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ABSTRACT In the maximum parsimony (MP) and min-
imum evolution (ME) methods of phylogenetic inference,
evolutionary trees are constructed by searching for the topol-
ogy that shows the minimum number of mutational changes
required (M) and the smallest sum of branch lengths (S),
respectively, whereas in the maximum likelihood (ML)
method the topology showing the highest maximum likelihood
(A) of observing a given data set is chosen. However, the
theoretical basis of the optimization principle remains un-
clear. We therefore examined the relationships of M, S, and A
for the MP, ME, and ML trees with those for the true tree by
using computer simulation. The results show that M and S are
generally greater for the true tree than for the MP and ME
trees when the number of nucleotides examined (n) is rela-
tively small, whereas A is generally lower for the true tree than
for the ML tree. This finding indicates that the optimization
principle tends to give incorrect topologies when n is small. To
deal with this disturbing property of the optimization prin-
ciple, we suggest that more attention should be given to testing
the statistical reliability of an estimated tree rather than to
finding the optimal tree with excessive efforts. When a reli-
ability test is conducted, simplified MP, ME, and ML algo-
rithms such as the neighbor-joining method generally give
conclusions about phylogenetic inference very similar to those
obtained by the more extensive tree search algorithms.

In phylogenetic inference some kind of optimization principle
is commonly used for choosing the most probable tree. For
example, in the standard maximum parsimony (MP) method
(1, 2) the minimum number of mutational changes (M) that are
required for explaining the evolutionary change of a set of
DNA (or amino acid) sequences is computed for each topology
(branching pattern), and the topology that requires the small-
est M is chosen as the best tree. The theoretical basis of this
method is William of Ockham’s philosophical idea that the best
hypothesis to explain a process is the one that requires the
smallest number of assumptions (3). In the MP method the
number of assumptions is equal to the number of nucleotide
substitutions assumed. If there are no backward and parallel
mutations, this method is expected to generate the true
topology as long as there are enough nucleotides examined, but
otherwise there is no guarantee that the MP method gives the
true topology.

The minimum evolution (ME) method (4–6) is a distance-
based algorithm and chooses the topology that has the smallest
value of the sum (S) of branch length estimates after these
estimates are obtained from pairwise distances. Rzhetsky and

Nei (7) showed that the expected value of S is smallest for the
true topology when unbiased estimates of pairwise distances
are used. However, this result does not mean that the topology
with the smallest S value is the most probable tree (8). Another
important method of phylogenetic inference is the maximum
likelihood (ML) method (9, 10). In this method, the likelihood
of observing a given set of data is maximized for each topology,
and the topology that gives the highest maximum likelihood is
chosen as the final tree. In this case, however, the parameters
to be considered are not the topologies but the branch lengths
for each topology, and the likelihood is maximized to estimate
branch lengths rather than the topology. Therefore, it is
unclear whether the ML principle gives the most probable tree
(8, 11–15).

Another problem with phylogenetic inference based on the
optimization principle is that it is very time-consuming, be-
cause the number of possible topologies is very large for a
sizable number of nucleotide sequences (.15) and an enor-
mous amount of computational time is required to find the
optimal (MP, ME, or ML) tree. For this reason, various
algorithms have been developed to speed up the search for the
optimal or a near-optimal tree. However, the efficiency of
these algorithms for finding the true topology is not well
understood.

The purpose of this paper is to study these problems by
computer simulation. We consider three major methods of
phylogenetic inference based on the optimization principle—
i.e., the MP, ME, and ML methods. We also examine the
performance of simplified versions of the three methods to
facilitate the computation. Since our interest is in examining
the effects of sampling errors on MP, ME, and ML trees, we
consider relatively simple model trees for simulation to avoid
the problem of ‘‘inconsistency of estimation’’ of phylogenetic
trees (16).

