C�RMSD calculated from the 161
proteins for comparison. The global C�RMSD is calculated between the
native coordinates and the model constructed from the selected 9mers.
Interestingly, a lower local C�RMSD has a higher global C�RMSD.

Table 3. Values and deviations in the PISCES structure set’s
bond lengths and bond angles

Value Deviation

Bond angle
N–C�–C 110.96° 2.81°
C�–C–N 114.91° 1.20°
C–N–C� 120.64° 1.51°

Bond lengths
N–C� 1.46 Å 0.0091 Å
C�–C 1.52 Å 0.0095 Å
C–N 1.32 Å 0.0062 Å

The values and deviation of the nontorsion angle torsion space data is
shown for the PISCES data set.
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fragments that match all the target protein’s fragments and
be tractable to search. One way to increase a fragment li-
brary’s effectiveness is to remove the redundancy in the
library, so that conformational space can be sampled more
efficiently. This was shown by two recent studies of frag-
ment clustering. One showed that small nonredundant li-
braries could have good fit to local structure when cluster-
ing by shape (Hunter and Subramaniam 2003). The other
study clustered fragments with a k-means method and, in a
thorough test over a large set of target structures, found that
only a few fragments are needed to build models that are
very close to native (Kolodny et al. 2002). To build their
models, the last report used a sequential fragment buildup
that was fit against the native structure after each addition.
In this study, we used a construction procedure that is not
optimized to find the native structure but mimics currently
used structure prediction methods (Simons et al. 1997) un-
der mostly ab initio conditions. Described in Table 1, our
clustered fragment libraries were created to investigate frag-
ment redundancy effects on creating near native models.
They are similar to the previous studies in that they test
library size and complexity. Because our construction
method is different in that it is not optimized to find the
native structure, we cannot directly compare our results in
building nearest native structures. However, this does some-
what explain why our method produces such poor global
fits. In fact, we believe that our approach indicates how well

a fragment library can perform in reproducing near native
folds under conditions more similar to ab initio structure
prediction.

Two measures were used to assess our fragment libraries:
(1) the local fit or the 9mer C�RMSD of the closest frag-
ments to their native counterparts, and (2) the global fit or
the C�RMSD of the nearest native model to the native
structure. In terms of local fit, the Unclustered library,
where every member could be considered, sets the accuracy
limit. The average local fit was 0.41 Å C�RMSD between
the best match and the native fragment (Table 1), and these
matches to native ranged between 0.05 and 0.67 Å
C�RMSD, suggesting that they adequately covered local
fragment space. As expected, increasing the clustering
width reduces the size of the fragment library, and thereby
decreases the local fit, most likely because the near-native
fragments are now lost somewhere in the cluster. In terms of
global fit, all of these libraries followed the trend of pro-
ducing worse native-like models as the complexity of the
fragment library decreased. When we chose from our library
of only 187 fragments, the global C�RMSD to native was
only slightly worse than when choosing from our entire
9mer library of 135,298 fragments (Table 1; Fig. 3). We did
confirm our suspicion that fewer fragments in a library will
lead to worse models, but were not expecting how little the
change would be in the overall global fit with smaller li-
braries. To reassure ourselves that the comparison of such

Figure 6. Global C�RMSD differences between idealized and native data structures. For the Kolodny structure set, the C�RMSD of
the idealized structure to the native is plotted against number of residues.
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high C�RMSD values was true, we also looked at the num-
ber of good models generated. These measures also fol-
lowed the trend of producing fewer and worse models the
less complex the fragment library was. The only anomaly is
the General Clustering library, which produced as many
good structures as the Unclustered library, which is visually
corroborated by the plots in Figure 3. This result suggests
that the superclustering by secondary structure type is not
favorable to fragment base structure generation and possibly
adds a deleterious constraint upon fragment selection. The
fact that Rosetta type algorithms are still able to produce a
native-like model indicates that the proper fragments exist.
We have shown that those fragments are generally not the
best local fit fragments, because the lack of the ability for
best local fit fragments to reproduce native-like models. Ulti-
mately, because we know that we are searching for the native
�–�–� torsion angles, local fit by C�RMSD is an incom-
plete measure for choosing the best replacement fragment.

