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Abstract

We develop coarse-grained, distance- and orientation-dependent statistical potentials from the growing
protein structural databases. For protein structural classes (�, �, and �/�), a substantial number of back-
bone–backbone and backbone–side-chain contacts stabilize the native folds. By taking into account the
importance of backbone interactions with a virtual backbone interaction center as the 21st anisotropic site,
we construct a 21 × 21 interaction scheme. The new potentials are studied using spherical harmonics
analysis (SHA) and a smooth, continuous version is constructed using spherical harmonic synthesis (SHS).
Our approach has the following advantages: (1) The smooth, continuous form of the resulting potentials is
more realistic and presents significant advantages for computational simulations, and (2) with SHS, the
potential values can be computed efficiently for arbitrary coordinates, requiring only the knowledge of a few
spherical harmonic coefficients. The performance of the new orientation-dependent potentials was tested
using a standard database of decoy structures. The results show that the ability of the new orientation-
dependent potentials to recognize native protein folds from a set of decoy structures is strongly enhanced
by the inclusion of anisotropic backbone interaction centers. The anisotropic potentials can be used to
develop realistic coarse-grained simulations of proteins, with direct applications to protein design, folding,
and aggregation.

Keywords: side-chain packing; statistical coarse-grained potentials; harmonic analysis; Boltzmann device;
protein-fold recognition

Development of low-resolution models for proteins is es-
sential in protein structure prediction and protein design. To
achieve this goal, we need an effective interaction potential.
Starting with the seminal work of Tanaka and Scheraga
(1976), there has been a growing interest in obtaining rea-
sonably accurate force fields. The accelerated growth of
structural data on thousands of proteins in the Protein Data
Bank (PDB; Berman et al. 2000) has been a source for

obtaining residue–residue interaction potentials (Miyazawa
and Jernigan 1985, 1999b; Godzik et al. 1995; Bahar and
Jernigan 1996; Lee et al. 1999). Tanaka and Scheraga
(1976) proposed that the frequencies of side-chain pairing
can be used to determine potential interaction parameters.
Since then, with the exception of a few studies (Sippl 1990),
most of the knowledge-based potentials have been obtained
solely in terms of residue–residue contacts (Skolnick et al.
1997, 2000; Miyazawa and Jernigan 1999b; Tobi et al. 2000).

Sippl (1990) used a statistical method, known as the Boltz-
mann device, to obtain the distance-dependent mean force
potentials. This method relies on the assumption that the
known X-ray or NMR-resolved protein structures represent
classical equilibrium states and, therefore, the distribution
of distances between two side chains should correspond to
the equilibrium Boltzmann distribution. Other structural pa-
rameters, such as dihedral angles, can also be used in this
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treatment. The statistical potentials developed using this ap-
proach and other methods (Tobi et al. 2000; Tobi and Elber
2000; Meller et al. 2002) have also focused only on extract-
ing and analyzing probability density functions dependent
solely on distance.

Previous studies have shown that the relative orientation
and packing of side chains in proteins is an important de-
terminant of the local (secondary structure) geometry as
well as three-dimensional (tertiary structure) topology (Ba-
har and Jernigan 1996; Bagci et al. 2002a,b). By analyzing
various families of protein structures, we had previously
shown that certain orientational order parameters are promi-
nent (Buchete et al. 2003). From a quantitative analysis of
the statistical data on orientational distributions of side
chains extracted from PDB structures, we determined ori-
entation-dependent interactions. This approach is supported
by the results of Bahar and Jernigan (1996), who proposed
a backbone-dependent coordination system for studying the
statistical distribution of residue–residue interactions in pro-
teins. They showed that residue-specific coordination loci
and packing characteristics can be extracted by statistical
analysis of protein structures, and knowledge-based orien-
tational potentials can be constructed. However, using the
backbone-dependent coordination system employed by Ba-
har and Jernigan (1996), it is difficult to include variations
in the sizes of side chains and their rotational degrees of
freedom. These effects are important, especially for large
side chains that have several probable rotameric states with
respect to the backbone. Therefore, we use a coordination
system based on side-chain local reference frames (LRFs,
see Materials and Methods) that are backbone independent
for most amino acids. On the basis of earlier estimations
(Buchete et al. 2003) and on statistical corrections for data
sparsity, we can also use smaller orientational bin sizes then
used by Bahar and Jernigan (1996). In this study, we present
a new method for extracting coarse-grained distance- and
orientation-dependent residue–residue statistical potentials.
We first show that in many protein structures, there is a
substantial number of contacts between side chains and
backbone. The near globularity of protein structures (i.e.,
they are nearly maximally compact) implies that such con-
tacts should be prevalent. The necessity to include explicitly
the backbone interactions is also supported by the results of
previous statistical derivations of backbone potentials that
used virtual bond and torsion angles (Bahar et al. 1997) and
secondary structure information (Miyazawa and Jernigan
1999a). To capture the presence of the large number of
side-chain backbone contacts in protein structures, we in-
clude an extra anisotropic backbone interaction center lo-
cated at the peptide bond. Spherical harmonic analysis
(SHA) and spherical harmonic synthesis (SHS) methods
express the orientation-dependent potentials in a continuous
manner for short-, medium-, and long-range interactions.
Multiple decoy sets (Samudrala and Levitt 2000) are used to

assess the effectiveness of these potentials in recognizing
the native folded states. The results show that the newly
derived orientation-dependent potentials for side chains and
the protein backbone are successful in a vast majority of
cases.

Results

The importance of side chain–backbone and
backbone–backbone interactions

A major improvement of the potentials that are constructed,
presented, and tested in this study is due to the inclusion of
a virtual interaction center (Pep) located on the backbone in
the middle of the peptide link (see Materials and Methods).
In our previous study, we considered the inter-residue in-
teractions (Buchete et al. 2003) using 20 × 20 side chain–
side chain (SC–SC) orientation-dependent potentials. We
were motivated to include explicitly the side chain–back-
bone (SC–BB) and backbone–backbone (BB–BB) interac-
tions in a new 21 × 21 interaction scheme by the results of
the structural analysis performed on the main protein
classes.