METHODS OF COMPUTER SIMULATION

Model Trees and Computation of Optimality Scores. In this
study we conducted a computer simulation to generate a given
number of DNA sequences that evolved following a given
model tree, and the DNA sequences generated in each repli-
cation of the simulation were used to construct phylogenetic
trees by using the MP, ME, and ML methods. Details of the
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computer simulation are described in ref. 17. We then com-
puted M, S, and the log likelihood value (A 5 2lnL, where L
stands for the maximum likelihood) for MP, ME, and ML
trees, respectively. We also computed M, S, and A for the
correct topology, which is identical with that of the model tree.
This allowed us to compare the M, S, and A for ‘‘estimated’’
topologies with those for the true topology. We also used
simplified MP, ME, and ML methods (single-tree algorithms)
to identify single optimal or suboptimal trees. The neighbor-
joining (NJ) method (17) is a well established method to obtain
a single potential ME tree (8), so we used this method for the
ME method. There are several algorithms to obtain a single
potential MP tree (18), but we used Kumar et al.’s (19)
min-mini (MM) algorithm with search factor 0. This method
is based on the idea of the branch-and-bound search algorithm
and produces only one potential MP tree (or equally parsi-
monious trees if any). For the ML method we used the
star-decomposition method (20, 21) and the stepwise addition
method (21) and chose the topology showing a higher A value
when two topologies were obtained by the two methods. We
call this the two-tree (TT) method. Our preliminary study
showed that this method improves the probability of obtaining
the true topology compared with the case where only one of
the two methods is used.

As mentioned above, it is very time-consuming to find the
true optimal trees when the number of sequences used is
relatively large. This is particularly so with the ML method.
Since we had to find MP, ME, and ML trees for many
replications, we used the model trees of six sequences given in
Fig. 1 A and B. For a tree of six sequences there are only 105
unrooted topologies, so that we can determine the MP, ME,
and ML trees by examining all the topologies in each replica-
tion.

The above exhaustive method of examining all possible
topologies gives a clear-cut answer to our question, but in
practice it is necessary to know what will happen when more
sequences are used and only a fraction of all possible topol-
ogies are examined, because phylogenetic trees are usually
constructed for a large number of sequences. There are many
different heuristic algorithms of searching for potential MP,
ME, and ML trees, and it is interesting to know how well these
algorithms perform. We therefore studied this problem by
using model tree C in Fig. 1. This tree consists of 12 sequences,
so that there are 654,729,075 different unrooted topologies (9).
For the MP method, we used the MM heuristic algorithm with
a search factor of 30% (the difference between the local upper
bounds of substitutions for two consecutive computational
steps divided by the local upper bound for the earlier step) and
examined up to 60,000 topologies per replication, depending
on the extent of sequence divergence and the number of
nucleotides examined. For the ME method, we used Rzhetsky
and Nei’s (6) close-neighbor interchange (CNI) algorithm,
examining about 200 topologies per replication. In the CNI
algorithm the NJ tree is first constructed, and then all topol-
ogies different from the NJ tree by a topological distance (dT)
of 2 and 4 (22, 23) are examined to find a topology with an S
smaller than that of the NJ tree. This process is repeated until
no topology with a smaller S is found. For the ML method, the
branch swapping (nearest neighbor interchange) option of the
computer program MOLPHY (21) was used.

The branch lengths (multiples of a) of the model trees in Fig.
1 represent the expected numbers of nucleotide substitutions
per site. In trees A, C, and D the rate of nucleotide substitution
remains constant throughout the evolutionary process,
whereas in tree B the rate varies with branch. In all model trees
we considered several levels of sequence divergence, the level
of sequence divergence being measured in terms of the ex-
pected number of nucleotide substitutions per site between
two most divergent sequences (dmax). The a values in the model
trees were then determined in proportion to this dmax value.
For example, when dmax 5 1.0 for model tree A, a was 1y16.

Models of Nucleotide Substitution. For generating a set of
DNA sequences for any given tree, we have to use a certain
model of nucleotide substitution. Since our purpose was to
examine the effect of sampling errors on optimality scores, we
used the simple Jukes–Cantor model (24). In the reconstruc-
tion of a tree by the ML method, we need a specific substitution
model and used the same model as the one used for generating
sequence data. For the ME method, some measures of pair-
wise sequence distances must be used. We used the proportion
of different nucleotides (p-distance) as well as the Jukes–
Cantor distance, because the latter distance has a larger
variance than the former and may become undefinable when
the distance value is large. The MP method does not require
any specific model, and we used the standard unweighted
parsimony method.

