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ABSTRACT A technique for systematic peptide variation
by a combination of rational and evolutionary approaches is
presented. The design scheme consists of five consecutive
steps: (i) identification of a ‘‘seed peptide’’ with a desired
activity, (ii) generation of variants selected from a physico-
chemical space around the seed peptide, (iii) synthesis and
testing of this biased library, (iv) modeling of a quantitative
sequence-activity relationship by an artificial neural network,
and (v) de novo design by a computer-based evolutionary
search in sequence space using the trained neural network as
the fitness function. This strategy was successfully applied to
the identification of novel peptides that fully prevent the
positive chronotropic effect of anti-b1-adrenoreceptor auto-
antibodies from the serum of patients with dilated cardiomy-
opathy. The seed peptide, comprising 10 residues, was derived
by epitope mapping from an extracellular loop of human
b1-adrenoreceptor. A set of 90 peptides was synthesized and
tested to provide training data for neural network develop-
ment. De novo design revealed peptides with desired activities
that do not match the seed peptide sequence. These results
demonstrate that computer-based evolutionary searches can
generate novel peptides with substantial biological activity.

Molecular design aims to identify compounds with a desired
activity and to rationally modify molecular structures to yield
desired or improved molecular properties. Two principal
problems need to be solved: first, a search strategy must be
developed for exploiting the potentially huge number of
compounds; second, for any rational design approach a
model must be available to guide the systematic modification
of molecular structures. Rational molecular design can be
successful only with profound knowledge of the inf luence of
structural modifications on molecular function. An alterna-
tive approach is to use evolutionary strategies in which
optimization of molecular properties is achieved by a cyclic
variation-selection process; no detailed understanding of the
respective structure-activity relationship is required. This
process can be performed in vivo, in vitro, or even entirely by
computer (‘‘in machina’’ or ‘‘in silico’’). Usually, a large
number of compounds must be synthesized and tested per
evolutionary cycle to avoid trapping into premature conver-
gence, and the optimization process bears the danger of
being merely superior to pure random search. If, however,
this limitation can be overcome, e.g., by massively parallel
screening and smart variation of molecular structures, evo-

lutionary design can be a powerful method for rapid iden-
tification of potential lead compounds.

We have developed a design approach combining the ad-
vantages of a computer-based evolutionary search with a
knowledge-based rational access to reduce the time and effort
needed to obtain desirable molecules. The goal is to minimize
the number of bench experiments by making extensive use of
the information provided by the results of each in vitro or in
vivo experiment. Our concept can be divided into successive
steps: (i) identification of a single compound with some desired
activity, e.g., by expert knowledge, database or random screen-
ing, combinatorial libraries, or phage display (1–3); (ii) gen-
eration of a focusing library taking the compound obtained in
step i as a ‘‘seed structure.’’ A limited set of variants is
generated, approximately gaussian-distributed, in some phys-
icochemical space around the seed (4); (iii) synthesis and
testing of the new variants for their activity; (iv) training of
artificial neural networks providing simple heuristic models of
(quantitative) structure–activity relationships (SARs) based
on the activities measured in step iii (5); and (v) computer-
based evolutionary search for highly active compounds using
the network models as the fitness function (6, 7).

Here we describe the successful application of our approach
to the design of a peptide that fully prevents the positive
chronotropic effect of anti-b1-adrenoreceptor autoantibodies
from the serum of patients with idiopathic dilated cardiomy-
opathy (DCM). Autoantibodies directed against the first and
second extracellular loops of human b1-adrenoreceptor were
shown to contribute to the harmful chronic cardiac adrenergic
drive to which patients with DCM are believed to be exposed
(8–12). Short synthetic peptides encompassing the natural
epitopes were able to neutralize the chronotropic effect of the
autoantibodies (12). Our idea was to test whether it is possible
to derive novel artificial epitope sequences that could be used
as potential immunotherapeutic agents following the design
strategy described above. The peptide–antibody interaction
investigated here is thought to provide a model of specific
peptide–protein interactions.

EXPERIMENTAL PROTOCOL

Peptide Synthesis. Polypropylene pin-based peptide synthe-
sis was performed according to the method introduced by
Gheysen et al. (13, 14) with the modifications described

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked ‘‘advertisement’’ in
accordance with 18 U.S.C. §1734 solely to indicate this fact.

© 1998 by The National Academy of Sciences 0027-8424y98y9512179-6$2.00y0
PNAS is available online at www.pnas.org.