These results, summarized in Table 1, show that back-
bone–backbone and backbone–side chain interactions rep-
resent substantial fractions of the total number of contacts
for all the main classes of proteins, mainly-�, mainly-�, and
�/� (Orengo et al. 1997; Pearl et al. 2000, 2003). The pro-
tein structures analyzed here are taken from the most recent
CATH database (Pearl et al. 2003; http://www.biochem.
ucl.ac.uk/bsm/cath_new). For short-range interactions (2.0
� 5.6 Å), the fraction of SC–BB contacts is more prevalent
in structures with �-sheet topology (especially for |i – j| �
4), but these contacts cannot be ignored even for �-helical
proteins (see Table 1). Interestingly, as shown in Table 1,
for medium- (5.6 � 9.2 Å) and long-range (9.2 � 12.8 Å)
interactions, all of the three interaction types occur with
similar frequencies, regardless of the protein architecture.
This is an effect of the more uniform averaging at larger
distances when orientational preferences are not that impor-
tant. The results presented in Table 1 show that the back-
bone interaction centers play an important role in the sta-
bility of the secondary structures of proteins for all the
protein classes. Thus, these interaction centers must be in-
cluded in representing the coarse-grained potentials for low-
resolution structure prediction, as well as for analyzing pro-
tein-folding pathways. This observation is in agreement
with the previous study of Bahar and Jernigan (1997), where
distance-dependent SC–SC, SC–BB, and BB–BB statistical
interactions were investigated in globular proteins. In this
study, the peptide (Pep) backbone moiety is treated as a 21st
type of interaction center. By including Pep as an interaction
site, we determine the parameters for the statistical potential
using a 21 × 21 interaction scheme.

Orientational statistical potentials for proteins
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Orientational probability density maps and results for
applying the Boltzmann device

The orientational density maps were calculated by dividing
the interaction range into three regions as described above.
Figure 1 displays the probability density maps in the short
range (2.0 � 5.6 Å) for the relative orientations of other side
chains (denoted by the term “all”, and obtained by averag-
ing data from all the amino acids types) with respect to Ile
(Fig. 1A), Arg (Fig. 1B), Gly (Fig. 1C), and Trp (Fig. 1D).
The grayscale mapping is directly proportional to the prob-
abilities of finding another side chain at various orienta-
tions, as shown in the grayscale bar. Note that for Ile, one of
the most hydrophobic residues, the highest probability of
finding a neighboring residue is toward its north pole,
which, according to our definitions of local reference frames
(LRFs, see Materials and Methods), is situated away from
the local backbone. This effect is a manifestation of the high
statistical probability of finding Ile residues within the hy-

drophobic core of the protein structures. A related effect is
noticeable for Arg, which is one of the most hydrophilic
residues. There is a region of high interaction probability
toward its south pole, which can be explained by the pref-
erence of Arg to be exposed to solvent. The orientational
probability maps are also shown on the bottom of Figure 1
for Gly and Trp, and they present the same qualitative fea-
tures that are expected when considering their size and hy-
dropathic properties. Data for all the 21 × 21 possible types
of relative residu–residue and residue–backbone orienta-
tions was collected and analyzed in this work.

The orientational probability density maps were further
used (see Materials and Methods) to construct the corre-
sponding potentials. The values in the orientational prob-
ability density map for Arg residues around Ile (Fig. 2A) are
divided by the values of the reference map (Fig. 2A) that is
obtained by averaging over all the 20 side-chain types (see
Materials and Methods). In this study, the reference average
probabilities are not side chain-specific, but this is closer to
the random mixing approximation of side chains. The nega-
tive logarithm of the result gives the statistical potential for
the relative Ile–Arg orientations (Fig. 2C) in units of kT. In
this work, we derive orientation-dependent potentials for
short- [i.e., rij � (2 Å, 5.6 Å)], medium- [rij � (5.6 Å, 9.2
Å)], and long-range interaction shells [rij � (9.2 Å, 12.8 Å)].
The maps shown here correspond to the second shell of
interactions (i.e., medium range).

We used the same procedure to obtain the orientational
potentials for all the types of SC–SC and SC–BB interac-
tions.

The spherical harmonic analysis (SHA) of inter-residue
orientational potentials

The statistical potentials derived using the Boltzmann de-
vice were further analyzed using SHA (see Materials and

Table 1. Fractions of side chain–side chain (SC–SC), side chain–backbone (SC–BB), and backbone–backbone (BB–BB) contacts
calculated for the three most typical protein classes, namely �, �, and mixed �/�

Short range
2.0 → 5.6 Å

Medium range
5.6 → 9.2 Å

Long range
9.2 → 12.8 Å

For |i − j| � 3
SC–SC SC–BB BB–BB SC–SC SC–BB BB–BB SC–SC SC–BB BB–BB

�: 44.5% 25.2% 30.3% 30.9% 34.7% 34.4% 31.6% 31.4% 37.0%
�/�: 38.9% 26.0% 35.1% 31.2% 34.2% 34.6% 32.4% 32.3% 35.3%
�: 40.0% 25.9% 34.1% 31.0% 34.6% 34.4% 32.2% 32.3% 35.5%

For |i − j| � 4
SC–SC SC–BB BB–BB SC–SC SC–BB BB–BB SC–SC SC–BB BB–BB

�: 61.4% 25.9% 12.7% 30.0% 34.7% 35.3% 31.3% 31.1% 37.6%
�/�: 43.1% 26.2% 30.7% 31.2% 34.7% 34.1% 32.1% 32.0% 35.9%
�: 40.6% 25.9% 33.5% 31.6% 35.5% 32.9% 31.9% 32.0% 36.1%

The fractions of contacts were calculated both for interaction centers separated by at least three peptide bonds along the sequence (|i − j| � 3) and by at
least four (|i − j| � 4).