DISTRIBUTIONS OF RELATIVE OPTIMALITY
SCORES

Model Tree A. Fig. 2 shows the frequency distributions of
relative optimality scores for MP, ME, and ML trees when 500
different data sets (replications) were examined by using
model tree A. The relative optimality scores for an MP tree was
computed by

R 5 (Mm 2 Mc)yMc,

where Mm and Mc stand for the M values (tree lengths) for the
MP tree and the correct topology for a given replication,
respectively. Therefore, if Mm 5 Mc, then R 5 0. R becomes
negative when Mm , Mc and positive when Mm . Mc. Similar
relative optimality scores were used for the ME and ML

FIG. 1. Model trees used for computer simulation. Trees A, C, and
D represent cases of constant rate of evolution, and tree B represents
a case of varying rate of evolution. Trees D1 and D2 are incorrect
topologies reconstructed from simulated sequences by using model
tree D. Branch lengths for model trees are expressed in terms of the
expected number of nucleotide substitutions per site. Values of a were
determined from the pairwise distances between the two most dis-
tantly related sequences (dmax).
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methods by replacing Mm and Mc by the equivalent quantities
(Sm, Sc, Am, and Ac) in these methods.

Comparison of the distributions of R values for MP, ME, and
ML trees is not always straightforward. For a given data set, the
MP method may produce two or more equally parsimonious
trees, one of which is the correct tree. It is not clear whether
this case should be included in the class of the correct topology
(23). In the present case we regarded 1ys of the case as the
correct topology and (1 2 1ys) as incorrect topologies, where
s is the number of equally parsimonious (tie) trees. In this case,
all the tie trees have the same M value as that of the correct
tree, so that R 5 0 even for incorrect trees. In Fig. 2 the
frequency of correct topologies with R 5 0 is represented by
a solid bar, whereas that of incorrect topologies with R 5 0 is
given by a gray bar. Tie trees were occasionally observed even
for ME and ML trees partly because of rounding errors in the
computation. When p-distance was used for constructing ME
trees, the frequency of tie trees was appreciably high. When tie
trees occurred, they were treated in the same way as in the case
of MP trees. Except for R 5 0, the abscissa of the histograms
in Fig. 2 represents cR, where c is 100 for MP and ME trees and
1,000 for ML trees.

The solid bars of the histograms in Fig. 2 show the R values
for the case of dmax 5 1 (a 5 1y16) when the number of

nucleotides examined (n) was 100, 300, or 600. When n 5 100,
the exhaustive search of the MP tree identified the true
topology in 28% of all cases (500 replications), whereas in
about 10% of the cases incorrect topologies showed the same
M value as that of the true topology. In all other cases (62%)
the MP tree had an incorrect topology with R , 0. In other
words, the topology with the smallest M was frequently an
incorrect one. The same tendency was observed for the cases
of n 5 300 and 600, though the probability of obtaining the
correct topology increased as n increased. Actually, when n 5
1,200, all MP, ME, and ML methods produced the correct
topology with a probability of nearly 100% when model tree A
was used.

The results given in Fig. 2 establish the relationship R # 0
for MP trees, but this relationship is obvious because Mm
cannot be greater than Mc when all topologies are examined.
In other words, if any incorrect topology has an M greater than
Mc, this topology cannot be the MP tree when all topologies are
examined. However, if it has an M smaller than Mc, then it may
be the MP tree. Therefore, we have the relationship R # 0. This
relationship is of course a consequence of the definition of the
optimal tree and applies to the ME and ML trees as well.
Indeed, Fig. 2 shows that R # 0 for both ME and ML trees
when all topologies are examined. Actually, this relationship

FIG. 2. Distributions of relative optimality scores (R) of the MP, ME, and ML trees inferred by the exhaustive search (solid bars) and the
single-tree search (open bars) algorithms. These results were obtained from 500 replications of computer simulation following model tree A in Fig.
1 with dmax 5 1.0. n represents the number of nucleotides used. ME(JC) and ME(p) refer to ME trees with the Jukes–Cantor distance and the
p-distance, respectively. R values for MP and ME (or NJ) trees are multiplied by c 5 100, whereas those for ML trees are multiplied by c 5 1,000.
cR 5 0 represents the case where the correct topology was obtained. Except for cR 5 0, cR 5 x represents the cR values in the range of x 2 1 ,
cR # x for a positive integer x and in the range of x # cR , x 1 1 for a negative integer x. Thus, cR 5 1 represents the cR values between 0 and
1 excluding cR 5 0, cR 5 2 represents the cR values between 1 and 2 excluding cR 5 1, and cR 5 21 represents the cR values between 21 and
0 excluding 0. We used c 5 1,000 for ML trees, because the scale of R for ML trees was much finer than that for MP and ME trees.
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holds for any tree-building method based on an optimization
principle, including the least-squares method (9, 25).