This paper was submitted directly (Track II) to the Proceedings office.
Abbreviations: DCM, dilated cardiomyopathy; EIA, enzyme immu-
noassay; PCA, principal component analysis; SAR, structure–activity
relationship.
†To whom reprint requests should be addressed at present address: F.
Hoffmann-La Roche Ltd., Pharmaceuticals Division, Molecular De-
sign and Bioinformatics, CH-4070 Basel, Switzerland. e-mail: gisbert.
schneider@roche.com.

12179



previously (15, 16). Distribution of the peptides on the pin-
plate was randomized to avoid systematic errors, e.g., border
effects influenced by the microtiter-plate format of the pin-
plate. Soluble peptides were prepared by the solid-phase
method (17) in a MilliGen 9050 continuous-f low peptide
synthesizer using FmocytBu (18) fast-cycle strategy and TOP-
PipU (19) as the coupling reagent. After cleavage from the
resin using standard protocols (18) the crude peptides were
purified to homogeneity by preparative HPLC on a Waters
Delta-Pak C18 300-Å column and lyophilized. Characterization
was accomplished by analytical HPLC and matrix-assisted
laser desorption time-of-f light mass spectroscopy. Multipin
noncleavable pin-kits (pin-plates) were purchased from
Abimed Analyses-Technik (Langenfeld, Germany), the 9-flu-
oroenylmethyloxycarbonyl (Fmoc)-protected and the pen-
tafluorophenyl (Pfp)- or 3-hydroxy-2,3-dihydroxy-4-oxoben-
zotriazoyl (Dhbt)-activated amino acids were obtained from
PerSeptive Biosystems (Wiesbaden, Germany); TentaGel S
resins were from Rapp Polymere (Tübingen, Germany); 2-[2-
oxo-1(2H)-pyridyl]-1,1,3,3-bispentamethylneuronium tet-
rafluoroborate (TOPPipU) was purchased from Calbiochem-
Nova Biochem (Bad SodenyTs., Germany).

Preparation of the Gamma Globulin Fraction. Serum was
obtained from a patient with idiopathic DCM whose left
ventricular ejection fraction averaged 15%. The gamma glob-
ulin fraction was isolated by using 40% ammonium sulfate
(wtyvol) precipitation performed three times. The samples
were dialyzed against 1 liter of 10 mM phosphate-buffered
0.9% NaCl solution (pH 7.2) for 30 hr. The solution was
changed five times. The purified Igs were taken up in PBS (pH
7.2).

Neutralization of the Autoantibodies. Gamma globulin frac-
tions were used for the neutralization experiments. The cor-
responding peptides (20 ml) were added to 50 ml of the gamma
globulin fraction. The mixtures were shaken and placed in a
refrigerator for 1 hr. After this procedure the samples (70 ml)
were added to neonatal heart-muscle cells which were cultured
in 2 ml of Halle SM20-I medium (21). The final dilution of the
gamma globulin fraction was 1:40. The beating rate of the cells
was measured 5 and 60 min after the addition of the peptidey
gamma globulin mixture.

Cardiomyocyte Cell Culture. Single cells were dissociated
from the minced ventricles of 1- to 2-day-old Wistar rats with
a 0.2% solution of trypsin and were cultured, as detailed
elsewhere (20), in Halle SM20-I medium in the presence of
10% neonatal calf serum and 2 mM fluorodeoxyuridine (21).
On the third or fourth day of cultivation the cells were
incubated for 2 hr in 2 ml of fresh serum-containing medium.
Thereafter the beating frequency of the myocytes was deter-
mined on the heated stage of an inverted microscope at 37°C.
Seven to ten selected cells or synchronously contracting cell
clusters were counted for 15 s. Antibodies and peptides were
added cumulatively. This procedure was repeated twice in
different cultures to yield results representing a total of 20–30
cells or cell clusters for each sample of a given gamma globulin
fraction.