Figure 1. Examples of probability density maps for the relative residue–
residue orientations in proteins for short range interactions (2.0�5.6 Å).
The grayscale mapping is directly proportional to the probabilities of find-
ing any other side chain at various orientations with respect to Ile (A), Arg
(B), Gly (C), and Trp (D). The normalized probability values shown on the
grayscale scale have units of 10−3.
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Methods). We adapted Spherepack routines (Adams and
Swarztrauber 1997, 1999) to analyze the potential data,
which was first constructed on a 12 × 24 equiangular grid
on spherical domains corresponding to the three (i.e., short,
middle, and long) interaction ranges.

For example, in Figure 3 we show the amn and bmn co-
efficients (see eq. 10 in Materials and Methods) computed
for long-range Ile–Arg interactions, up to order n � 13 (m
� n). The analysis of all 21 × 21 types of orientational
potentials was performed and the amn and bmn coefficients
were stored. Calculation of the expansion coefficients (amn

and bmn; see eq. 10) is vital, because it permits rapid
calculation of each specific orientational potential by
spherical harmonic synthesis (SHS) for any value of the
LRF orientational parameters � and �. Importantly, not
many a and b coefficients have large amplitudes (see

Fig. 3 for an example), suggesting that further filtering
methods can be applied, and that efficient computational
methods using the new smooth potentials resulting from
SHS can be developed. The dominance of only a few ex-
pansion coefficients (Fig. 3) is consistent with our earlier
finding (Buchete et al. 2003) that, in proteins with different
architectures, only a few orientational order parameters are
relevant.

We show in Figure 4 the reconstructed Ile–Arg orienta-
tional potential using 12 × 24 equiangular bins (up) and a
92 × 184 grid (down), for short-range (left), middle-range
(middle), and long-range (right) interactions. When com-
paring the SHS potential values reconstructed on the
92 × 184 grid to the original orientational potential values
for Ile–Arg shown in Figure 4 (left), the smoothing effect of
the SHA/SHS procedure is evident.

The results of the same type of SHA/SHS process are
shown in Figure 5 for the anisotropic virtual backbone in-
teraction centers (Pep) located in the middle of the peptide
bond (see Materials and Methods). The smooth Pep–Pep
orientational potentials are represented for short-range
(left), middle-range (middle), and long-range (right) inter-
actions. The grayscale coding used in this figure is similar
to the one used in Figure 4. From both Figures 4 and 5 we
can see that, for each interaction range, there are specific
anisotropic features of the orientation-dependent statistical
potentials. Some of the attractive or repulsive angular re-
gions are conserved from one interaction shell to the other,
yet some present significant changes that could explain the
specific features of residue–residue, residue–backbone, and
backbone–backbone interactions.

Figure 2. The Boltzmann device. Statistical potentials for the relative residue–residue orientations can be derived from probability
density maps. The orientational probability density map (in units of 10−3) for Arg residues around Ile (A) and the reference map (B)
corresponding to all of the side-chain types are used to build the statistical potential for the relative Ile–Arg orientations (C) in units
of kT. These maps correspond to the second interaction shell [rij�(5.6 Å,9.2 Å)]. The smoothing effect of spherical harmonic synthesis
(see Materials and Methods) is shown in D.

Figure 3. Example of spherical harmonic amn (A) and bmn (B) coefficients
(m � n � 13) for Ile–Arg orientational statistical potentials. This is a typi-
cal situation for long-range interactions, in which only a few dominant
eigenvalues exist. These values can be used in the spherical harmonics
synthesis process for reconstructing smooth orientational potentials for all
of the possible relative orientations, with high accuracy.

Orientational statistical potentials for proteins
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The three-dimensional contour maps (Fig. 6) of continu-
ous and smooth reconstructed statistical potential fields il-
lustrate the relative LRF orientation of the “virtual back-
bone interaction center” backbone particle (Pep). For the
objects shown here, the grayscale is directly proportional to
the amplitude of the potentials. The negative attractive po-
tential values are indicated as dark angular regions. The

presence of other Pep particles is favored at these orienta-
tions. The light-gray regions represent unfavorable and re-
pulsive regions around Pep. This type of three-dimensional
representation can be used to investigate all of the possible
side chain–side chain, side chain–Pep, and Pep–Pep orien-
tation-dependent statistical potential fields and their unique
features.

Figure 5. The smooth Pep–Pep orientational potentials represented for short-range (left), middle-range (center), and long-range (right)
interactions. The potential values, calculated originally for a 12 × 24 equiangular grid are shown in A, C, and E. The corresponding
smooth potentials computed for a 92 × 184 grid using spherical harmonic synthesis are shown in B, D, and F. Dark regions correspond
to attractive (i.e., negative) potentials, whereas white regions are positive.

Figure 4. The smooth Ile–Arg orientational potentials represented for short-range (top), middle-range (center), and long-range
(bottom) interactions. The potential values, calculated originally for a 12 × 24 equiangular grid are shown in A, C, and E. The
corresponding smooth potentials computed for a 92 × 184 grid using spherical harmonic synthesis are shown in B, D, and F. Dark
regions correspond to attractive (i.e., negative) potentials, whereas white regions are positive, thus less likely to correspond to
interaction loci.