This result led us to start thinking about whether we were
choosing the best substitution fragment from the library.
The standard similarity measure between two fragments is
based on their backbone C�RMSD, and does not account
for takeoff and landing angles, as illustrated in Figure 2. To
test the influence of takeoff and landing angles, we created
a set of artificial libraries that did not change the C� posi-
tions (and so were perfect in terms of local C�RMSD) but
did contain either a permuted takeoff or landing torsion
angle. Clearly, the results from only changing the takeoff
angle of native fragments shows that takeoff and landing
angles are important (see Table 2). Therefore, we used a
score just based on takeoff/landing angles to cluster frag-
ments. This takeoff/landing angle clustering produces a
fragment library with a very poor local fit of 2.24 Å, but the
global fit of 13.50 Å is not much worse than our worst
C�RMSD clustered set (General Clustering) with a better
local fit (see Table 1; Fig. 3). The To/L clustered library did
not improve the global fit most likely because this score was
too focused on these takeoff/landing angles and ignored the
local Cartesian similarities of two fragments. Therefore, if
an �-helix and a �-sheet fragment had the same takeoff and
landing angles, they could be chosen as a substitute for one
another. So, a score must be devised that balanced both of
these factors together: local Cartesian similarity, and take-
off/landing angle similarity. We decided the best measure of
a fragment’s similarity to the native would be to see how
much a fragment perturbs the overall fold upon insertion
into the native backbone. This worked reasonably well, as
shown by Figure 5. Compared to the Unclustered fragment
library that produces the lowest global fit, the native insert
library exhibits a worse local fit, but better global fit. This
different trend indicates that this score did much to find a
better, more suitable, substitutionary fragment. However,
longer proteins of lengths greater than 300 residues still had
a global C�RMSD of ∼20 Å.

Although C�RMSD is a good measure for global fit,
these results show that measuring similarity of fragments
using C�RMSD is not an optimal method for choosing the
nearest native fragment. This weakness in C�RMSD is
mostly due to this measure’s strong dependence on length.
Ultimately, the best fragment needs to insert all the native
�–�–� torsion set at the proper point in the protein. For
local structure similarity, takeoff and landing angles are no
more important than any of the other 25 dihedral angles
within the 9mer fragment. All of the angles matter equally
as much. However, we believe takeoff and landing angles
are often overlooked because they cause no visible torque in
the 9mer fragment except in the initial nitrogen and terminal
carbonyl carbon. Because no C� shifts (e.g., see Fig. 4) a
C�RMSD metric cannot distinguish between two such frag-
ments. If you change any other torsion angle beside the first
� and last � (let’s say the fourth � by 180°), you will clearly
see a difference between fragments.

Indeed, our results suggest that the emphasis on local
structure similarity to assess a fragment library’s abilities at
producing near-native models is misplaced. We find that
near native models can still be generated with about the
same likelihood for fragment libraries that are not complex,
if we compare the results from the Unclustered to the Gen-
eral Clustered libraries. This result is corroborated by the
simple library developed by Kolodny et al. (2002), where
low global similarities were found. Basically, methods for
generating protein structures using random insertions of
fragments do not need optimal fragment libraries, that is,
require a complete native fragment to necessarily exist in
the library. Using the Rosetta algorithm as an example, this
approach chooses 200 fragments at each position or per
9mer (Simons et al. 1997). Therefore, including overlap,
each residue can in effect choose from 1800 �–�–� sets, or
there are 1800 chances to find a native or near-native set of
�–�–� values. Our results suggest that this redundancy is a
fundamental asset to structure building using fragment-
based, random insertions. Fragments in a library need only
contain one native-like set of dihedral angles at each resi-
due. More likely, fragments exist with stretches of contigu-
ous native-like torsion angles. As long as the fragments are
put together in the right order, a native-like model can be
constructed. The importance of the sequence in which the
fragments are inserted emphasizes the strong influence of
the guiding potential function. Using C�RMSD as a guide
has not produced the most native structures in this study,
and suggests that these structures are trapped in deep local
minima. The function used by Rosetta considers many
qualitative aspects of protein structure (Simons et al. 1999b)
that finds the correct sequence of fragments to build near
native structures. The only place where a fragment based
insertion method to build protein models would fail is if the
�–�–� values were not present in the library. This is sug-
gested by the result that Rosetta can build helical structures
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more accurately than those containing sheets (Bonneau and
Baker 2001), because helical torsion angles are more regular
and are better represented than sheet torsion angles in frag-
ment libraries. Continuing with the same reasoning, the best
fragment library would have complete coverage of fold
space for fragments. Instead of generating the library from
known structures, the library could be produced artificially
like a recent library created for loop modeling (DePristo et
al. 2003).

