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Abstract

Here, we present a diverse, structurally nonredundant data set of two-chain protein—protein interfaces
derived from the PDB. Using a sequence order-independent structural comparison algorithm and hierar-
chical clustering, 3799 interface clusters are obtained. These yield 103 clusters with at least five nonho-
mologous members. We divide the clusters into three types. In Type I clusters, the global structures of the
chains from which the interfaces are derived are also similar. This cluster type is expected because, in
general, related proteins associate in similar ways. In Type II, the interfaces are similar; however, remark-
ably, the overall structures and functions of the chains are different. The functional spectrum is broad, from
enzymes/inhibitors to immunoglobulins and toxins. The fact that structurally different monomers associate
in similar ways, suggests “good” binding architectures. This observation extends a paradigm in protein
science: It has been well known that proteins with similar structures may have different functions. Here, we
show that it extends to interfaces. In Type III clusters, only one side of the interface is similar across the
cluster. This structurally nonredundant data set provides rich data for studies of protein—protein interactions
and recognition, cellular networks and drug design. In particular, it may be useful in addressing the difficult
question of what are the favorable ways for proteins to interact. (The data set is available at http://
protein3d.ncifcrf.gov/~keskino/ and http://home.ku.edu.tr/~okeskin/INTERFACE/INTERFACES .html.)

Keywords: data set of interfaces; protein binding; protein interfaces; protein—protein association; motifs,
protein—protein interactions
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Most, if not all, biological processes are regulated through
association and dissociation of protein molecules. These
processes include but not restricted to hormone-receptor
binding, protease inhibition, antigen—antibody recognition,
signal transduction, enzyme—substrate binding, vesicle
transport, RNA splicing, and gene activation. In a pioneer-
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ing study already almost 30 years ago, Chothia and Janin
(1975) addressed the profound problem of protein—protein
recognition. Jones and Thornton 1996 have reviewed this
important subject of the properties of different types of pro-
tein—protein complexes. Figuring out the principles of pro-
tein—protein interactions is critically important for the un-
derstanding of the relationship between biological function
and intermolecular complex formation (Katchalski-Katzir et
al. 1992; Jones and Thornton 1996; Kleanthous 2000; Kuhl-
mann et al. 2000; Ma et al. 2001; Nooren and Thornton
2003). Understanding these principles is essential for pre-
dicting the conformations of multimolecular assemblies, for
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predicting cellular pathways, and for drug design. In addi-
tion, they should be useful in predicting docked complexes.
Furthermore, because binding and folding are similar pro-
cesses with similar underlying mechanisms, studies of in-
termolecular binding are expected to aid in folding.

From the computational standpoint, there are a number of
ways to study protein—protein interactions. Among these,
one may focus on the details of the recognition process in
one or few interacting proteins (Tramontano and Macchiato
1994; Wallis et al. 1998; Kuhlmann et al. 2000; Todd et al.
2002; Arkin et al. 2003), or carry out a broader analysis of
different two-chain complexes (Tsai et al. 1996, 1998a,b;
Tsai and Nussinov 1997; Bogan and Thorn 1998; Keskin et
al. 1998; Xu et al. 1998; LoConte et al. 1999; Ma et al.
2001; Valdar and Thornton 2001a,b; Chakrabarti and Janin
2002; Fariselli et al. 2002). Both approaches have advan-
tages and disadvantages. In principle, focusing on given
complexes enables following the binding process, and dis-
secting the contributions of particular interactions. On the
other hand, analysis of a data set of protein—protein inter-
faces allows assessment of the interactions in a statistically
meaningful way. It allows using the properties of these for
binding site prediction (Fariselli et al. 2002). It further al-
lows studies of functionally distinct interfaces to identify
residues critical for function and stability (Bogan and Thorn
1998; Hu et al. 2000; DeLano 2002) and facilitates analysis
of the interactions in two- versus three-state complexes
(Tsai and Nussinov 1997; Tsai et al. 1998b). Yet, despite the
clear advantages of a data set of nonredundant protein—
protein interfaces, from the technical standpoint, its creation
presents difficulties. Interfaces consist of interacting resi-
dues that belong to two different chains, along with residues
in their spatial vicinity. Thus, interfaces consist of pieces of
each of the chains, and some isolated residues. To generate
a nonredundant data set, it is essential to carry out structural
comparisons of the interfaces independent of their amino
acid sequence order, because the residue order may vary
(Tsai et al. 1996).

Using the computer vision-based Geometric Hashing
structural comparison technique (Nussinov and Wolfson
1991; Tsai et al. 1996), we compare protein—protein inter-
faces derived from the PDB to obtain hierarchically orga-
nized interface clusters. Next, we use MultiProt (Shatsky et
al. 2002, 2003), to simultaneously multiply align large num-
bers of structures. MultiProt also disregards the order of the
residues on the chains, allowing us to obtain the common
patterns within the clusters. These two methods are able to
exhaustively handle all interfaces in the PDB to create such
a data set. The current work is a considerable extension of
our previous study (Tsai et al. 1996). In our earlier 1996
work, we started with 1629 two-chain interfaces. Three hun-
dred fifty-one distinct families were generated. These struc-
turally similar interface families provided a rich data set,
allowing examinations of protein interfaces from different
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perspectives. However, recently there has been an ex-
tremely large increase in the number of known three-dimen-
sional protein structures. In this study, we have made use of
all protein assemblies including oligomeric proteins, viral
capsids, muscle fibers, enzyme/inhibitor, and antibody/an-
tigen complexes available in the PDB (Berman et al. 2000).
The large increase in the PDB has enabled us to filter further
the clustered interfaces and remove similar entries to a
stricter extent than previously, making conservation studies
easier to analyze and interpret. The newly generated, an
order of magnitude larger clustered interface-data set (from
351 in 1996 to 3799 clusters now), makes it possible to
address a broad range of questions such as whether the
increase in the number of known protein structures gives
rise to new families of interfaces, or are new members
added to the already known ones. This may yield clues to
the completeness of both protein folds and protein interface
architectures. Further, protein—protein recognition relates to
the physical and chemical properties of the interfaces (Cho-
thia and Janin 1975; Tsai and Nussinov 1997; LoConte et al.
1999; Hu et al. 2000; Ma et al. 2001). Thus, interfaces can
be characterized in terms of their geometrical properties
such as size, shape, and complementarity and chemical
properties, such as hydrophobicity, salt bridges, hydrogen
bonds, disulfide bonds, and packing, the presence/absence
of water molecules at certain sites, the total or the nonpolar
buried surface areas, residue composition, and family con-
servation. Together, these properties play a role in deter-
mining the chemical and physical nature, and thus biologi-
cal function, of protein complexes. The diverse data set
makes it possible to investigate binding across and within
families.

Our interface clusters contain similar interface architec-
tures formed by two chains. In most cases, these similar
interfaces are derived from globally similar protein chains.
These are called Type I interfaces. However, among our
clusters, there are some with similar interfaces yet dissimilar
global protein folds. These proteins have different func-
tions. These interfaces are called Type II clusters. These
clusters are good candidates for detailed structural/func-
tional studies. Because the overall structures of the proteins
are different, it is likely that although the interfaces in their
complexed states have similar structures, the distributions
and redistribution of their substates are different, the out-
come of the change in their binding states (Kumar and
Nussinov 2001; Ma et al. 2002). On the other hand, they
may bind similar drugs and interfere with complex forma-
tion.