Enzyme Immunoassay (EIA). Pin-EIA was performed in
a 96-well microtiter plate (Nunc) directly with the Pin-
peptides (peptides remained pin-bound). Gamma globulins
were diluted 1:500 in PBS according to Dulbecco (pH 7.4)
(13) with 1% BSA (Sigma) and 0.1% Tween 20 (Sigma).
Blocking of nonspecific binding sites was achieved by pin
incubation in sample buffer (200 mlywell) for 1 hr at room
temperature in a humid chamber prior to addition of Ig. For
the test 175 mlywell of diluted gamma-globulin fraction was
incubated for 18 hr at 4–7°C in a humid chamber. Then the
pins were extensively washed with PBS buffer (see above).
For detection of bound Ig the pins were incubated with
conjugate [goat anti-human IgG, IgM, and IgA coupled to
horseradish peroxidase, and goat anti-human IgG-Fc cou-

pled to horseradish peroxidase as a mixture (Dianova),
diluted 1:4000 in PBS] for 1 hr at room temperature. After
four washings, the substrate for peroxidase reaction [0.1 mg
of 3,30,5,50-tetramethylbenzidine (Fluka) in 11 ml of phos-
phate-citrate buffer containing 0.012% sodium perborate
(Sigma)] was added. After a 10-min incubation the pins were
removed from the wells, and 50 ml of 2 M sulfuric acid was
added per well. The absorbance per well (i.e., per pin-
peptide) was detected at 450 nm in a microtiter-plate
photometer. For statistical purposes the EIA was repeated
five times, and for data analysis the background activity was
subtracted from the average absorbance per well.

Neural Network Training. Three-layered feed-forward net-
works with a single hidden layer containing different numbers
of neurons were trained by using an evolutionary algorithm (5,
6, 32). The number of training cycles (generations) was 200 per
network, and the population size per generation was 500.
Network weights were initialized in [21, 1]. The weight vector
leading to the lowest mean square error in training-data
prediction was selected as the ‘‘parent’’ for the next generation.
New weight vectors were generated approximately gaussian-
distributed around the parent. The learning-step size deter-
mining the standard deviation of the gaussian distribution was
automatically adapted during the network training process,
i.e., it was also subjected to a variationyselection scheme. The
initial step-size value was 1. If the step-size value was below
0.001 it was automatically reset to a value of 0.01 to avoid
premature convergence of the training process. All networks
were implemented by using the programming language ANSI
C (22), and training was performed on an SGI R4400 central
processing unit.

RESULTS AND DISCUSSION

Identification of a Natural Peptide with Some Desired
Activity by Epitope Mapping. To obtain a seed peptide, parts
of the sequence of human b1-adrenoreceptor encompassing
loop 2 were analyzed by epitope mapping. The amino acid
sequence was chopped into overlapping fragments by using a
sliding window of 10 residues and a step size of 2 residues. The
ability of the peptide fragments to bind to human anti-b1-
adrenoreceptor antibodies was measured by ELISA (Fig. 1).
The amino acid sequence ARRCYNDPKC (positions 107–
116) was identified as a natural epitope with specific affinity to
the antibodies and was therefore selected as the seed peptide.
This sequence is in agreement with the epitope identified by
Wallukat et al. (12).

FIG. 1. Epitope mapping in the second extracellular loop of human
b1-adrenoreceptor (positions 197–222). Overlapping peptides encom-
passing 10 residues each were synthesized and tested for autoantibody
binding by ELISA. Two peptides show a pronounced affinity to the
antibodies.
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Generation of a Focusing Synthetic Peptide Library.
Using the amino acid sequence ARRCYNDPKC as the seed
peptide, a set of 90 variants was generated by a simple
algorithm describing each residue by the respective property
values for hydrophobicity (23) and volume (24). This led to
a 20-dimensional vector representation in terms of the two
properties. The Box–Muller formula was used to generate 90
vectors approximately gaussian-distributed around the seed-
peptide vector, where g is a gaussian-distributed random
number and i and j are random numbers in ]0,1]:

g 5 sÎ22 ln~i! sin~2p j!.

A standard deviation of s 5 0.1 was used to obtain many
vectors close to the seed peptide vector as well as some distant
variant vectors. The rationale behind this scheme was that we
expected peptides with an activity similar to the seed peptide
to be in close proximity to the seed peptide in sequence space
(25). On the other hand, a normal distribution also contains a
number of rather dissimilar vectors, which are important for
neural network training (see below). The property vectors
were translated back into amino acid sequences by selecting
the most similar residues at each sequence position according
to their physicochemical properties.