At the present time there seems to be a general consensus
that in the absence of knowledge of the true topology the best
tree is represented by the optimal (MP, ME, or ML) tree and
that incorrect trees are often obtained when the algorithm
used fails to identify the optimal tree (18, 19, 26–28). For this
reason great efforts are made to obtain the optimal tree in
most computer programs. However, the relationship R # 0
does not support the current view and shows that the optimi-
zation principle tends to identify an incorrect topology when
sample size (n) is small.

As mentioned earlier, we also used the MM algorithm with
search factor 0 to identify a single MP or suboptimal MP tree
(or trees). This algorithm can identify equally parsimonious
trees. The relative frequencies of the R values for these trees
are given by the open bars in the histograms of Fig. 2, whereas
the frequency of incorrect tie trees with R 5 0 is given by the
hatched bars. The results obtained by this single-tree method
are similar to those obtained by the exhaustive method, though
the method does allow Mm to be greater than Mc. This suggests
that at least with model tree A the single-tree algorithm works
nearly as efficiently as the exhaustive search for identifying the
true topology. Fig. 2 also shows that the single-tree algorithm
such as the NJ and TT methods are almost as effective as the
exhaustive search in obtaining the optimal tree. In the case of
the NJ method the p-distance gives a slightly higher frequency
of true topologies obtained than the Jukes–Cantor distance,
despite the fact that the p-distance does not take into account

multiple substitutions at the same nucleotide sites (17, 28–30).
Another interesting result obtained from this simulation is that
the topologies of the MP, ME, and ML trees for a given data
set were usually the same or very similar to one another
whether the topology obtained was correct or not. In other
words, the inferred topology was affected more often by the
data set used than by the tree-building method. This finding is
consistent with Saitou and Imanishi’s (5) previous finding.

In the above computation we considered a relatively diver-
gent set of DNA sequences with dmax 5 1. However, our study
of a case of low divergence (dmax 5 0.25) gave essentially the
same results except that in this case the frequency of tie trees
with the correct topology was considerably higher for the MP
method and the probability of obtaining the true tree was
higher than that for the case of dmax 5 1.0 in all methods (data
not shown).

Model Tree B. To see the effect of variation in substitution
rate among different branches on optimality scores, we con-
ducted another simulation using model tree B. We considered
the cases of dmax 5 1.0 and 0.25 and constructed the histograms
of R for MP, ME, and ML trees. The results for dmax 5 1.0 are
given in Fig. 3. In all cases examined R is again equal to or
smaller than 0 when the exhaustive search is used, indicating
that the optimization principle tends to give incorrect topol-
ogies when n is small. In MP trees, the distribution of R is
similar to that for model tree A in both the exhaustive and the
single tree searches. In ME and ML trees the frequencies of
true topologies obtained are somewhat higher than those for
tree A, and the distributions of R is narrower partly because the

FIG. 3. Distributions of relative optimality scores (R) of the trees obtained by the MP, ME, and ML methods (solid bars) and the single-tree
algorithms (open bars) when model tree B with dmax 5 1.0 was used. See the legend of Fig. 2 for details.
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sum of all branch lengths is smaller in this case. As in the case
of tree A, the single-tree search algorithm is as effective as the
exhaustive search in obtaining the correct tree for all tree-
building methods. The results for the case of dmax 5 0.25 were
virtually the same as those of model tree A (data not shown).
The single-tree MP, ME, and ML algorithms were also nearly
as effective as the exhaustive search. Therefore, the magnitude
of rate heterogeneity as considered in model tree B does not
affect our conclusion seriously.