Furthermore, the fact that different proteins bind in simi-
lar ways to yield similar interface architectures suggests that
these Type II interfaces represent favorable structural scaf-
folds. They lend stability to the protein—protein interactions
(Cunningham and Wells 1991; Wells and deVos 1996;
DeLano et al. 2000) and afford functional flexibility. This
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similar structure, different function situation is reminiscent
of protein structures. The recurrence of folds in single
chains has led to the proposition of the paradigm of the
limited number of folding motifs, regardless of the diversity
of protein functions (Chothia 1992). Evolution has repeat-
edly utilized favorable, stable folds adapting them to a broad
range of regulatory, enzymatic, and packaging/structural
roles. Here we show that different folds combinatorially
assemble to yield similar motifs in the interfaces. The pref-
erence of different folds to associate in similar ways illus-
trates that this paradigm is universal, whether for single
chains in folding or for protein—protein association in bind-
ing. Below, we enumerate examples of interfaces found in
the same structural cluster, yet have different global protein
structures and different functions. In the third, Type III clus-
ter category, only one side of the interfaces is similar across
the cluster. This interface category illustrates that a given
protein binding site may bind different geometries of the
complementary protein.

The general similarity in architectures between interfaces
and protein cores illustrates that binding and folding are
similar processes (Tsai and Nussinov 1997; Tsai et al.
1998b). Combined, this diverse hierarchical data set, re-
flecting almost 22,000 two-chain interfaces in the (July
2002) PDB will be invaluable: Cluster members may pro-
vide hints to presumed protein specificity; comparisons
across different clusters may yield clues to principles gov-
erning protein recognition and stability (Lichtarge et al.
1996; Kuntz et al. 1999; Hu et al. 2000; Brooijmans et al.
2002; Fernandez and Scheraga 2003; Ma et al. 2003). The
clustered data set may be a rich source for various types of
analyses of protein interfaces. The old (1996) data set was
used to identify some chemical and physical properties of
the interfaces: It was used to extract computational hot spots
in protein—protein interfaces, which were observed to be
largely polar and to correlate well with alanine scanning
mutagenesis (Hu et al. 2000; Ma et al. 2003). In another
study, the data set was useful for deriving residue—residue
empirical interaction parameters in the core regions of pro-
teins and their comparison with the protein interfaces (Ke-
skin et al. 1998). It was used to study the strength of the
hydrophobic effect at the interfaces compared to protein
cores, and to study the types of architectures in the inter-
faces versus in single chains (Tsai and Nussinov 1997; Tsai
et al. 1997, 1998a,b). It was used to compare the number of
hydrogen bonds in the single chains versus the interfaces
and to study the evolution of protein dimerization (Xu et al.
1998). The enlarged data set is currently being used to pre-
dict interacting pairs of proteins. As such, it may assist in
providing some clues for networks of protein interactions. It
will be used to extract the structurally and sequentially con-
served residues across the interfaces, that is, coupled muta-
tions among families and to derive profiles of interface
families. These are expected to be particularly useful in

prediction of protein function, because they should be more
robust than single interfaces. We are further using it for
studies of interface hot spot organization. The data set
should be useful in inferring cellular networks and in the
design of small molecules to block protein—protein binding.
Furthermore, our clusters allow investigation of proteins
where the global folds are similar while their interfaces are
not found in the same cluster. These may have different
functions. A broad study of this question is now in progress.

Results

Construction of the new nonredundant data set
of protein—protein interfaces

Definition of the interface and its application
to the Protein Data Bank

Here, we define an interface to be the region between two
polypeptide chains that are not covalently linked. The resi-
dues that interact with each other across the binding region
compose the interface between the two chains. The selection
of a residue in each chain is based on how close this residue
is to the residues in the accompanying chain. Two residues
(one from each chain), which are in direct contact, are called
interacting residues. Residues in the vicinity of interacting
residues are nearby (neighboring) residues. The latter pro-
vide the structural scaffold of the interfaces.

There are several schemes to define residues in two-chain
interfaces as interacting and nearby. For example, two resi-
dues may be defined as interacting across the interface if the
distance between their C* atoms, one from each chain, is
less than 9 A or, alternatively, if the distance between any
two atoms of two residues from different chains is less than
the sum of their corresponding van der Waals radii plus 0.5
A (Tsai et al. 1996). Here we have adopted the second
scheme. A residue is defined to be a “nearby” residue if the
distance between its C* and a C* atom of an interacting
residue is under 6 A. Nearby residues are important for the
clustering of the interfaces. They provide information about
the architecture of the interfaces and make it possible to
align one interface structure against another. Figure 1 illus-
trates an example of interfaces among three chains of a
protein complex (a transferase; PDB code lgwc). Here,
three interfaces could be formed between chain pairs A-B,
B-C, and A-C. As seen from the figure, only the first two
interfaces have been formed. There is no interface between
chains A-C, because these two chains are not close enough
to each other to form an interface. Figure 1 shows these two
interfaces in detail. The red and green residues are the in-
teracting, and the neighboring (nearby) residues between
chains A and B, magenta and cyan, mark the interacting and
the neighboring (nearby) residues between chain pair B and
C. The side chains of the interacting residues are fully dis-
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Figure 1. Definition of protein—protein interfaces: The ribbon diagram of
Glutathione S-Transferase is displayed. The three chains (A, B, and C) of
transferase are colored yellow, gold, and dark green, respectively. Two
interfaces form between chain pairs. Chains A and C do not form an
interface. In the first interface between chains A and B, the interacting
residues are colored red, and the nearby ones in green. In the second one
(interface between chains B and C), the interacting residues are displayed
in magenta and the nearby in cyan. Only the side chains of the interacting
residues are shown.

played. To guide the eye, the three chains are colored sepa-
rately: A in yellow, B in gold, and C in dark green.

We have applied these criteria to all multichain PDB
entries in the database. On July 18, 2002, there were 18,687
entries in the PDB that included 35,112 single chains. PDB
entries that contain more than two chains were used to get
two-chain combinations. Therefore, interfaces between any
two chains were extracted if each of the two chains at least
had 10 residues. These included all two-chain interfaces
from dimers, trimers, and higher complexes of protein—pro-
tein and protein—peptide complexes. As a result, 21,686
two-chain interfaces were obtained. Following the nomen-
clature of Tsai et al. (1996), we have renamed the interfaces
as follows: If the PDB code of a protein is 1gwc and it has
two chains A and B, the interface is named 1gwcAB (see
Fig. 1), indicating that there is an interface between chains
A and B of protein 1gwc.

Structural comparisons

Constructing a data set of nonredundant interfaces is not
straightforward. The main difficulty is that interfaces con-
sist of two separate chains with discontinuous pieces of the
polypeptides. Although we seek similar spatial arrange-
ments of the polypeptide pieces between the interfaces, their
sequence order may differ. Furthermore, some of the pieces
may consist of isolated amino acids. Consequently, any al-
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gorithm that is sequence- and directionality-dependent is
not applicable to the interface comparison problem. On the
other hand, computer vision-based structural alignment
techniques view protein structures as collections of points in
3D space. Therefore, they are ideally suited to comparisons
between protein surfaces and interfaces (Nussinov and
Wolfson 1991; Tsai et al. 1996). The algorithms used in this
study compare all available protein interfaces, allowing the
clustering of the interfaces into families with distinct struc-
tural features.