Buchete et al.
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Effect of including explicitly the backbone interactions
on the potentials

One of the main features of the SHA/SHS approach is that
specific values of the orientational potentials can be calcu-
lated (reconstructed) from the amn and bmn coefficients for
all values of the orientational parameters � and �. The
smoothing effect of the SHA/SHS procedure, which elimi-
nates the unrealistic discontinuities in the binned orienta-
tional potentials, can lead to information loss (Adams and
Swarztrauber 1997, 1999). To assess the efficacy of the
reconstructed orientational potentials, we performed tests
for discriminating the native state from multiple decoy sets
(Samudrala and Levitt 2000; Buchete et al. 2003). The re-
sults (see Figs. 8–10, below) were obtained for testing the

ability of our statistical potentials to discriminate the native
structure of a protein from a large set of multiple decoy
structures from the database of Samudrala and Levitt
(2000). These results are shown in terms of the values of the
energy and root-mean-square distance (RMSD) Z scores (ZE

and ZRMSD) that are defined next. The RMSD is calculated
with respect to the C� atoms. The Z score of a statistical
quantity x (e.g., in our case E or RMSD) is

Zx =
x − x

�x
(1)

where �x is the standard deviation and x is the mean of the
distribution of x values. For comparing the performance
(with and without the Pep interaction center) of the inter-
action potentials on sets of decoy structures, we calculate
both ZE and ZRMSD.

The data in Figure 7 shows energy distributions for the
set of 500 decoys of the 2cro protein from the fisa family
(Simons et al. 1997; Samudrala and Levitt 2000). The two
distributions correspond to the distance-dependent statisti-
cal potential (UD histogram, right) for a 20 × 20 interaction
scheme (Buchete et al. 2003), and to the present smoothed
distance- and orientation-dependent 21 × 21 potential (UDO,
left) that includes backbone interactions. The values for the
corresponding energies of the native 2cro state and the
mean values are also shown for illustrating the definitions of
the energy Z scores (ZE) used in our analysis. For ideal
potentials, it is expected that the structure corresponding
to the native state would have the most negative ZE. In
addition, a good potential scoring function should assign

Figure 7. Distribution of energies for the 500 decoys of the 2cro protein
from the fisa set. The two energy distributions correspond to the distance-
dependent statistical potential (UD–20 histogram, right) for a 20 × 20 inter-
action scheme (Buchete et al. 2003) and to the present smoothed distance-
and orientation-dependent 21 × 21 potential (UDO–21s, left) that includes
backbone interactions. The values for the corresponding energies of the
native 2cro state and the mean values are also shown for illustrating the
definitions of the energy Z scores (ZE) used in our analysis.

Figure 6. Three-dimensional representations of the statistical potential
field for the smooth short-range (A), middle-range (B), and long-range (C)
backbone–backbone interactions (Pep–Pep). The relative orientation of the
Pep particle with respect to the orientation-dependent potential values is
also shown. The dark, attractive regions responsible for hydrogen bonding
are apparent for midrange interactions (B).

Orientational statistical potentials for proteins
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a very negative C� RMSD Z score (ZRMSD) to the decoy
structure that has the lowest energy. It is clear from Fig-
ure 7 that the UDO–21s (i.e., smooth, distance- and orienta-
tion-dependent potentials that are reconstructed by SHA
using the 21 × 21 interaction model) are very successful in
correctly identifying the native state in the 2cro decoy set.
The UDO notation is used for statistical potentials that are
both distance- and orientation-dependent, whereas the
UD potentials depend solely on distance. The numerical
ZE score in this case is lower than what is found using
the UD–20 potential. In this instance, UDO–21s identifies the
native state as the one with the lowest energy (Fig. 7). On
the other hand, for the UD–20 potential, there are decoy
structures with lower energies than the native state. In
our tests, we use ZE scores to assess the efficacy of the
potentials.

We have computed both the energy and the RMSD Z
scores (ZE and ZRMSD) for the distribution of the total en-
ergies for each protein decoy set. Assuming pairwise addi-
tivity, the total potential for the residue pair ij is

UDO
ij �rij, �ij, �ij, �ji, �ji� = UDO

ij �rij, �ij, �ij�

+ UDO
ji �rji, �ji, �ji�. (2)

The results for ZE and ZRMSD for the multiple decoy sets
(Park and Levitt 1996; Park et al. 1997; Simons et al. 1997;

Samudrala and Levitt 2000; Fain et al. 2001; Keasar and
Levitt 2003) lmds, fisa, fisa_casp3, and 4state are shown in
Figure 8. To assess the performance of the present poten-
tials, we compare the results using UDO–20 (dark bars) and
UDO–21 (white bars). The cases in which the new UDO–21

potentials perform better in discriminating the native state
from decoys are emphasized by the arrows on the left. For
a large majority of decoy sets (84% when considering the
energy score ZE), the performance is improved by including
the backbone interaction centers. The values of ZE com-
puted using UDO–21 are more negative then for UDO–20 for
all decoy sets except the 4state (Fig. 8).

The results in Figure 8 show an important number of
improvements for the ZE score. However, our results show
that the ZRMSD score is a noisy quantity, in agreement with
the observations of Samudrala and Levitt (2000), showing a
less systematic behavior. As a consequence, we are focusing
on the energy ZE score as the main quantitative performance
indicator of the ability of our potentials to identify native-
like protein conformations in decoy tests.