Model Tree C. This tree was used to examine whether the
above conclusion holds even when the number of sequences
used is large and only a small fraction of all possible topologies
is examined by using heuristic search algorithms. As mentioned
earlier, we used the MM algorithm with a 30% search factor
for obtaining MP trees. Fig. 4 shows the frequency distribu-
tions of R for the cases of dmax 5 0.25, 1.0, and 1.5 with n 5
300. The number of sequences is twice as many as that for tree
A, so that we need to examine more nucleotides to obtain the
correct tree with an appreciable probability. For MP trees the
frequency of correct topologies obtained was highest (about
40%) for the sequence divergence of dmax 5 0.25 and gradually
declined as dmax increased, the frequency for dmax 5 1.5 being
about 10%. Even with this heuristic search algorithm, all MP
trees showed an R that was either 0 or negative. In the case of
dmax 5 1.5 the frequency of correct topologies obtained was so
small (about 10%) that most MP trees were incorrect. Essen-
tially the same tendency was observed for the ME and ML
trees obtained by the heuristic algorithms, though there were
a few cases in which the correct topology was not examined and
thus R was higher than 0. These results show that the heuristic

algorithms used here for finding MP, ME, and ML trees all
tend to identify incorrect topologies particularly when the
extent of sequence divergence is high.

The open bars of Fig. 4 again represent the frequencies of
R values obtained by the single-tree search algorithms. In the
case of the ME method this algorithm (NJ) is as good as or
slightly better in obtaining the true topology than the heuristic
search algorithm (CNI), as in the case of model tree A. For MP
and ML trees, however, the single-tree search algorithm is not
as efficient as the extensive search algorithm for all values of
dmax.

OPTIMALITY SCORES AND TOPOLOGICAL
DIFFERENCES

One might think that the property of R # 0 for optimality
scores is contradictory with Rzhetsky and Nei’s (7) mathe-
matical proof that in the case of ME trees the expected value
of S for the correct topology is always smaller than that for
incorrect topologies as long as unbiased estimates of nucleo-
tide substitutions are used as distance measures. Actually, they
are not contradictory at all. To see this point, we computed the
S value for each of the 105 topologies when we searched for the
ME tree with model tree A with dmax 5 1.0 and n 5 300. Since
we determined the S value for each topology for 500 replica-
tions, we could compute the mean S values (S#) for different
topologies. The topological distance (dT) of a tree from the
true tree can be measured by considering sequence partitions
(22, 31). For model tree A, there are one correct topology (dT
5 0), 6 topologies with dT 5 2, 24 topologies with dT 5 4, and

FIG. 4. Distributions of relative optimality scores (R) of the trees obtained by the MP, ME, and ML methods (solid bars) and the single-tree
algorithms (open bars) when model tree C with n 5 300 was used. When dmax 5 1.5, the Jukes–Cantor distance was often undefinable so that
p-distance was used. See the legend of Fig. 2 for details.
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74 topologies with dT 5 6 (6, 23). The S# values for all the
topologies with dT $ 2 were greater than the mean (S# c) for the
correct topology. The second row of Table 1 shows the means
of S# values for topologies with different dT values. The mean
S# is smallest for the correct topology and increases as dT
increases. This confirms Rzhetsky and Nei’s theoretical pre-
diction. However, S had a wide distribution, so that the S values
for topologies with different dT values overlapped extensively.

For MP and ML trees there is no theoretical study that is
equivalent to Rzhetsky and Nei’s, but computer simulations
showed that essentially the same principle applies to these trees
as well. Thus, the mean M and A for the correct topology were
smaller than those for incorrect topologies (Table 1).

BOOTSTRAP CONSENSUS TREES

The finding that the optimization principle used in phyloge-
netic inference tends to give incorrect topologies when sample
size (n) is small is disturbing, because it defies the current
theoretical basis of phylogenetic inference. If this principle
does not work, what kind of principle should we use in
phylogenetic inference? This is a difficult question to answer.
However, we note that the optimization principle works well if
a sufficient number of nucleotides are examined and the
inconsistency problem does not exist. The number of nucleo-
tides required of course depends on the number of sequences
used and the topology and branch lengths of the true tree,
which are unknown. Note also that in real data analysis even
if one happens to obtain the correct topology, it is not
trustworthy unless the estimates of all or most interior branch
lengths are significantly greater than 0 (6).