The first step is the comparison of interfaces by the Geo-
metric Hashing algorithm. Details of the algorithm were
given in Tsai et al. (1996) and in Nussinov and Wolfson
(1991). The algorithm uses the C* coordinates and no con-
nectivity among these C* points is taken into account in the
matching. Figure 2a shows a protein in 3D space represen-

Extraction of al
wo-chain interfaces

[Hash fable construction
for the interfaces
A defining all ible local motifs

inding the local
similanities by rotations
PDB Dataset and transformations of
motifg
Extending the
L tsuperpositions to find
the best global alignmen
Iterative clustering
with different
similarity thresholds

Figure 2. (A) The input of the alignment program for interfaces: the rep-
resentation of the Glutathione S-Transferase with its C* atoms as points in
three-dimensional space. The coloring scheme is as in Figure 1. The struc-
tural pairwise alignment of interfaces are performed considering only the
points belonging to the contacting and nearby atom. (B) The schematic
representation of the alignment algorithm. We start with all structures
available in the PDB and extract the interfaces formed between pairs of
chains. These interfaces are next compared to each other with an iterative
procedure to assign them into different structural clusters. The algorithm
reads the interfaces as sets of points—as shown in A—and constructs the
hash tables to define all local motifs in interfaces. Interfaces are compared
iteratively and clustered.
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tation with its C* atoms denoted as points. This is the same
protein as in Figure 1 (the same view). The goal of the
algorithm is to find the most similar sets of points common
to both protein interfaces. The algorithm has three consecu-
tive steps: hash table construction, voting, and extension
processes.

(1) Hash table construction is used to find the local simi-
larity between two sets of points. The coordinates of
every three consecutive C* (C,_;, C,, C,,,) along the
protein chain define an orthogonal reference frame, cen-
tering the (C;,) point as follows: R, =C,_,-C;
V,=Ci1-Cs R, =R.xV; R, = R XR_; where R,,
Ry, R. are the X, y, z axes of the reference frame and x
represents the cross-product. Each point within a cutoff
distance of 15 A around the i'th point is projected onto
this orthogonal reference frame. Thus, for the i'th ele-
ment in the table, both the identity of the C* atom and
the neighboring projected coordinates are kept. This is
the preprocessing step.

(2) Voting is carried out to compare the two structures. If a
local similarity (a large “enough” number of votes for a
given reference frame) is detected between the two pro-
teins, the transformation is computed and the matching
C® atom pairs from the two proteins are superimposed.
The similarity between the proteins is computed in
terms of the root mean squared deviation (RMSD) be-
tween them.

(3) The extension step is used to find the best global align-
ment starting with the best local alignment obtained in
the previous step. This is an iterative process. The in-
terfaces are superimposed, and a new list of matching
pairs is reassigned, with the distance between every
matched pair below a threshold (here 2.5 A). If the
distance criterion cannot find a unique solution, the best
global alignment is found using the similarity score.
This score favors solutions with better connectivity. For
complete description of the method see Tsai et al.
(1996), Nussinov and Wolfson (1991), Bachar et al.
(1993), and Fischer et al. (1994).

In this study, the measure of the similarity between two
protein—protein interfaces is based on the extent of the geo-
metrical superposition between their corresponding C* at-
oms, the percent residue identity in the match, and the dif-
ference in sizes between the interfaces. The superposition
between two interfaces computed by the Geometric Hashing
algorithm yields a list of matched C* atom pairs. The per-
cent residue identity is the count of identical residues in the
match divided by the total number of matched pairs. The
RMSD is not considered in measuring the similarity be-
tween two interfaces. Instead, we compute a “connectivity
score” to express the quality of a geometrical superposition.

If the residue connectivity information is excluded, the
similarity score is equal to the number of matched pairs. The
data set contains both biological (functional) and crystal
packing interfaces, because unfortunately, to date, there is
no clear way to distinguish between them. Nevertheless,
because crystal interfaces are often small, we exclude an
interface if it has less than 10 residues that are in contact in
a given chain.

The clustering algorithm

Clustering is a multivariate problem with two criteria.
First, members in each cluster should be similar to each
other, and second, members of one cluster should be differ-
ent from members of all others (Gordon 1981). The fre-
quently adopted clustering approach for classifying a set of
structures consists of two steps. First, the similarity between
any two structures is calculated, and second, a set of clusters
is generated by clustering the two most similar structures at
a time and selecting one of them to represent the cluster.
This procedure is iterated, until the extent of similarity be-
tween the unclustered structures and the cluster representa-
tive is below the specified threshold. Here, we have adopted
a heuristic iterative clustering procedure. At each iteration
cycle, the similarity definition is gradually relaxed. This
yields a hierarchy of grouping of clusters with different
similarity thresholds. In the first phase of an iteration, the
first entry in the initial list of interfaces forms a new cluster.
The next interface in the list is compared to the first. If the
similarity between them is above a predefined threshold, the
second is added to the cluster of the first, or else it forms a
new cluster. Next, the third interface is compared with the
clusters already formed. This procedure is repeated, until all
structures are assigned to clusters. At the end of this pro-
cedure, the similarity between each member of the indi-
vidual cluster and its corresponding putative representative
should be above the threshold prescribed for the current
clustering cycle. In this phase, pairwise structural compari-
sons of structures are carried out sparsely, greatly reducing
the computational costs. In the second phase, exhaustive
pairwise comparisons are performed within each cluster.
These extensive comparisons fulfill two functions. First, the
structure that is most similar to all other structures in its
cluster is selected as the representative for the next iteration.
Second, if a structure is found dissimilar to other structures,
it is removed from the cluster. Such a structure forms a new,
one-member cluster for the next iteration. A schematic rep-
resentation of the algorithm is given in Figure 2B. This
clustering procedure is as that used previously (Tsai et al.
1996).

Discussion

The data set at the different clustering cycles

Table 1 lists the threshold parameters applied in successive
clustering cycles to calculate the similarities between inter-
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Table 1. The parameters used during the clustering of
the interfaces

Relative ~ Minimal %  Maximal amino
Number of connectivity amino acid acid size difference
Cycle interfaces score identity between interfaces
A 21,686 — 16,446 0.9 90 0
B 16,446 — 9637 0.9 80 3
C 9637 — 6647 0.8 50 10
D 6647 — 5332 0.7 25 20
E 5332 — 4429 0.6 10 40
F 4429 — 3799 0.5 0 50

faces. The first column gives the iteration cycle. There are
six successive clustering cycles (A through F). The second
column gives the number of interface clusters at the begin-
ning and end of the iteration. For example, during iteration
A, there were initially 21,686 interfaces (in the first cycle,
this number is equal to the number of two-chain interfaces
in the PDB). Using the similarities of the structures and
sequences (with the parameters listed in columns 3-5) the
number decreased to 16,446. The connectivity score takes
into account the residue connectivity in the polypeptide
chains. The score favors a match with consecutive residues.
At the end of the sixth (final) cycle, we obtained 3799
distinct clusters. After this cycle, members of each cluster
had at least 0.5 connectivity score. There was no amino acid
similarity constraint and the maximal size difference be-
tween interfaces was 50 residues.