Synthesis and Testing of the New Peptide Variants for
Their Activity. The ELISA used in the epitope-mapping
procedure was applied to the computer-generated peptides
to test for their ability to bind to human anti-b1-
adrenoreceptor antibodies [gamma globulin fractions of b1-
or antibody-positive sera, or control sera, respectively; the
‘‘positive’’ gamma globulin fractions were also positive in the
bioassay (12)]. In Fig. 2 absorbance is plotted versus the
euclidian distance between the peptides and the seed peptide
in sequence space. The seed peptide is located at the origin.
On average, peptide activity decreases with increasing dis-
tance from the seed peptide, as expected. Although a
gaussian fit could be used to model the relationship between
distance in sequence space and activity, a linear or low-order
polynomial fit would be equally valid. Two exceptions from
the general trend given by the plot are striking: first, in the
immediate sequence-space vicinity of the seed peptide sev-
eral peptides (distance ,0.5) were identified that have a
higher activity than the seed peptide; and second, a number
of peptides located some distance away from the seed

peptide in sequence space revealed activities comparable to
the seed peptide or even higher. The first observation may
result from local hill-climbing in the natural fitness landscape
assuming the seed peptide is in a suboptimal location on a
practical, rather than a global, optimum. The second obser-
vation may either be a consequence of an inaccurate distance
measurement in sequence space or of remote active peptides
corresponding to different local optima in the fitness land-
scape. Despite these uncertainties a clear result of the in vitro
test is the confirmation of the applicability of our selection
scheme to the generation of a small focusing peptide library.
Several nonnatural peptides with increased antibody-binding
ability compared with the natural epitope were identified
(Fig. 2). The error of absorption measurement was deter-
mined to be 15% (overall average of experiments repeated
five times).

Training of Neural Networks on Sequence–Activity Rela-
tionships. The next step of our optimization procedure was
neural network training. The goal was to establish an artificial
fitness function modeling the underlying SAR that can be used
for further computer-based optimization of peptide activity.
The sequences of the 90 tested peptides plus the seed peptide
were described by two property values per residue position,
hydrophobicity (23) and volume (24), leading to 91 20-
dimensional pattern vectors. The task of the network system
was to correctly predict peptide activity on the basis of the
20-dimensional description.

Two-dimensional projections of the data were made to
obtain an idea of the distribution of active (absorbance $103)
and inactive (absorbance ,103) peptides in this physicochem-
ical space (Fig. 3). Principal component analysis (PCA) (26)
and Sammon mapping (27) were used to generate the projec-
tions. PCA leads to a linear projection of high-dimensional
data onto a plane spanned by the two axes (the principal

FIG. 2. Activity of 90 peptides constituting a focusing library.
Average absorbance as measured by ELISA is shown. The dashed line
marks the seed peptide activity. Vertical bars give the minimal and
maximal values found in the distance intervals marked on the x-axis.

FIG. 3. Projections of the peptide distributions in physicochemical
space by principal component analysis (a) and nonlinear mapping (b).
Black circles represent active peptides, and open circles represent
inactive peptides. Activity was measured by ELISA. Two adjacent
clusters of active peptides are labeled I and II.
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components) covering most of the data variance. The nonlin-
ear Sammon projection was obtained by using an optimization
procedure where the relative distances between the peptides in
the high-dimensional space are conserved in the two-
dimensional x–y representation. For a more in-depth treatment
of Sammon mapping and PCA, see refs. 28 and 29. The
resulting maps consistently reveal two adjacent clusters of
active compounds (labeled I and II in Fig. 3); the active
peptides are not spread over the whole map. However, because
of the relatively broad distribution of active compounds and
the apparently nonhomogeneous clusters, SAR modeling may
be confronted with a difficult if not ill-posed problem. The
surprising existence of two clusters of active peptides may be
a consequence of the polyclonal antibody pool used in the
assay. Perhaps the two clusters represent supertope motifs of
peptides binding to different antibodies. Another possibility
could be that different peptides bind to the same antibody in
different binding modes (30).

We selected supervised neural networks as a framework for
derivation of an SAR because these systems provide a flexible
and adaptive framework for modeling arbitrary nonlinear
relationships and have been shown to be relatively noise-
tolerant (29, 31). Realistic SARs usually are of a complex
nonlinear nature. Other modeling techniques, e.g., polynomial
fitting or partial least squares, could also be used for this task.
In a number of applications neural networks were shown to
lead to more accurate SAR models (29, 31). However, the
accuracy of an SAR model mainly depends on the descriptors
used for compound encoding, and the choice of a modeling
technique is of minor importance. Neural networks are not
superior per se to other nonlinear function-estimation ap-
proaches.

It is important for successful feature extraction to include
both positive examples (active peptides) and negative exam-
ples (inactive peptides) in the training data. This is one
reason for the selection of a gaussian distribution for the
generation of the above described peptide library. The
general theory of neural computation and applications of
neural networks to sequence analysis and SAR modeling can
be found elsewhere (29, 31). The networks employed here
were identical to the ProFI (Protein Filter Induction) system,
which was successfully applied to similar tasks before (6, 7,
32). Fig. 4 shows the network architecture used, a three-

layered feed-forward network with sigmoidal hidden-unit
activity and a single linear output unit.