Conclusion

In this study, we have tried to understand what qualities are
important when using a fragment-based method for predic-
tion of protein structure. Specifically, we looked at con-
struction procedure and fragment libraries. For construction
procedure, we found that building models in torsion angle
space only provides an advantage in simplifying the search
to matching three parameters (�–�–�), but the complexity
or degrees of freedom is essentially the same as building in
Cartesian space. In terms of accuracy, the idealization of
backbone coordinates places a lower limit to the accuracy of
the backbone and will pose problems to eventual side chain
packing (Chung and Subbiah 1996). Using Cartesian coor-
dinates ultimately allows for exact accuracy and in our
hands provides a more efficient buildup of models.

The important characteristic of a fragment library is that
it contains near-native fragments or subfragments, but does
not need to maximize local structure similarity. For con-
struction procedures used in ab initio structure prediction,
we have shown that selection of fragments based on local
similarity (measured by C�RMSD) to the native fragment
should be considered about equally with what the replace-
ment fragment will do to the global fold (measure by take-
off/landing angles). This leads us to an important point
about the construction procedure and building nearest native
structures. Because random insertion of fragments leads to
overlapping and sometimes even complete elimination, it is
interesting that takeoff and landing angles have an effect. In
a study using random insertions of native fragments with
permuted takeoff or landing angles, all native angles were
available in the fragment library, but still native-like models
were not made (data not shown). This indicates that using
the global C�RMSD as a score is not optimal and probably
restricts the random insertion search for the correct structure
to deep local minima. Random fragment insertion has
shown success in constructing near native structures (Si-
mons et al. 1999a; Bonneau et al. 2001; Bradley et al. 2003)
and in accurate design of a new protein fold (Kuhlman et al.
2003). These results, coupled with our work in this study,
suggest that a strength of this buildup procedure is that it
can use suboptimal fragment libraries. With a potential
function (Simons et al. 1999b; Kortemme et al. 2003) and
filters (Plaxco et al. 1998; Shortle et al. 1998; Ruczinski et

al. 2002) favoring protein-like features, such suboptimal
fragment libraries are more than adequate for generating
near-native structures.

Materials and methods

Protein data sets

The studies conducted in this paper are based on two protein
structure data sets:

1. For building protein structures in torsion angle space, we used
the Kolodny set, an augmented set of idealized protein struc-
tures consisting of 1894 structures, 350 of which were used in
Kolodny et al. (2002). Coordinates for native structures were
obtained directly from the Protein Data Bank (Berman et al.
2002).

2. For the creation of the 9mer library as well as for testing frag-
ment libraries, we used a list of 686 structures obtained using
the PISCES server (Wang and Dunbrack 2003), which we
called the PISCES set. This set has a 1.8 Å resolution and less
than 20% internal structural homology. The subset of structures
consists of single chains without any breaks, and contains co-
ordinates for all backbone atoms: nitrogen, �-carbon, and car-
bonyl carbon. The structures in this set ranged in length from 51
to 838 residues. The PDB codes for the set used in this study
have been supplied as supplemental material.

Idealization of the PISCES set

The Rosetta idealization implementation (Simons et al. 1997) was
applied to the PISCES set. We go over it briefly here. The Rosetta
idealization implements the Broyden-Fletcher-Goldfarb-Shanno
variant of the Davidson-Fletcher-Powell (DFP) minimization al-
gorithm as described in Numerical Recipes (Press et al. 1992).
This algorithm is a quasi-Newtonian, variable metric method for
multidimensional minimization. Rosetta makes three passes over
the structure’s bond angles. These angles are minimized against
Engh and Huber values (1991) while modifying the torsion angles
to maintain the original three-dimensional shape. One limitation of
the Rosetta implementation is that the proteins must be under 200
residues in size. Therefore, any protein greater than 200 residues
was separated based on its domain structure into approximately
200 residue pieces. However, each split eliminated nine 9mers that
otherwise existed in the native library. This contributed to having
a slightly smaller 9mer library than the native library in terms of
total number of fragments. Once the idealized 9mer library was
created, the same routine was followed as with the Unclustered
native library: selection of the lowest C�RMSD 9mer fragment for
each 9mer position followed by a random insertion of the Carte-
sian coordinates of the fragment, minimizing to the native fold. It
is important to note that we did not minimize to the idealized fold,
but rather minimized a structure with the Engh and Huber standard
values to approximate the nonideal native coordinates.