A comparison of the new and old data sets of interfaces
shows a substantial increase, from 351 to 3799. The data set
and the clustering results are available at http:/
protein3d.ncifcrf.gov/~keskino/ and http://home.ku.edu.tr/
~okeskin/INTERFACE/INTERFACES.html. It is of inter-
est to examine whether this increase is the outcome of the
increased number of PDB entries or of new architectures.
Figure 3 shows the ratio of increase in the PDB entries, the
SCOP families (the 1996 and 2002 versions, respectively;
Murzin et al. 1995) and in the interface clusters (the old data
set [Tsai et al. 1996] and this work). We observed that the
number of entries in the PDB increased sixfold and the
number of SCOP families increased threefold, whereas the
increase of interface clusters is 10-fold. Thus, it appears that
the increase in the PDB over the last seven years has al-
lowed a more diversified data set for interfaces. This may
also be the outcome of the rapid growth in the determination
of high molecular weight proteins that are likely to include
more than one chain.

Generation of a nonhomologous data set of interfaces:
Sequence alignment, excluding chains with high
sequence similarity

To have a nonredundant set of interfaces, sequences within
each family were compared using CLUSTALW (Higgins et
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al. 1994) and the BLOSSUMO90 substitution matrix (Heni-
koff and Henikoff 1992). To eliminate redundancy, a
threshold similarity of 50% was imposed. Thus, one of the
two sequences in a cluster that shares a sequence similarity
of more than 50% is deleted from the cluster. This yields a
data set of interfaces with structurally similar but sequen-
tially dissimilar members. Further, to constitute a valid clus-
ter of interfaces, the cluster should have at least five mem-
bers (10 chains). These filtering procedures reduce the num-
ber of clusters from 3799 to 103.

The 3799 original clusters listed by their representatives
are given in Appendix A (and are available at our Web site
at http://protein3d.ncifcrf.gov/~keskino/). The numbers in
parentheses are the number of all members included in the
corresponding clusters. In all cases, both chains of the in-
terface of each cluster member superimpose on those of
the cluster representative within the similarity criteria
provided in Table 1. Appendix B lists the nonredun-
dant interface clusters. These clusters have at least five
members, and at most 50% sequence identity among
their members. This separate listing is given for the con-
venience of users who wish to carry out statistical analysis
of the data set. We have further carried out multiple struc-
ture comparisons of all cluster members listed in Appendix
B, using MultiProt (Shatsky et al. 2002, 2003). Appendices
A and B are provided as Supplemental Material. Clusters
for which MultiProt detected a consensus core encom-
passing all members from both chains and with similar
function were labeled as Type I, those with different func-
tions were labeled as Type II. On the other hand, the clusters
where MultiProt found a consensus for only one of the
chains, were termed Type III. Fifty-four of the clusters are
Type I and II interfaces; the rest are Type III aligned inter-
faces.

14

Increase in
12 — interface clusters 7
10 = -
g | Increase in i

PDB entries
Increase in
protein families
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Figure 3. Histogram indicating the increase in the number of protein
structures available in the PDB (between 1997 and 2003), the increase in
the number of protein—protein interface clusters (comparison between the
previous work [Tsai et al. 1996] and the results of this work), the increase
in the number of protein families (comparison between the 1997 and 2003
SCOP databases). Note that our previous interface data set was extracted in
1996, so the closest version of the SCOP (1997) was compared in the
analysis.



A data set of protein—protein interfaces

Multiple structural alignment of the interfaces
with MultiProt

MultiProt detects recurring motifs in an ensemble of pro-
teins by simultaneously aligning multiple protein structures
(Shatsky et al. 2002, 2003). The algorithm considers all
protein structures at the same time, rather than initiating
from a pairwise-imposed molecular seed. This eliminates
the bias in the superposition and finds the largest common
substructure of C* atoms that appears in the structural set.
Furthermore, MultiProt efficiently finds high-scoring partial
multiple alignment for all possible number of molecules in
the input. That is, it does not require that all input molecules
participate in the alignment. Because it is sequence order-
independent, it can be applied to protein surfaces and pro-
tein—protein interfaces effectively. We have used MultiProt
to align the interfaces of our clusters to find consensus
motifs of the members’ interfaces. To qualify as a consensus
motif, at least 10 residues have to match with an RMSD of
at most 3.5 A. Because each member can have noncontigu-
ous residues in the interface, MultiProt is an extremely use-
ful tool for our purpose.

Interface family types

Type I: Similar interfaces, similar
global protein folds

In most cases, if the interfaces are similar, the overall
protein folds are also similar. Such similar interface, similar
fold clusters contain a single family. The list of the interface
clusters and the members of these clusters are given in
Appendix B (nonitalic entries). The interface clusters in-
clude homodimeric enzyme complexes (transferases, oxido-
reductases, etc.), enzyme/inhibitor complexes, antibody/an-
tigen complexes, as well as toxins. They have different po-
lar/nonpolar compositions and different accessible surface
areas. Some examples are given in Figure 4. In the figure
three members of the 1cydAD cluster are presented. This
cluster is formed by reductases, oxidoreductases (PDB
codes: lcyd, 1e3s, 1hdc, 1i01), and a pterin reductase (PDB
code: 1€92).

Type II: Similar interfaces, dissimilar
global protein folds

Some clusters, belong to a particularly interesting cat-
egory: In these cases the interfaces are structurally similar;
however, the global protein folds are different. These are
listed in Table 2 and Appendix B (italic entries). These
similar-interfaces, dissimilar-protein folds fall into different
families (see the SCOP classification, also provided in
Table 2, first column). Even though, however, they have
structurally similar interfaces, they are nevertheless mem-

Figure 4. Some examples of similar interfaces, similar monomer struc-
tures, and functions (called Type I in this work). In the figure three mem-
bers of the 1cydAD cluster are presented. The two complexes displayed at
the fop panel are oxidoreductases (PDB codes: 1cyd, 1e3s), and the bottom
complex is a pterin reductase (PDB code: 1€92). Three of the structures are
available as tetramers in the PDB. For clarity, we have displayed the chains
that form the common interface among them (lcydAD, 1le3sAC, and
1e92AC). In all complexes one chain is colored pink, and the other is cyan.
One side of the common interfaces is colored yellow, and the complemen-
tary side of the interfaces is colored in purple. There are 111 interface
residues in common. The RMSD between the 1cydAD and 1e3sAC inter-
faces is 3.11 A, and the rmsd between 1€92AC and 1e3sAC interfaces is
1.26 A.

bers of the same clusters. These families have different
functions. Thus, interface structural similarity does not en-
sure global protein structural similarity. Furthermore, pre-
viously it has been shown that globally similar structures
may have different functions in proteins (Martin et al. 1998;
Orengo et al. 1999; Moult and Melamud 2000; Thornton et
al. 2000; Nagano et al. 2002). Cases such as those listed
here illustrate that this paradigm can be taken further: Simi-
lar interfaces do not imply similar functions.