Effect of the SHA/SHS method on the
smoothed potentials

To assess the effect of smoothing (see Materials and Meth-
ods) on the results, we compare in Figure 9 ZE scores cal-

Figure 8. Results from decoy tests on the orientation-dependent potentials. The energy (ZE) and C� RMSD Z scores (ZRMSD) calculated
for multiple decoy sets (Park and Levitt 1996; Park et al. 1997; Simons et al. 1997; Samudrala and Levitt 2000; Keasar and Levitt 2003)
lmds, fisa_casp3, fisa, and 4state are compared before (UDO–21) and after (UDO–21s) the SHA/SHS method is applied. The PDB code
for each protein and the number of decoys in its corresponding set are shown in the middle. The dark bars correspond to UDO–21 and
the white bars are for UDO–21s. The cases in which the UDO–21 potentials perform better in discriminating the native state from decoys
are emphasized by the arrows on the left. For a majority of decoy sets (84% for ZE and 56% for ZRMSD), the performance is improved.
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culated using the UDO–21 potentials and the UDO–21s poten-
tials reconstructed from expansion coefficients with the
spherical harmonic synthesis (SHS) method. The effects of
the SHA/SHS method on the energy ZE score are relatively
small, and a very good correlation is observed between ZE

scores obtained using the 21 × 21 interaction scheme
(UDO–21) and the ZE scores calculated using the smooth
UDO–21s potentials. Noticeably, the ZE scores obtained using
UDO–21s are marginally better (i.e., more negative). Al-
though there is an intrinsic information loss introduced by
the SHS/SHA procedure (Adams and Swarztrauber 1997,
1999), the resulting potential smoothing improves the per-
formance of the orientation-dependent potentials. These re-
sults show that the coarse graining of the orientational po-
tential using the spherical harmonic analysis does not lead
to loss of accuracy and could enhance the native fold rec-
ognition ability.

Figure 10 shows the energy ZE scores calculated for the
same multiple decoy sets, but using the 20 × 20 interaction
scheme dependent only on residue–residue distances
(UD–20, dark bars) and the UDO–21s potentials (white). The
new UDO–21s potentials perform better in a majority of cases
for the fisa and fisa_casp3 and lmds decoy sets, as empha-
sized by the arrows in Figure 10. For the 4state set, where
the energy Z scores for UD–20 are better, we still obtained
negative ZE values consistently for all the new potentials.
We need to mention that the UD–20 potentials were con-
structed as described by Buchete et al. (2003) for 20 radial
bins of 1.2 Å, whereas the new UDO–21s potentials have only
three interactions ranges (short, middle, and long). It is no-

ticeable, therefore, that the detailed orientation dependence
and the inclusion of interactions with the backbone in the
UDO–21s potentials confer significant advantages in an im-
portant number of cases.

Role of decoy sets

The performance of the statistical potentials is crucially de-
pendent on the decoy sets used. There are considerable
variations in the nature of the decoy sets. For example, the
decoys generated for 2cro (depicted in Fig. 11A) by differ-
ent methods, have C� RMSD values from the native state in
the range 0.81�8.31 Å for 4state, 4.29�12.60 Å for the
fisa, and 3.87�13.47 Å for the lmds sets. The results shown
in Figure 10 for the ZE score of the 4state decoys could be
due to the fact that for these small �-helical proteins, the
decoy structures are so close to the native state that small
errors in the potentials can have important negative effects.
It is not our goal to analyze in detail the magnitude of these
errors and all of their possible sources (e.g., assumptions
behind the statistical model, the dependency on training
sets, and other technical details). Due to the statistical nature
of this approach, there is always a possibility to fail in

Figure 9. For all the decoy sets analyzed (Park and Levitt 1996; Park et al.
1997; Simons et al. 1997; Samudrala and Levitt 2000), a very good cor-
relation is observed between ZE scores obtained using the 21 × 21 inter-
action scheme (UDO–21) and the ZE scores calculated after applying the
spherical harmonic synthesis (SHS) method (UDO–21s). In fact, the ZE

scores obtained using UDO–21s are marginally better (i.e., more negative).

Figure 10. Comparison of ZE scores for multiple decoy sets (Samudrala
and Levitt 2000). The cases in which the smooth, distance- and orientation-
dependent potentials (UDO–21s, white bars) perform better than potentials
depending solely on distances (UD–20, black) in discriminating the native
state from decoys are emphasized by the arrows on the left.
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identifying the native state when using more detailed sta-
tistical data in the analysis of protein structures For ex-
ample, the case of the 2cro protein seems to correspond to
a failure for the 4state set of decoys (see Fig. 10), because
the ZE score of the structure with the lowest UDO–20 value
(shown in Fig. 11E) is more negative. However, the decoy
structure that scored the best by using to the new UDO–21s

statistical potential (see Fig. 11C) has a much lower C�

RMSD value (only 2.77 Å) from the native state. In addi-
tion, the decoy structure that scored the worst for the
UDO–21s statistical potential (Fig. 11D) has a high C� RMSD

value (6.14 Å) as compared with the native state conforma-
tion. In Figure 11, the grayscale coding corresponds to
structural features such as dark gray for helices, black for
turns, and light gray for coil regions. As shown in Figure 11,
even if the structure identified as native-like by using back-
bone-related information (i.e., UDO–21s, Fig. 11C) does not
have a ZE score as good as the one obtained by using only
the side chain–side chain distances (i.e., UD–20, Fig. 11E),
the UDO–21s performance is reasonable, because the native-
like structure shown in Figure 11C has noticeably more
native features (e.g., number and relative positions of helical
chains). The decoy with the largest C� RMSD (8.31 Å) from
the native state is also shown in Figure 11B for illustrating
the range of conformations available in the 4state decoy set.
The decoys with the highest UD–20 (Fig. 11E) and UDO–21s

(Fig. 11F) values are observed to have large structural dif-
ferences from the native conformation in both cases, as a
manifestation of the efficacy of both potentials discussed
here. Thus, the UDO–21s parameter set correctly discrimi-
nates between native and other misfolded structures even
though there is no improvement in ZE relative to the UD–20

potentials.
Besides the results shown in Figures 8–10 for the lmds

(Keasar and Levitt 2003), fisa_casp3 (Simons et al. 1997),
fisa (Simons et al. 1997), and 4state (a.k.a. 4state_reduced;
Park and Levitt 1996) decoy sets, we also computed the
corresponding Z scores for the multiple decoy sets hg_struc-
tal, ig_structal (Samudrala and Levitt 2000). For the hg-
_structal (hemoglobines) and ig_structal (immunoglobulins)
decoy sets, which have been built with the program segmod
(Levitt 1992) by comparative modeling using other globins
as templates, we also obtained better ZE scores for the
UDO–21 potentials than for the UDO–20. Including the 21st
backbone, interaction center proves to be beneficial for al-
most 70% of the immunoglobulin sets as compared with
only 34% of the hemoglobins. This could be explained by
the fact that for this type of |i – j| � 4 interactions (as is the
case for the potentials presented here), there is a signifi-
cantly smaller number of backbone–backbone contacts at
short-range distances in �-helical than in �-sheet structures
(see data in Table 1).