Creation of the 9mer library

For the 9mer Library, the PISCES set was systematically sliced
into all possible 9mer fragments. Careful attention was paid to
breaks in the chains created by nonstandard residues, so as not to
create a 9mer fragment spanning a break in the native fold from
which it was taken. Also, each residue of the 9mer fragment was
classified based on a three-state model of secondary structure (he-
lix H, sheet E, and coil C) as determined by PROMOTIF (Hutch-
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inson and Thornton 1996). This classification was used to group
fragments based on identical secondary structure assignments: su-
perclusters. Using this scheme, we created 1982 of these super-
cluster groups.

Clustering of the 9mer library

Within each supercluster, fragments were further clustered using a
greedy multicentered clustering algorithm. The C�RMSD cutoff
for the supercluster stringent library was set at 0.75 Å for helical
superclusters (defined as >1/3 helical residues) and 1.75 Å other-
wise. If a fragment did not meet the cutoff with any existing cluster
center, the fragment would create its own cluster, and become the
center of the new cluster. With each addition to the cluster, the
cluster center was updated to the fragment with the smallest sum
total C�RMSD to every other fragment within the cluster. Other
clustered libraries (within superclusters) were created with varying
C�RMSD cutoffs for purposes of reconstruction. We also created
a library with 187 clusters that clustered across superclusters, that
is, considered all 135,298 fragments as a whole.

For the To/L clustering, we used a gross score. We overlaid the
first three atoms of the fragment, and then measured how far apart
(in Å) the final carbonyl carbons were from one another, and than
overlaid the final three atoms, and added the distance between the
initial nitrogens. Because we wanted to compare these results with
our SC library, a 13 Å cutoff was chosen to produce a similar
number of clusters (49,800) as the supercluster Stringent library
(53,002).

Because we used a greedy algorithm, not all fragments ended up
clustered to their nearest (in C�RMSD space) cluster center. If two
clusters had overlapping areas, a fragment could be first assigned
to the cluster with the second best score, if the better scoring
cluster center has not yet been created.

Computer implementation of library clustering

Due to the large number of fragments to be clustered (>135,000
9mers), a method was desired that was quick, but primarily
memory efficient. A linked list solution was decided upon despite
linked list’s reputation for being slow to access and use in com-
parison to arrays. For one linked list, each node held information
for a cluster, only being created and allocated when a new cluster
was discovered. Each of these cluster nodes pointed to:

1. Another linked list consisting of a node for each 9mer member
of the cluster;

2. The individual 9mer node of the linked list above (1) acting as
the current “cluster center”;

3. The final 9mer node in the linked list above (1) allowing for
rapid addition of 9mer fragments to a cluster.

The nodes of the second linked list contained the name of the
9mer file as well as that 9mer’s sum C�RMSD to every other 9mer
in the cluster. Thus, for a cluster consisting of only a single, unique
9mer, two nodes exist in computer memory: the individual 9mer
node (with sum C�RMSD of 0) and the cluster node with three
pointers to the single 9mer node.

Reconstruction of proteins in torsion space

The Kolodny set was rebuilt using increasing degrees of native
structure information, and then the C�RMSD to native was cal-

culated. Each nitrogen/�-carbon/carbon atom was appended to the
previous atom of the main chain using basic geometric rules and
quaternion rotations.

More specifically, the Cartesian coordinates of the three previ-
ous atoms to the atom being inserted were used to create two unit
vectors. A third unit vector was created by duplicating the second
one. It was then rotated using quaternion rotation around the axis
created by the cross-product of vector one and two by the supple-
ment of the bond angle. Next, it was rotated (again, using a quater-
nion rotation) around the axis of the second vector by the appro-
priate torsion angle. Finally, it was shifted down vector two by the
bond length of the second vector, and lengthened by multiplying
by its own bond length.

We used this process for four applications. First, we only cal-
culated the torsion angles of the protein to be rebuilt, and supple-
mented the bond angle and bond length data with standard data
(Ramachandran et al. 1974). Next, we also calculated the bond
lengths of the protein, but still used the standard bond angles.
Then, we calculated the bond angles of the protein, but still used
the standard bond lengths. Finally, after calculating all three tor-
sion angles, all three bond angles, and all three bond lengths, we
rebuilt the proteins using all of the data.

One thousand eight hundred ninety-four protein chains from the
Kolodny idealized set were also used. Instead of using ideal or
standard bond lengths and bond angles, we used the values to
which the data set was minimized. This time, the variation was in
the bond angles was only ±0.03°, because each residue had been
minimized to a common set of six numbers.