Figure 5 illustrates some examples from Table 2. Part A
shows all members of the cluster. Each case in the figure
presents the ribbon diagrams of the proteins that belong to
different SCOP families in the same interface cluster,
clearly showing that the global structures are different. Part
B displays ribbon diagrams of two of the proteins with their
common interfaces highlighted with yellow. Note that there
are three clusters in Table 2 where the representative of the
cluster does not appear in the list of family members. These
cases are cellulose-binding domain family III, MHC anti-
gen-recognition domain, and nucleotide and nucleoside ki-
nases. In these cases, while the representative aligned with
each cluster member, it did not align well with all members
simultaneously, suggesting some slight deviations in the
multiple structural superposition.
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Table 2. Similar interfaces with dissimilar folds

Common
residues in Interface
SCOP family Representative Proteins interfaces fold type
[1] DNA polymerase processivity 1ah8AB [1] GP45 sliding clamp (1b77AB) 18 a+f
factor [1] Prolifirating cell nuclear antigen
[2] Microbial ribonucleases (PCNA) (laxcAC)
[2] Barnase/Binase (1a2pBC)
[1] Chromo domain-like chromatin lafrBD [1] Heterochromatin protein 1, HP1 22 «
[2] Aldolase (1dz1AB, 1e0bAB)
[3] Tryptophan synthase 3 [2] Transaldolase (1f05AB)
subunit-like PLP-dependent [3] I-aminocyclopropane-1-carboxylate
enzymes deaminase (1f2dBD)
[1] Cellulose-binding domain laohAb [1] Cohesin domain (1aohAB, 21 B
family IIT 1g1kAB)
[2] Fluorescent proteins [2] Green fluorescent protein
(1b9cAB)
[2] Red fluorescent protein
(1g7kAB)
[1] Snake venom toxins & 1le7kAB [1] Cardiotoxin V4II (1cdtAB) 19 B
[2] Cysteine proteinases [2] (Pro)cathepsin X(1ef7AB)
[3] P-loop containing nucleotide [3] Initiation factor 4a (1fuuAB)
triphosphate hydrolases [1] Bungarotoxin (1kbaAB)
[1] MHC antigen-recognition 1hyrAC [1] MHC I homolog (1hyrAC, 20 —
domain 1kcgac)
[2] Tyrosine-dependent [2] Negative transcriptional
oxidoreductases regulator NmrA (1k6jAB)
[3] Class I MHC-related molecule
(1kcgAC)
[1] Virus ectodomain 1gbzBC [1] Core structure of Ebo gp2 54 a (bundle)
[2] Tropomyosin (1eboAB)
[2] Tropomyosin (1ic2CD)
[1] Envelope polyprotein GP160
(1if3AB)
[1] Retrovius gp41
protease-resistant core
(1gbzAC)
[1] Fibrinogen C-terminal 1gk4AB [1] Fibrinogen C-terminal domains 73 a (bundle)
domain-like (1fzaAB)
[2] Vimentin coil [2] Vimentin coil (1gk4AB)
[3] Neuronal synaptic fusion [3] Neuronal synaptic fusion
complex complex (1g12BC, 1kilAB)
[4] Tropomyosin [4] Tropomyosin (1ic2AB)
[5] Synaptic snare complex [5] Synaptic vesicle protein vamp2
and presynaptic plasma
membrane proteins snap-25 and
syntaxin la (2buOBC)
[1] Immunoglobulin lirxAB [1] T-cell antigen receptor 13 a
[2] Ferritin (1foOHB, 1g6rBH)
[3] Nucleotidylyl transferase [2] (Apo)ferritin (liesBF)
[3] C-terminal domain of class I
lysyl-tRNA synthetase (lirxAB)
[1] Tetraspanin 1g8qAB [1] CD81 extracellular domain 20 «
[2] Signaling proteins (1g8qAB)
[3] Light-harveting complex [2] Dopamine D2 receptor modeled
subunits on bacteriorhodopsin (1il15cd)
[3] Light-harvesting complex
subunits (lijdac, 11ghgj)
(continued)
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Table 2. Continued

Common
residues in Interface
SCOP family Representative Proteins interfaces fold type
[1] « helical bundle 1gc7AB [1] a helical bundle (1cosAC) 31 a
[2] Neuronal synaptic fusion [2] Neuronal synaptic fusion
complex complex (1gl12AC, 1kilAC,
[3] Virus ectodomain 2siv 1kilIBD)
[3] Retrovius gp41
protease-resistance core
(2sivAB)
[1] ROP protein 1kd8AB [1] ROP protein (1f4mAB) 43 ¢
[2] Neuronal synaptic fusion [2] Neuronal synaptic fusion
complex complex (1hvvBC)
[3] Leucine zipper-domain [3] GCN4 (1kd8AB)
[4] Tropomyosin [4] Tropomyosin (1kqlAB)
[5] Cell envelope component [5] Murein lipoprotein (1mlpAB)
[1] Virus ectodomain 2sivAC [1] Retrovius gp41 29 «
[2] Cytochrome ¢ protease-resistant core (1aikNC)
[3] Neuronal synaptic fusion [2] Mitochondrial cytochrome ¢
complex (1kyoBR)
[3] Neuronal synaptic fusion
complex (1sfcBD, 1sfcBJ)
[1] Ber-Abl oncoprotein 117cAC [1] Ber-Abl oncoprotein 17 [

oligomerization domain
homotetramer

[2] Membrane protein

[3] a-catenin/vinculin

[4] Nucleotide and nucleoside
kinases

oligomerization domain
(1k1fDF)

[2] Pentameric transmembrane

domain of phospholamban
(1k9nAB)

[3] a-catenin (117cAC)
[4] Thymidylate kinase (3tmkDG)

The first column is the SCOP classification. The numbers in square brackets identify the different SCOP families within each cluster. The second column
lists the representatives of the interface clusters. The third column provides the individual members in the corresponding cluster. The interface names are
represented by their PDB codes and chain identifiers. The numbers at the beginning of the proteins represent which SCOP family—in column 1—it belongs
to. The fourth column is the result of MultiProt (Shatsky et al. 2002, 2003) alignments: the number of common residues aligned structurally for the members

in the clusters. The fifth column gives the interface fold type.

Type IlI: One side similar interfaces,
dissimilar global protein folds

Our data set also contains clusters where one chain of the
interface is conserved while the second varies. Figure 6
presents an example of such a cluster. Although this figure
specifically shows an antibody interacting with four part-
ners (three of them peptides), Type III interfaces are not
constrained to only antibody/antigen or protein/peptide
complexes. This type manifests protein complexes with a
diverse range of biological functions. For example, in one of
the Type III clusters we have a homodimer antioncogene
protein (interface ID: laluAC), a homodimer of leucine
zipper complex (interface ID: 1a93AB), a homodimeric
complex of mannose binding protein, lectin (interface ID:
lafal2), a homodimer of transcription regulation protein
(interface ID: lajyAB), a tetramer of cytokine, cliary neu-
rotrophic factor protein (1cntl4), and a homodimeric repli-
cation termination protein (1f4kAB). One-chain conserved
clusters are very interesting: They can be used to address
fundamental questions such as whether nonspecific binding

is largely hydrophobic with flatter surface, which functions
are involved, or whether in one chain-dominant interfaces
the second chain is smaller. The data set may bear on long-
standing problems relating to binding specificity and selec-
tivity and to specificity with respect to conserved interac-
tions and function. It may also be useful for prediction of
residues contributing dominantly to stability.