The results of the tests on discriminating the native states
from decoy sets show that the new 21 × 21 smoothed po-
tentials, which include the virtual Pep particle to represent
the backbone interaction center, perform better in a majority
of cases. In agreement with our previous calculations
(Buchete et al. 2003), the inclusion of orientational depen-
dence alone can strongly improve the quality of inter-resi-
due statistical potentials. Even though in the work presented
here we consider only three distance interaction ranges, the
performance of the new orientation- and distance-dependent
potentials is generally better then the performance of the
potentials that depend solely on inter-residue distances. The
performance of the new orientation-dependent potentials is

Figure 11. Examples of six structures (one native and five decoys from the
4state set) for the 2cro protein. (A) The native state; (B) the decoy with the
largest C� RMSD (8.31 Å); (C) the best (i.e., native-like) decoy with the
lowest UDO–21s potential; (D) the decoy with the highest UDO–21s potential;
(E) the decoy with the lowest UD–20 potential; (F) the decoy with the
highest UD–20 potential. The UDO–21s potential presents an increased ability
to identify the native-like decoy state shown in C. These structures have
been aligned and plotted using VMD (Humphrey et al. 1996). All of the
RMSD values are given in Å, and the gray levels correspond to structural
features (dark gray for helices, black for turns, and light gray for coil
regions).
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even further enhanced by including the 21st anisotropic
backbone interaction site.

Discussion

The widely used statistical procedure for building distance-
dependent coarse-grained inter-residue statistical potentials
(Sippl 1990; Godzik et al. 1995; Lee et al. 1999; Miyazawa
and Jernigan 1999b) can be generalized to include orienta-
tional effects (Bahar and Jernigan 1996; Buchete et al.
2003). The large and continually increasing number of ex-
perimentally derived protein structures available from pro-
tein databases (Berman et al. 2000) can be used to extract
both distance- and orientation-dependent statistical poten-
tials. Our investigation of relative side chain–side chain
orientations in proteins, permits the identification of statis-
tically preferred interaction loci for side chains, indepen-
dently of their neighboring C� backbone atoms. In accor-
dance with previously reported results for a backbone-de-
pendent coordination system (Bahar and Jernigan 1996)
glycine, serine, and threonine present less complex orienta-
tional probability distributions, with fewer peaks than other
amino acids (e.g., arginine or isoleucine). Our orientational
probability density maps present, in general, more peaks
than the orientational distributions of Bahar and Jernigan
(1996), but a detailed comparison is not feasible due to the
different residue coordination system used in that study.

Our previous tests (Buchete et al. 2003) showed that ori-
entation-dependent potentials are better in discriminating
the native folded state from large sets of alternative decoy
structures (Samudrala and Levitt 2000), than the radial-only
dependent statistical potentials.

In this study, we demonstrated that further improvements
can be obtained by including backbone interactions explic-
itly, and by analyzing and describing coarse-grained, orien-
tation-dependent inter-residue potentials in terms of the co-
efficients resulting from a spherical harmonic analysis. The
statistical data extracted from the PDB structures is used to
build orientation-dependent potentials that have sufficient
continuity properties to make possible their spherical har-
monic analysis. We have constructed and studied a novel
distance- and orientation-dependent potential for the 20
amino acid set and an extra anisotropic backbone interaction
center. The explicit inclusion of the 21st interaction center
on the backbone was motivated by the important backbone–
backbone and backbone–side chain contact fractions that
can be observed in a representative set of the main protein
classes (Pearl et al. 2003). The smooth, continuous potential
is described using its spherical harmonic coefficients for
short-, medium-, and long-range interactions.

Because the native structures, regardless of their archi-
tecture (�, �, or �/�), are stabilized by a substantial number
of backbone–side chain and backbone–backbone interac-
tions, it is crucial to account for them in any force field. The

ability of the smoothed orientation- and distance-dependent
potentials in recognizing the native structures from a large
number of decoy sets is greatly enhanced by the inclusion of
the virtual interaction center Pep for the backbone. For all
decoy sets except for the 4state, the energy Z-scores im-
prove with the potentials used here.

The results of testing the reconstructed potentials on the
decoy sets of Samudrala and Levitt (2000) showed that only
small differences are introduced by the continuous spherical
harmonics treatment with respect to the case when the raw-
binned orientational potentials are used. The discriminatory
power of the new orientational potentials is strongly im-
proved by considering the 21st anisotropic interaction site in
the middle of the peptide bond and it is enhanced even more
by the SHA/SHS procedure in a majority of cases. From a
computational point of view, there are potential benefits
both for free energy calculations and coarse-grained dy-
namical simulations that use statistical potentials as follows:
(1) The memory requirements for storing the spherical har-
monic coefficients instead of the raw orientational data are
smaller, and (2) the values of the potentials can be recon-
structed for any specific values of the � and � orientational
parameters as smooth and continuous functions over the
entire spherical domain. The parameters of the new orien-
tation-dependent potentials are available on request. The
novel smoothed distance- and orientation-dependent poten-
tials constructed by spherical harmonic analysis of the sta-
tistical data are suited not only for use in protein fold rec-
ognition studies, but also could help the development of
new large-scale coarse-grained protein simulations using
molecular dynamics or Monte Carlo methods.