These observations lead to one solution to our problem
concerning the optimization principle. That is, a tree obtained
by an optimality criterion should be subjected to the interior
branch test (6) or to the bootstrap test (32). We will then know
reliable or unreliable interior branches or sequence clusters.
Since most topological errors are caused by the erroneous
branching patterns at weakly supported interior branches, a
tree with an interior branch test for a given data set would give
more or less the same conclusion whether the branching
pattern obtained is correct or not (see below for some potential
problems). Therefore, one simple solution to our problem
would be to construct an optimal tree with the interior branch
test or the bootstrap test and derive a conclusion about
phylogeny based on this tree giving little weight to interior
branches that have low statistical support.

A solid statistical test of interior branches is available for ME
and NJ trees (6, 33), but it is dependent on the substitution
model used and is time-consuming when the number of
sequences is large. Furthermore, there is no equivalent test for
MP and ML trees (8). By contrast, the bootstrap test, which is
a crude way of testing interior branches, is applicable to all

tree-building methods and is easy to use. Although this test has
been shown to be conservative under certain theoretical
frameworks (33–37), a conservative test is preferable in real
data analysis, because the evolution of actual DNA (or pro-
tein) sequences almost never follows any mathematical model
available (8). Therefore, the bootstrap test seems to be more
convenient than the interior branch test of Rzhetsky and Nei
(6).

To examine whether this approach is appropriate, we con-
ducted another computer simulation using model tree D in Fig.
1. With this model tree, topological errors occur more often at
interior branch b than at a and g, because the expected branch
length for b is 1y4 as long as that for a and g. Therefore, the
incorrect trees that occur frequently are topologies D1 and D2
in Fig. 1. We would therefore expect that when the incorrect
topologies are obtained the interior branch b generally shows
a lower bootstrap confidence value (PB) than the branches a
and g. We would also expect a lower PB for branch b even for
the correct topology, because this branch is expected to have
a smaller number of substitutions than other branches. In our
simulation we used dmax 5 1.0 (a 5 1y16) with n 5 600, so that
the expected total number of substitutions for branch b was
0.5a 3 600 5 18.75. With these parameters, the frequencies of
correct topologies obtained for MP, ME, and ML methods
were 78%, 77%, and 74%, respectively, when the exhaustive
search was used and 78%, 79%, and 67% when the single-tree
search algorithm was used.

Table 2 shows the PB values for branches a, b, and g for eight
representative sets of simulated sequences that produced four
incorrect and four correct topologies. (The total number of
data sets examined was 200.) In all eight cases in Table 2 the
topology of the bootstrap consensus tree (32) was identical
with that of the tree obtained from the original data set. The
bootstrap test was first conducted by the exhaustive search
algorithms for MP, ME, and ML trees for each data set. For
MP and ML trees, we used the branch-and-bound algorithm
available in PAUP* (18). PAUP* does not have this algorithm for
ME trees, so we used the full heuristic option in the software.
The number of bootstrap replications was 1,000 for MP and
ME trees, but it was 200 for ML trees because of the large
computational time required. When the bootstrap test was
conducted by using the single-tree method, we used the
stepwise addition algorithm for MP and ML trees and the NJ
algorithm for ME trees in PAUP*. In Table 2 the numbers
before and after theysign refer to the PB values for the
exhaustive search and the single-tree search, respectively.

Table 2 shows that the PB values for the exhaustive and the
single-tree search algorithms are similar to each other, though
the PB values for the latter algorithm tend to be smaller than
those for the former in MP and ML trees. This indicates that
the bootstrap test can be done with the single-tree algorithm
in the present case. When original data sets produced incorrect
topologies, the PB value for interior branch b is 44–82% and
is always smaller than that for branches a and g in all MP, ME,
and ML trees. By contrast, the PB values for branches a and g
are nearly 100%, though in the case of ML trees the PB for
branch a for data set a is 90–92%. This is true whether the
topology obtained is D1 or D2. Therefore, if we use a type I
error of 5% (PB 5 0.95) as the significant level, following Efron
et al. (37), these results support our previous conjecture that
incorrect interior branches receive a low PB value, whereas
correct branches generally have a high PB except for ML trees
for data set (a).