Propensities of residues in the interfaces

The relative frequencies of different types of amino acids in
the interfaces of protein—protein complexes can be used to
derive the propensities of the residues. The overall propen-
sities of the 20 amino acids are calculated for the contacting
residues (not including the “nearby”) in the interfaces from
the data set containing all interface clusters. We compare
the frequency patterns at the binding sites versus those in
the overall structures. The propensity (P;) of a residue
(i = Ala,Val, Gly, . . .) to occur at the interface is calculated
as the fraction of the count of residue i in the interface
compared with its fraction in the whole chain as
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Figure 5. Some examples of similar interfaces, dissimilar monomer structures, and functions (called Type II in this work). (A) In the
figure, ribbon diagrams of four members in the 1g1kAB cluster are illustrated. These are the structures of the single cohesin domain
from the scaffolding protein cipa of the Clostridium thermocellum cellulosome (1aoh), green fluorescent protein mutant F99S, M153T,
and V163A (1b9c), cohesin module from the cellulosome of Clostridium cellulolyticum (1glk), and Dsred, a red fluorescent protein
from discosoma sp. red (1g7k). The letters correspond to the monomers in these complexes. (B) Ribbon diagrams of two interfaces
(laohAB and 1g7kAB) derived from two functionally different proteins. The yellow region points to the common interface with 48
common interface residues. The rmsd between these two interfaces is 2.31 A, considering only a-carbon atoms.

P;=(n;/N;)/(n/N) (1)

where 7, is the number of residues of type i at the interface,
N, is the number of residues of type i in the chains, #n is the
total number of residues in the interface, and N is the total
number of residues in the whole chains.

Figure 7 displays the correlation of our residue propen-
sities with those of Jones and Thornton (1997). The axes
represent the natural logarithms of the propensities. The
positive value in the logarithmic propensity indicates that a
residue is more likely to occur in an interface. A high cor-
relation coefficient (0.91) is obtained over the 20 amino
acids. The residue propensities of Jones and Thornton
(1997) were calculated from a data set of 63 protein com-
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plexes by taking the fraction of accessible surface area that
the amino acid has contributed to the interface compared
with the fraction of accessible surface area that the amino
acid has contributed to the whole surface (i.e., all exposed
residues). Thus, their propensities are calculated by the pro-
pensity of the accessible surface areas of the residues. Our
propensities are calculated by the frequency of occurrence
of the residues compared with the rest of the chain. To have
a more appropriate comparison, we have multiplied each
residue by its average accessible surface area (Miller et al.
1987) and normalized the results by the surface propensities
of the amino acids (Table 2; Ma et al. 2003) according to the
formula: In(P);, = In[(n/N,)/(n/N)/(n/Ns)/(n/N) * ASA], where
ASA stands for the average accessible surface areas of the
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Figure 6. The ribbon diagrams of Type III interfaces. The members in this
cluster are represented by the 1fjl1DE interface. In all figures, the cyan
structures represent the protein that binds to different proteins or peptides
(pink structures). The yellow colored region in each case is the similar
interface architecture within the 1fjIDE cluster. (A) This displays an ex-
ample of a complex between a human monoclonal BO2C11 FAB heavy
chain and human factor VII (1iqdBC interface). (B) An illustration of an
antibody/peptide complex (1bogBC interface). (C) This is another immu-
noglobulin/viral peptide complex formed between the FAB fragment and
human rhinovirus capsid protein VP2 (1a3rHP interface). (D) This is an
example for the interface formed between the heavy chain (IGG2A Kappa
antibody CB41) and an antigen bound peptide (1cfsBC interface). The
RMSD values between the interfaces are 0.67 A, 1.29 A, and 3.01 A over
26 residues, respectively.

residues in an extended Gly-X-Gly triplet (Miller et al.
1987). The high correlation we observe suggests that their
data set, despite its smaller size, still presents a good cov-
erage with similar properties.

Table 3 lists the propensities of the different amino acids
in interfaces Type I, Type II, and Type III. We have further
computed the propensities in each interface type when di-
viding the residues into classes of hydrophobic
(A,P,L,IM,V), charged (D.,E,R,K), polar (N,Q,S,T), and
aromatic residues (W,Y,F,H). The last four rows of Table 3
give the overall contribution of these residue classes. The
percentages are given as the second figure in the last four
rows. Clearly, interfaces are dominated by hydrophobic
residues in all three cases. Next, it is mostly aromatic resi-
due contribution. However, it is interesting that the hydro-
phobic effect is smaller in the Type III interfaces. Instead,
the propensities of the charged residues increase. This may
reflect the fact that in Type III the nonconserved side of the
interface is smaller. Smaller interfaces have already been
shown to display a reduced hydrophobic effect (Tsai et al.
1997). In these smaller, more exposed interfaces electrostat-
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Figure 7. Propensities of residues in the interfaces. This figure illustrates
the correlation of our residue propensities with those of Jones and Thornton
1997. The axes represent the natural logarithms of the propensities. A high
correlation coefficient (0.91) is obtained over the 20 amino acids.

ics appears to play a more important role. In general, over-
all, charged residues are less frequent in the interfaces. This
also suggests that overall electrostatic interactions are prob-
ably not the major source of the stability of the interfaces.

Table 3. Residue propensities of amino acids

Residue type Type 1 Type II Type 111 All
G 0.699 0.599 0.644 0.671
A 0.966 0.761 0.897 0.900
C 1.780 1.338 1.153 1.427
D 0.966 0.602 0.775 0.826
E 0.725 0.988 0.982 0.866
F 1.409 1.373 0.956 1.213
H 1.331 0.779 0.900 1.076
1 1.044 1.469 0.999 1.068
K 0.611 0.578 0.887 0.732
L 1.073 1.532 1.039 1.127
M 1.289 0.839 0.982 1.083
N 0.908 1.215 1.261 1.109
P 0.987 0.343 0.626 0.735
Q 0.910 1.1014 0.951 0.954
R 1.137 0.754 1.276 1.140
S 1.027 1.029 0.864 0.955
T 0.878 0.741 1.080 0.942
A\ 0.999 1.112 0.865 0.986
W 0.969 0.856 1.260 1.075
Y 1.560 1.379 1.102 1.318
AP LLM,V 7.50-38% 7.42-40% 6.36-34%

D.E.R,K 3.45-17% 2.92-16% 3.93-21%

N,Q.S.T 3.73-19% 3.98-20% 4.15-22%

W,Y,F.H 5.27-26% 4.40-24% 4.22-23%

The first column is the type of the amino acid. The second, third, and fourth
columns are the propensities for Type I, II, and III clusters, respectively.
The last column gives the overall propensities summed over all types of
interfaces. The last four rows are the sum of the propensities for hydro-
phobic, polar, charged, and aromatic residues, respectively. The first num-
ber gives the cumulative effect of all the residues in the four classes, the
second number gives the percentage of the each class.
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Conclusions

Here we provide a structurally unique data set of two-chain
interfaces derived from the PDB. The interfaces are clus-
tered based on their spatial structural similarities, regardless
of the connectivity of their residues on the protein chains.
The data set includes 3799 clusters, compared to 351 in 1996.
This substantially more diverse data set reflects both the
growth in the number of structures as well as the larger number
of higher molecular weight proteins currently in the PDB. The
comparison of the old and new data sets indicates that the
number of newly found interface clusters has increased much
more rapidly compared to the number of the available new
PDB structures. This may suggest that the number of unique
interfaces has still not reached its upper limit.