Materials and methods

Local reference frames of side chains

To get parameters for the orientational dependence of the coarse-
grained potentials, it is useful to define local reference frames
(LRFs) for each amino acid (Fig. 12). For any amino acid, a LRF
can be constructed by considering at least three noncollinear points
(P1, P2, and P3) that uniquely define the orientation of the LRF,
and a fourth point (usually denoted by Si for the i-th side chain)
that specifies the location of the LRF origin. In the coarse-grained
representation, the Si points can be considered as the interaction
centers, as all of the relative side chain–side chain distances and
orientations are measured with respect to them. The choice of the
three points P1, P2, and P3 is important for the following reasons:
(1) The reference points should be unambiguously identifiable in
all of the side chains, regardless of their particular conformation;
(2) they must not be arranged in a collinear configuration; and (3)
the positions of the side-chain atoms in the LRF should vary as
little as possible for various side-chain conformations of the same
amino acid type. The choice of these three reference points is easy
for small or relatively rigid amino acids; however, it is more dif-
ficult for the relatively large ones that are expected to be quite
mobile, with long side chains such as lysine or arginine.
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Let r�P1
, r�P2

, r�P3
, and r�Si

be the position vectors of the points P1,
P2, P3, and Si, respectively (Fig. 12). The Ôz axis vector can be
defined as

Ôz =
r�P2

− r�P1

|r�P2
− r�P1|. (3)

A second direction Ô*y , pointing toward the Oy axis can be simi-
larly constructed as

Ô*y =
r�P3

− r�P2

|r�P3
− r�P2|. (4)

Finally, the Ôx and Ôy axis vectors are defined in terms of the cross
products:

Ôx = Ô*y � Ôz and Ôy = Ôz � Ôx. (5)

For side chains, the positions of the three reference points P1, P2,
and P3 are identified with the positions of the C�, C�, and C	

atoms (Buchete et al. 2003). The position of the interaction centers
Si are identified with the geometric center (GC) of the heavy atoms
in the side chain. Exceptions to these rules are made for the fol-
lowing special cases: (1) For Gly there is no C�, so we used the
position of the midpoint between the neighboring Ni and Ci atoms
on the backbone as P1 and C�

i is taken to be P2. In this way, the
local Oz axis is defined by the bisector of the angle defined by Ni,

C�
i , and Ci. (2) Because Gly and Ala do not have C	 atoms, we

used the position of the backbone atom Ci as P3. In this way, the
local Oy axis is pointing in the direction defined by the backbone
atoms C�

i and Ci. (3) For Cys and Ser, the corresponding coordi-
nates of the S and O atoms are substituted for the coordinates of
the missing C	 and are used, therefore, for defining P3. (4) For Ile
and Val, the coordinates of the midpoint between the two C	 atoms
are used for P3.

These definitions have the advantage that, whereas being side–
chain dependent, the positive Oz axis is always oriented away from
the local backbone, whereas the positive Oy axis points toward
more remote C	 atoms in the SC. For small side chains, Oy points
toward the next SC on the backbone sequence.

The most important advance made in this study is to introduce
a virtual backbone interaction center (Pep) in the middle of the
peptide bond. We were motivated to include this as the 21st in-
teraction center on the basis of the analysis of proteins structures
that revealed (see Results) that folded structures are stabilized by
a substantial number of side chain–backbone contacts. For Pep, the
positions of the three reference points P1, P2, and P3 are identified
with the positions of the carbonyl C atom, its O atom, and the
peptide bond N atom. The interaction center Si for Pep is placed in
the middle of its C–N peptide link.

These definitions of the LRFs permit the investigation of rela-
tive coordination probabilities (e.g., for hydrogen bonding) as well
as of hydropathic effects in side-chain packing.

Data mining: Building the relative orientational
probability maps

To extract orientation-dependent potentials from PDB structures,
we need to obtain the relative SC–SC, SC–BB, and BB–BB ori-
entational distributions from protein structures (Buchete et al.
2003). This data can be expressed as orientational histograms or,
after the corresponding normalization, as relative orientational
probability maps that are specific for each pair of amino acids. For
the set of nonhomologous proteins used by Scheraga et al. (Liwo
et al. 1997a,b, 1998), the orientational histograms were collected
using N � 12 bins for the range of the � angle and two N bins for
� in the corresponding LRFs. Because all of the protein structures
analyzed have a resolution of 2 Å or better, the choice of bin sizes
ensures a high confidence level of correct angular bin assignment
(80% at a distance of at least 4.5 Å; Buchete et al. 2003).

The extracted SC–SC pair frequencies are transformed to SC–
SC interaction distance- and orientation-dependent probabilities
Pij(r,�,�) by normalization. In the case of three-dimensional ori-
entation-dependent data, the measured frequencies must also be
divided by sin(�k) to correct for the smaller volume elements near
the poles when k equiangular intervals are used for the � angle in
the corresponding LRF. Because the amount of data available is
relatively small for conventional statistical procedures, we used the
sparse data correction method (Sippl 1990; Buchete et al. 2003)
that builds the correct probability densities as linear combinations
between the measured data and the reference, total-probability
densities obtained by averaging over all 20 SC types. For the
distance- and orientation-dependent probability densities, the
sparse data correction formula is

Pcorr
ij �r, �, �� =

1

1 + m��
Pref�r, �, �� +

m��

1 + m��
Pij�r, �, �� (6)

where Pij are the actual probability densities obtained from the
database for the ij pair of side chains, Pij

corr are the corrected
probabilities. The reference probability density, Pref , is con-