The overall function represented by the network type shown
in Fig. 4 is:

y 5 f~x! 5 O
j51

Hid

SigmS O
i51

20

xijwij 2 qjD vj 2 u,

where x is a 20-dimensional input vector, w is the weight vector
connecting the input units with the single output neuron, and
u is the output neuron’s bias value; Hid is the number of hidden
neurons, v is the weight vector connecting the hidden layer with
the output neuron, and q is the hidden neurons’ bias values.
Sigm(arg) is the common sigmoidal transfer function
Sigm(arg) 5 1y[1 2 exp(2arg)]. Multilayered networks of this
type are able to model arbitrary nonlinear inputyoutput rela-
tionships. We used an evolutionary algorithm for network
training, i.e., determination of the weights and bias values (32).
The 90 peptides plus the seed peptide and their measured
absorbance values provided the training and test data.

Cross-validation of the data was performed 10 times using
random 812 splits; in addition, a complete leave-one-out
procedure was applied to assess the usefulness of the SAR
models. Several networks with different numbers of hidden
neurons were trained on the prediction of absorbance values.
A network with five hidden-layer neurons was able to repro-
duce the training data absorbance values with a relative
deviation of 15%, a linear correlation coefficient of r 5 0.87
(t 5 16.4) (Fig. 5a). Independent test data were predicted with
a deviation of 17%, r 5 0.79 (t 5 4.8) (Fig. 5b). Complete
cross-validation (leave-one-out) resulted in a test data devia-
tion of 27%, r 5 0.59 (t 5 6.8). As indicated by the t test values,
the null hypothesis of chance correlation can be rejected. We
therefore expect the network to represent a useful SAR model

FIG. 4. Scheme of the neural network architecture used for mod-
eling the sequence-activity relationship. Formal neurons are drawn as
circles, with lines representing connection weights. The input-layer
neurons are ‘‘fan-out’’ units, hidden-layer neurons have sigmoidal
activity, and the output neuron is a linear unit.

FIG. 5. Neural network predictions of peptide activity expressed as
absorbance values. (a) Complete training data (r 5 0.87). (b) An
example of test data (r 5 0.79). Linear regression lines (solid) are
shown with 95% confidence bands (dashed lines).
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for exploiting sequence space. The error of ELISA measure-
ments was determined to be 15%. Networks with more hidden-
layer units showed overfitting (lower training error with a
drastically increased test error), whereas networks with fewer
hidden units led to higher error values (data not shown).
Because even the neural network used in the peptide-design
step gave a relatively poor correlation and elevated test error
in the complete leave-one-out procedure, this SAR model
could only be used for semiquantitative predictions (e.g.,
differentiating among high, medium, and low levels of activi-
ty). The problem mainly results from noise in the ELISA
measurements, many free variables in the network system, and
shortcomings of our peptide-encoding scheme (Fig. 3). As the
number of peptides used for network training increases,
greater prediction accuracy is gained. A more appropriate
residue-encoding may also lead to improved results (29).
However, because continuous-property scales were used, the
danger of generating arbitrary chance correlation was reduced.

Computer-Based Evolutionary Search for New Peptides.
The neural network was used as a heuristic for searching in
sequence space. An evolutionary algorithm was applied with
the network as the fitness function. The method is described in
detail elsewhere (6, 7). Briefly, in a cyclic process virtual
peptide libraries are generated by variation of a ‘‘parent
sequence,’’ the activity of each peptide is predicted by the
neural network, and the peptide with the highest predicted
activity is selected as the parent for the next cycle. This is
repeated until no further optimization can be observed.

In total, a series of six peptides with a range of predicted
activities was evaluated in a bioassay (Table 1). Two de
novo-designed peptides with predicted high binding potentials
were obtained by the algorithm, DRFGDKDIAF (peptide 1)
and GWFGGADWHA (peptide 2). These sequences have
only one residue (Asp-7) in common with the seed peptide.
The aspartic acid in position 7 seems to be an invariant part of
the binding motif. Indeed, 73% of the potentially strong-
binding peptides possess this residue, and 18% contain an
asparagine. In addition, a medium-binding sequence, IWGC-
SGKLIC (peptide 3) (33) sharing Cys-4 and Cys-10 with the
seed peptide, and a low-binding peptide, KLDAPTNKWG
(peptide 4) lacking any identity to the seed peptide were
selected for the bioassay. Peptides 3 and 4 were not obtained
by computer-based design, rather they were selected from the
pepScan in-house depository by neural network evaluation.
Only these 2 peptides, of 45 decapeptides, were predicted to
have some activity. As an additional negative control the
evolutionary-design strategy was used to generate a completely
inactive peptide (peptide 5). Surprisingly, the resulting se-
quence FVRRTYYPER has two identical residues to the seed
peptide (Arg-3 and Pro-8). Nevertheless, it was predicted to be
the most inactive by the neural network.