Reconstruction of proteins from nonnative
9mer fragments in Cartesian space

First, a list of a protein’s best nonnative replacement fragments
was created. We would do this by looking at the 9mer library of
interest and finding the fragment with the lowest C�RMSD to the
native 9mer (best local fit). A subset of 421 structures with con-
tinuous chains from the PISCES set was used. This selection was
properly jackknifed to prohibit the selection of the native fragment.
Thus, for a 100-residue protein, 92 9mer fragments would be cho-
sen from nonnative proteins. The total number of combinations of
these 92 fragments, considering overlapping fragments, is near
1090, which is currently computationally intractable. Therefore, we
randomly sampled these possibilities with hopes that the structures
would converge onto the native fold. The method for using these
“nonnative, best local fit” fragments is as follows:

1. A “straightened” model would be created with �–�–� angles of
180° while preserving the native bond angles and bond lengths
of the original structure.

2. A randomly chosen fragment was placed into its associated
position in the straightened protein. For example, the best local
fit fragment for residues 40–49 would be at those positions.

3. The C�RMSD of the model (with the new insertion) to native
was calculated.

a. If the model is further from native, reject the replacement.

b. If the model is closer to native, accept the replacement.

4. Continue for 5000 insertions.

5. Repeat this procedure 1000 times, each time restarting from a
straightened model, and ultimately saving the best model.

The Cartesian space replacement of a 9mer fragment was ac-
complished by the following algorithm, which is very similar to
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the Rosetta method (Simons et al. 1997). We would use the initial
and final residue of the 9mer fragment (nitrogen, �-carbon, and
carbonyl carbon) to overlay with the corresponding residues of the
protein chain into which we were inserting the 9mer fragment. A
rotational/translational matrix was calculated to overlay the first
residue of the fragment onto the corresponding residue in the origi-
nal model. This matrix was calculated by first overlaying the ni-
trogen to �-carbon vectors onto one another, followed by a rotation
around the nitrogen/�-carbon vector to place the corresponding
carbonyl carbons into the same plane. This calculated rotational/
translational matrix was applied to every atom in the fragment.
Another rotational/translational matrix was calculated for placing
the original terminal residue’s nitrogen, �-carbon and carbonyl
carbon onto the corresponding terminal residue of the now-rotated
fragment. If the insertion was closer to the end of the model, this
matrix was applied to every atom from the terminal residue + 1 to
the end of the protein. Otherwise, the inverse of this matrix was
applied to residue 1 through the terminal residue of the fragment.

Because we were using a knowledge-based system, it was im-
portant that we insert the fragment exactly as we found it in the
native fold from which it was taken. We made sure to preserve
every �–�–� torsion angle, even at the ends of the fragment. If we
allowed the algorithm to freely rotate the fragment upon insertion,
we would move away from the restraints of a knowledge-based
system, and towards the combinatorial problem of freely sampling
conformational space.

With regard to the speed up by building in Cartesian space as
opposed to Torsion space, we must consider each routine. Con-
sidering only main chain atoms, there are three general steps for
Cartesian space builds:

1. Calculate a matrix to rotate the fragment onto the protein at one
end.

2. Apply this matrix to 27 atoms.

3. Append the rest of the protein onto the other end of the frag-
ment.

The steps for the best torsion space algorithm build currently in
use are to:

1. Calculate the position of 27 atoms based on dihedral angles.

2. Append the rest of the protein onto the other end of the frag-
ment.

The last step of each method is the same and may be ignored in
this comparison. Thus, we are left with the other steps.

Steps 1 and 2 of a Cartesian space build require:

• 384 Multiplications (141 and 243, respectively)
• 252 Additions (90 and 243, respectively)
• 10 Divisions (Step 1)
• 6 square roots (Step 1)

Step 1 of a Torsion Space build, using quaternion rotations,
requires:

• 1755 Multiplications
• 1350 Additions
• 297 Divisions
• 27 Square Roots
• 216 Trig Operations

Based on this breakdown, it is fair to say that a torsion space
build is slower than inserting fragments stored in Cartesian space.

Variation of takeoff and landing angles
of native 9mer fragments

To simulate the effects of takeoff angles on a fragment reconstruc-
tion method of building proteins, we first started with a protein’s
set of native 9mer fragments taken from any given protein. We
then sequentially inserted one fragment at a time to the native fold,
each time, and averaged all of the C�RMSDs. As one would
expect, the average C�RMSD at this point was 0 Å. We then
changed the initial � or final � by 45° increments for every native
9mer, effectively changing the orientation by which the fragment
would be appended to the protein. We again sequentially inserted
one fragment at a time to the native fold, each time, and averaged
all of the C�RMSDs. For this test, we ran over the structures in the
PISCES set.
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