Figure 12. The local reference frames (LRFs) for amino acids. The or-
thogonal vectors Ôx, Ôy, and Ôz of any LRF can be constructed if three
noncollinear points P1, P2, and P3 are specified. If the LRFs of two amino
acids (LRFi and LRFj) are known, their relative positions and three-dimen-
sional orientations are described by the parameters rij, �ij, �ij, �ji, �ji, and 
ij.
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structed by averaging over all the interactions corresponding to all
of the types of side chains j that are observed around all of the side
chains i. The parameter m� is related to the actual number of
measurements obtained for the ij pair. If m is the number of mea-
surements for the ij pair (Sippl 1990), for considering the orien-
tational dependence, we use a corrected value m� = m/sin (�k), for
k equiangular bins in the � LRF angle. This is necessary for ac-
counting for the azimuthal dependence of volume elements in
spherical coordinates. The constant � corresponds to how many
actual measurements m must be observed such that both the actual
probabilities and the reference would have equal weights. We used
� � 1/50 (Hendlich et al. 1990; Sippl 1990; Thomas and Dill
1996).

The orientation-dependent potentials: The
Boltzmann device

We used the Boltzmann device (Sippl 1990, 1995) to construct
statistical orientational potentials from the orientational probability
maps. This approach is based on the assumption that the known
protein structures from protein databases, such as PDB (Berman et
al. 2000), correspond to classical equilibrium states. The side
chain–side chain potentials can therefore be related to position pair
distribution functions g(r) by the relation

UD
ij �r� = −kT ln� gij�r�

gref�r�
� (7)

for the distributions depending only on distances. We define a
more general distance- and orientation-dependent potential:

UDO
ij �r, �, �� = −kT ln � Pij�r, �, ��

Pref�r, �, ��
�. (8)

As mentioned earlier, we use UDO for the statistical potentials that
are both distance- and orientation-dependent, and UD for potentials
that depend solely on inter-residue distances. As in previous stud-
ies (Buchete et al. 2003), we consider the reference pair distribu-
tion function gref and reference probability Pref to correspond to
radial or angular pair distributions averaged over all 20 residue
types. Databases of nonhomologous proteins are necessary for
estimating the pair distributions and for extracting amino acid-
specific interaction potentials that are consistent with various pro-
tein architectures.

Spherical harmonic analysis (SHA) and synthesis
(SHS) of discrete potentials defined on
spherical domains

The orientational dependence of the new inter-residue coarse-
grained potentials can be expressed in terms of functions defined
on spherical domains. For each interaction range distances, the
angular dependent potentials are functions of the � and � polar
angles defined in the corresponding local reference frames (LRFs)
of the amino acids (Buchete et al. 2003). These potential functions
can be decomposed using

U��, �� = �
m,n

cmnYnm��, �� (9)

where Ynm are complex spherical harmonics (Arfken and Weber
1995) and cmn are the expansion coefficients. This formula is valid
only for functions U(�,�) that have well-behaved continuity prop-

erties over the entire angular range. In practice, it is convenient to
use a series with real even and odd eigenfunctions, namely,

U��, �� = �
m,n

�amnYnm
o ��, �� + bmnYnm

e ��, ���. (10)

This approach was successfully used for the accurate description
of the geomagnetic field of the Earth (Arfken and Weber 1995).

There are several difficulties associated with the numerical
spherical harmonics analysis of discrete functions. These problems
have been apparent since Neumann (1838) and Gauss (1839) who
developed efficient two-step methods for spherical harmonics
analysis that use Fourier transforms. In the first step, a numerical
Fourier analysis of two-dimensional discrete data can be per-
formed along parallels, due to the orthogonality of the trigonomet-
ric base functions (Sneeuw 1994). However, complications arise in
the second step of computing spherical harmonic coefficients from
the calculated Fourier coefficients due to the loss of orthogonality
of Legendre functions at discrete points (Swarztrauber 1979;
Sneeuw 1994; Sneeuw and Bun 1996). Problems can also arise
from the nonuniform distribution of the discrete data points and the
type of grid (equally spaced or Gaussian) that is used when col-
lecting the data.

To overcome these problems, we used the analysis technique
developed in Adams and Swarztrauber (1997, 1999), and imple-
mented in the program Spherepack. Although they were initially
developed for geophysical processes, we found that the Spherepack
routines are general enough and can be used successfully for ana-
lyzing the data that we extracted from protein structures. We pre-
sent below a short review of the numerical spherical harmonic
analysis procedure that was performed using Spherepack 3.0 (Ad-
ams and Swarztrauber 1999).

Let N be the number of grid points corresponding to sampling
the data along the � angle. We use 2(N – 1) grid points for �. These
sampling points are placed on the following equiangular grid:

�i = i�� − ��2, i = 0, 1, . . . , N − 1, �� =
�

N − 1
�i = j��, j = 0, 1, . . . , 2N − 1, �� = ��. (11)

Assuming that the angular dependent potential function is suffi-
ciently smooth, one can perform its spherical harmonic analysis
and find the corresponding coefficients

amn = �mn�
0

2�

�
−��2

��2

U��, �� Pn
m�cos �� � cos�m�� cos � d� d� (12)

bmn = �mn�
0

2�

�
−��2

��2

U��, �� Pn
m�cos �� � sin�m�� cos � d� d� (13)

where

�nm =
2n + 1

2�



�n − m�!

�n + m�!
(14)

and Pn
m are the associated Legendre functions (Arfken and Weber

1995; Adams and Swarztrauber 1997).
Alternatively, if the coefficients anm and bnm are known, one can

reconstruct the corresponding smooth potential function U(�,�)
using the spherical harmonics synthesis formula:

U��, �� = �
n=0

N

�
m=0

n

�Pn
m�cos ���amncos�m�� + bmnsin�m���. (15)

Orientational statistical potentials for proteins

www.proteinscience.org 873



The prime notation (Adams and Swarztrauber 1997) on the sum
indicates that the first term corresponding to m � 0 must be mul-
tiplied by 0.5.
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