We divide the clusters into three types: Type I clusters
consist of similar interfaces whose parent chains are also
similar. In Type II clusters, the interfaces are similar; how-
ever, the overall structures of the parent proteins from which
the interfaces derive are different. In all Type II cases that
we have studied, the clustered proteins belong to different
SCOP families, with different functions. Type III category
introduces clusters of interfaces where only one side of the
interface is similar but the other side differs. Type III clus-
ters illustrate that a binding site can interact with more than
one chain, with different geometries, sizes, and composi-
tion. One of the paradigms in protein science states that
similar global structures may have similar functions. Our
observations suggest an extension of this paradigm: Similar
interface architectures may have differerent functions. As in
protein structures, evolution has reused “good” favorable
interface structural scaffolds and adapted them to diverse
functions. The functions extend from enzymes/inhibitors to
toxins and immunoglobulins. We did not observe ho-
modimers in Type II clusters. This is probably due to the
smaller sizes of the monomers and the extensive interfaces
in the two-state homodimers that cover large portions of the
chains. As expected, we find that multifunctional interface
clusters consisting of helices largely derive from proteins
whose functions relate to muscle and to membranes.

The observation that globally different protein structures
associate in similar ways (i.e. Type II) to yield similar motifs,
is interesting. Clearly, there is a very large number of ways that
monomers can combinatorially assemble. Remarkably, among
these there are preferred interface architectures, and these are
similar to those observed in monomers (Tsai et al. 1998b).
This observation both underscores the view that the number of
favorable motifs is limited in nature, and highlights the anal-
ogy between binding and folding. It is further reminiscent of
the combinatorial assembly of protein building blocks in
folding (Tsai and Nussinov 1997).

We hope that this diverse, structurally nonredundant data
set will be useful in a broad range of studies, such as de-
riving profiles of binding sites, elucidation of the determi-
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nants of protein—protein interactions, and identification of
residues contributing to the stabilization of the protein as-
sociations and those playing a role in a specific protein
function. The data set should allow extensive comparisons
between binding and folding and derivation of motifs across
interfaces. This data set should further be useful in construc-
tion of protein networks, and allow studies of structurally
conserved residue hot spots. We expect it to be useful in
studies of evolutionary conservation, recognition, binding,
and function.

Electronic supplemental material

Supplemental material includes two appendices: (1) a list of
3,799 cluster representatives; (2) a list of all nonredundant
two-chain interface clusters.

Acknowledgments

We thank Drs. Buyong Ma, K. Gunasekaran, S. Kumar, D. Zanuy,
H.-H.(G.) Tsai, and members of the Nussinov-Wolfson group—in
particular Maxim Shatsky—for help with MultiProt, and Inbal
Halperin and Shira Mintz for many useful comments and sugges-
tions. We thank Dr. Jacob V. Maizel for discussions and encour-
agement. We thank Dr. A. Gursoy and S. Aytuna for their helpful
discussions. The research of R.N. and H.W. in Israel has been
supported in part by the Center of Excellence in Geometric Com-
puting and its Applications, funded by the Israel Science Founda-
tion (administered by the Israel Academy of Sciences. This project
has been funded in whole or in part with Federal funds from the
National Cancer Institute, NIH, under contract number NO1-CO-
12400.

The publisher or recipient acknowledges right of the U.S. Gov-
ernment to retain a nonexclusive, royalty-free license in and to any
copyright covering the article.

The publication costs of this article were defrayed in part by
payment of page charges. This article must therefore be hereby
marked “advertisement” in accordance with 18 USC section 1734
solely to indicate this fact.

References

Arkin, M.R., Randal, M., DeLano, W.L., Hyde, J., Luong, T.N., Oslob, J.D.,
Raphael, D.R., Taylor, L., Wang, J., McDowell, R.S., et al. 2003. Binding
of small molecules to an adaptive protein—protein interface. Proc. Natl.
Acad. Sci. 100: 1603-1608.

Bachar, O., Fischer, D., Nussinov, R., and Wolfson, H. 1993. A computer vision
based technique for 3-D sequence-independent structural comparison of
proteins. Protein Eng. 6: 279-288.

Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H.,
Shindyalov, I.N., and Bourne, P.E. 2000. The Protein Data Bank. Nucleic
Acids Res. 28: 235-242.

Bogan, A.A. and Thorn, K.S. 1998. Anatomy of hot spots in protein interfaces.
J. Mol. Biol. 280: 1-9.

Brooijmans, N., Sharp, K.A., and Kuntz, I.D. 2002. Stability of macromolecular
complexes. Proteins 48: 645-653.

Chakrabarti, P. and Janin, J. 2002. Dissecting protein—protein recognition sites.
Proteins 47: 334-343.

Chothia, C. 1992. Proteins. One thousand families for the molecular biologist.
Nature 357: 543-544.

Chothia, C. and Janin, J. 1975. Principles of protein—protein recognition. Nature
256: 705-708.



A data set of protein—protein interfaces

Cunningham, B.C. and Wells, J.A. 1991. Rational design of receptor-specific
variants of human growth hormone. Proc. Natl. Acad. Sci. 88: 3407-3411.

DeLano, W.L. 2002. Unraveling hot spots in binding interfaces: Progress and
challenges. Curr. Opin. Struct. Biol. 12: 14-20.

DeLano, W.L., Ultsch, M.H., deVos, A.M., and Wells, J.A. 2000. Convergent
solution to binding at a protein—protein interface. Science 287: 1279-1283.

Fariselli, P., Pazos, F., Valencia, A., and Casadio, R. 2002. Prediction of pro-
tein—protein sites in heterocomplexes with neural networks. Eur. J. Bio-
chem. 269: 1356-1361.

Fernandez, A. and Scheraga, H.A. 2003. Insufficiently dehydrated hydrogen
bonds as determinants of protein interactions. Proc. Natl. Acad. Sci. 100z
113-118.

Fischer, D., Wolfson, H., Lin, S.L., and Nussinov, R. 1994. Three-dimensional,
sequence order-independent structural comparison of a serine protease against
the crystallographic database reveals active site similarities: Potential implica-
tions to evolution and to protein folding. Protein Sci. 3: 769-778.

Gordon, A.E. 1981. Classification: Methods for the exploratory analysis of
multivariate data. Chapman and Hall, New York.

Henikoff, S. and Henikoff, J. 1992. Amino acid substitution matrices from
protein blocks. Proc. Natl. Acad. Sci. 89: 10915-10919.

Hu, Z., Ma, B., Wolfson, H., and Nussinov, R. 2000. Conservation of polar
residues as hot spots at protein interfaces. Proteins 39: 331-342.