Testing the Computer-Designed Peptides for Their Activity
in in Vitro Bioassays. To test the designed peptides for their in
vitro activity the beating rate of rat myocytes was monitored
when adding mixtures of the peptides and gamma globulin
fractions from patient serum containing human anti-b1-

adrenoreceptor. The results are summarized in Fig. 6. As
predicted, the natural epitope (seed) peptide prevented the
positive chronotropic effect of the autoantibodies, i.e., the
beating rate reverted to basal values. A similar effect was
observed for all four peptides that were predicted to have at
least a marginal activity (peptides 1–4). The anti-designed
inactive peptide (peptide 5) led to no effect on the myocyte
beating rate, as expected. Two random peptides also showed
no activity at a concentration of 100 mgyml (data not shown).
The most striking differences between the peptides were
observed at a concentration of 1 mgyml (Fig. 6, bars C). One
designed-active peptide (peptide 1) revealed similar or more
significant effects than the natural epitope at all tested con-
centrations (10 mgyml, 1 mgyml, and 0.1 mgyml). At a peptide
concentration of 0.1 mgyml the natural epitope showed only
marginal activity, i.e., 10% of the normal activity of the
myocytes was observed, whereas peptide 1 was still able to
restore 50% of the normal myocyte beating rate (Fig. 6, bars
B). Peptides 2, 3, and 4 revealed medium activity in the
bioassay even though peptide 2 was predicted to have high
activity and peptide 4 was expected to show only low activity.
The predicted medium activity of peptide 3 was substantiated
in the bioassay. The fact that two of six predictions were in
conflict with the observed activities (peptides 2 and 4) reflects
shortcomings of the SAR model which were already revealed
by the neural network test.

From the results of the bioassay we conclude that our
minimalist design approach using neural networks as a guide
in sequence space was successful in that we identified an
artificial antigen mimicking a natural linear epitope sequence.
The designed peptide has an activity comparable to its natural
counterpart but has a significantly different residue sequence.
We were able to demonstrate the applicability of our approach
to the systematic design of both active and inactive peptides,
and the most active peptide represents a good starting point for
further optimization. This success is even more surprising
because instead of using purified autoantibodies in the binding
assays we used gamma globulin pools of patient sera. Future
applications of the method will include the use of affinity-
purified autoantibodies instead of raw gamma-globulin frac-
tions. This should also further improve the SAR model derived
from neural network training.

Peptide selection by iterative trial-and-error approaches—
including focusing compound libraries and computer-based
SAR models—may be regarded as the reversal of natural
polyclonal B-cell selection, which leads to the generation of
antigen-specific antibodies. With this challenging interpreta-
tion in mind we may also start thinking of similar strategies for
the future development of immunotherapeutic drugs. A first
step may be the design of peptidomimetics using our approach.
It is easily possible to include nonnatural residues in the design

FIG. 6. In vitro response of the beating rate of rat myocytes to
different peptide concentrations plus gamma globulin fractions from
patient serum containing human anti-b1-adrenoreceptor antibodies.
Four different peptide concentrations were tested: no peptide added
(A), 0.1 mgyml (B), 1 mgyml (C), and 10 mgyml (D).

Table 1. Activity of peptides in a bioassay

Peptide
description

Amino acid
sequence

Activity

Predicted Measured

Seed peptide ARRCYNDPKC High High
Peptide 1 DRFGDKDIAF High High
Peptide 2 GWFGGADWHA High Medium
Peptide 3 IWGCSGKLIC Medium Medium
Peptide 4 KLDAPTNKWG Low Medium
Peptide 5 FVRRTYYPER Zero Zero

Peptides 1, 2, and 5 were designed de novo. Underlined residues are
identical to the respective seed peptide residues (natural epitope).
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strategy presented here. This can lead to peptide-like struc-
tures that are suitable as leads for drug development.
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