Jones, S. and Thornton, J.M. 1996. Principles of protein—protein interactions.
Proc. Natl. Acad. Sci.93: 13-20.

. 1997. Analysis of protein—protein interaction sites using surface
patches. J. Mol. Biol. 272: 121-132.

Katchalski-Katzir, E., Shariv, 1., Eisenstein, M., Friesem, A.A., Aflalo, C., and
Vakser, L.A. 1992. Molecular surface recognition: Determination of geo-
metric fit between proteins and their ligands by correlation techniques.
Proc. Natl. Acad. Sci. 89: 2195-2199.

Keskin, O., Bahar, 1., Badretdinov, A.Y., Ptitsyn, O.B., and Jernigan, R.L. 1998.
Empirical solvent-mediated potentials hold for both intra-molecular and
inter-molecular inter-residue interactions. Protein Sci. 7: 2578-2586.

Kleanthous, C. 2000. Protein—protein recognition. In Frontiers in molecular
biology (ed. C. Kleanthous). Oxford University Press, New York.

Kuhlmann, U.C., Pommer, A.J., Moore, G.R., James, R., and Kleanthous, C.
2000. Specificity in protein—protein interactions: The structural basis for
dual recognition in endonuclease colicin-immunity protein complexes. J.
Mol. Biol. 301: 1163-1178.

Kumar, S. and Nussinov, R. 2001. Fluctuations in ion pairs and their stabilities
in proteins. Proteins 41: 485-497.

Kuntz, I.D., Chen, K., Sharp, K.A., and Kollman, P.A. 1999. The maximal
affinity of ligands. Proc. Natl. Acad. Sci. 96: 9997-10002.

Lichtarge, O., Bourne, H.R., and Cohen, F.E. 1996. An evolutionary trace
method defines binding surfaces common to protein families. J. Mol. Biol.
257: 342-358.

LoConte, L., Chothia, C., and Janin, J. 1999. The atomic structure of protein—
protein recognition sites. J. Mol. Biol. 285: 2177-2198.

Ma, B., Wolfson, H.J., and Nussinov, R. 2001. Protein functional epitopes: Hot
spots, dynamics and combinatorial libraries. Curr. Opin. Struct. Biol. 11:
364-369.

Ma, B., Shatsky, M., Wolfson, H.J., and Nussinov, R. 2002. Multiple diverse
ligands binding at a single protein site: A matter of pre-existing populations.
Protein Sci. 11: 184-197.

Ma, B., Elkayam, T., Wolfson, H., and Nussinov, R. 2003. Protein—protein
interactions: Structurally conserved residues distinguish between binding
sites and exposed protein surfaces. Proc. Natl. Acad. Sci. 100: 5772-5777.

Martin, A.C.R., Orengo, C.A., Hutchinson, E.G., Jones, S., Karmirantzou, M.,
Laskowski, R.A., Mitchell, J.B.O., Taroni, C., and Thornton, J.M. 1998.
Protein folds and functions. Structure 6: 875-884.

Miller, S., Janin, J., Lesk, A.M., and Chothia, C. 1987. Interior and surface of
monomeric proteins. J. Mol. Biol. 196: 641-656.

Moult, J. and Melamud, E. 2000. From fold to function. Curr. Opin. Struct. Biol.
10: 384-389.

Murzin, A.G., Brenner, S.E., Hubbard, T., and Chothia, C. 1995. SCOP: A
structural classification of proteins database for the investigation of se-
quences and structures. J. Mol. Biol. 247: 536-540.

Nagano, N., Orengo, C.A., and Thornton, J.M. 2002. One fold with many functions:
The evolutionary relationships between TIM barrel families based on their
sequences, structures and functions. J. Mol. Biol. 321: 741-765.

Nooren, .LM.A. and Thornton, J.M. 2003. Structural characterisation and func-
tional significance of transient protein—protein interactions. J. Mol. Biol.
325: 991-1018.

Nussinov, R. and Wolfson, H.J. 1991. Efficient detection of three-dimensional
structural motifs in biological macromolecules by computer vision tech-
niques. Proc. Natl. Acad. Sci. 88: 10495-10499.

Orengo, C.A., Todd, A.E., and Thornton, J.M. 1999. From protein structure to
function. Curr. Opin. Struct. Biol. 9: 374-382.

Shatsky, M., Nussinov, R., and Wolfson, H. 2002. Multiprot: A multiple protein
structural alignment. In Proceedings of ALGO 02. Algorithms in Bioinfor-
matics. Lecture Notes in Computer Science, Vol. 2452, pp. 235-250.

. 2003. A method for simultaneous alignment of multiple protein struc-
tures. Proteins (in press).

Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: Improv-
ing the sensitivity of progressivemultiple sequence alignment through se-
quence weighting, position-specific gap penalties and weight matrix choice.
Nucleic Acids Res. 22: 4673-4680.

Thornton, J.M., Todd, A.E., Milburn, D., Borkakoti, N., and Orengo, C.A. 2000.
From structure to function: Approaches and limitations. Nat. Struct. Biol. 7:
991-994.

Todd, A.E., Orengo, C.A., and Thornton, J.M. 2002. Sequence and structural dif-
ferences between enzyme and nonenzyme homologs. Structure 10: 1435-1451.

Tramontano, A. and Macchiato, M.F. 1994. A transportable interactive package
for the statistical analysis and handling of sequence data. Comput. Biol.
Med. 18: 113-122.

Tsai, C.J. and Nussinov, R. 1997. Hydrophobic folding units at protein—protein
interfaces: Implication to protein folding and to protein—protein association.
Protein Sci. 6: 1426-1437.

Tsai, C.J., Lin, S.L., Wolfson, H.J., and Nussinov, R. 1996. A dataset of pro-
tein—protein interfaces generated with a sequence-order-independent com-
parison technique. J. Mol. Biol. 260: 604-620.

. 1997. Studies of protein—protein interfaces: Statistical analysis of the
hydrophobic effect. Protein Sci. 6: 53-64.

Tsai, C.J., Xu, D., and Nussinov, R. 1998a. Structural motifs at protein—protein
interfaces: Protein cores versus two-state and three-state model complexes.
Protein Sci. 6: 1793-1805.

. 1998b. Protein folding via binding and vice versa. Fold. Des. 3: R71—
R80.

Valdar, W.S.J. and Thornton, J.M. 2001a. Conservation helps to identify bio-
logically relevant crystal contacts. J. Mol. Biol. 313: 339-416.

. 2001b. Protein—protein interfaces: Analysis of amino acid conservation
in homodimers. Proteins 42: 108-124.

Wallis, R., Leung, K.Y., Osborne, M.J., James, R., Moore, G.R., and Klean-
thous, C. 1998. Specificity in protein—protein recognition: Conserved Im9
residues are the major determinants of stability in the colicin E9 DNase-Im9
complex. Biochemistry 37: 476-485.

Wells, J.A. and deVos, A.M. 1996. Hematopoietic receptor complexes. Annu.
Rev. Biochem. 65: 609-634.

Xu, D., Tsai, C.J., and Nussinov, R. 1998. Mechanism and evolution of protein
dimerization. Protein Sci. 7: 533-544.

1055

www.proteinscience.org