When the original data sets produced the correct topology,
however, the relationships of PB among the three interior
branches are not as straightforward as those for incorrect
topologies. In general, branch b shows a smaller PB than
branches a and g, but the difference is often quite small (data
sets e–h). Furthermore, there are several exceptions. In data
set h, for example, PB is lowest for the correct branch a of the

Table 1. Mean optimality scores for trees with different dT values

dT

Optimality principle

MP ME (JC) ML

0 517.1 6 0.7 738.9 6 1.8 22095.4 6 1.4
2 522.8 6 0.3 755.3 6 0.8 22097.4 6 0.6
4 530.4 6 0.2 778.2 6 0.4 22100.3 6 0.3
6 540.6 6 0.1 778.4 6 0.2 22104.1 6 0.2

Results are from 500 replications of computer simulation using
model tree A with dmax 5 1.0 and n 5 300. In each replication,
optimality scores were first computed for all 105 topologies. Mean
optimality scores and their standard errors for topologies with dT 5 0
(one correct topology), dT 5 2 (6 incorrect topologies), dT 5 4 (24
incorrect topologies), and dT 5 6 (74 incorrect topologies) were
computed by pooling the optimality scores for all topologies in all
replications for each value of dT. ME (JC) refers to ME trees with
Jukes–Cantor distance.
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ML tree and is lowest for the correct branch g of the MP tree.
At the present time, the reason for these unexpected PB values
is unknown. Our simulation record showed that the actual
numbers of nucleotide substitutions that occurred for branches
a, b, and g in data set h were 69, 26, and 78, respectively,
indicating that PB is not necessarily correlated with the number
of substitutions. Clearly, the bootstrap is a complex statistical
test, and a detailed study on this subject is currently underway
with respect to different tree-building methods. (So far no
detailed study has been made on the bootstrap test of ML
trees.) However, the strategy suggested above works relatively
well at least for ME (NJ) trees, and therefore it can be used as
a crude way of dealing with the problem raised by the
deficiency of the optimization principle.

This strategy is conservative, but a conservative judgment is
safer in phylogenetic inference because there are many dis-
turbing factors in real data analysis. If the correct topology is
not supported by a statistical test, one can increase the amount
of data to confirm the initial tree. Note also that in this
approach we do not have to make excessive efforts to find the
true optimal tree if there is a simplified method for obtaining
the correct tree with a reasonably high probability. In the
present example, we have seen that a simplified method such
as the stepwise addition or the NJ algorithm gives results
similar to those obtained by the exhaustive search algorithms.

Nevertheless, the bootstrap is not almighty. When inconsis-
tency of estimation of a topology occurs, the bootstrap may
give a high PB value for every interior branch when n is very
large, and a wrong tree may look as though it were statistically
confirmed (8). Therefore, it seems to be necessary to examine
many independently inherited genes in the construction of
reliable phylogenetic trees for different organisms.

DISCUSSION

The major finding in this paper is that the optimization
principle used in current phylogenetic inference tends to give
incorrect phylogenies when the number of nucleotides exam-
ined (n) is small. In the present study we considered relatively
small values of n because the number of sequences used was
small and the extent of sequence divergence was high. How-
ever, when a large number of closely related sequences are
used, this problem would occur even if a large number of
nucleotides were examined. Furthermore, in real DNA se-
quences there are highly conserved and highly variable sites,
and the pattern of nucleotide substitution is much more
complicated than the Jukes–Cantor model. Therefore, this
problem seems to be quite serious in actual data analysis. For
example, a number of authors attempted to construct the MP
tree for the D-loop region of mitochondrial DNAs obtained
from various human populations (38, 39). They spent a large
amount of computer time because there were more than 100
sequences and the sequences were closely related, yet the

results obtained were quite unreasonable in view of the
population trees constructed from gene frequency data (40,
41) and later studies on the same subject (42).

Previously, Felsenstein (16) considered a tree-building
method as an ‘‘estimator’’ of a tree topology and showed that
the MP method can be an ‘‘inconsistent estimator.’’ (Note that
the MP method is not a statistic.) If we are allowed to use a
similar statistical terminology, we can say that all the MP, ME,
and ML methods are ‘‘biased estimators.’’ In fact, when a large
number of sequences are analyzed with a relatively small
number of nucleotides per sequence, most of the trees ob-
tained by these methods would be incorrect.

In the past great efforts have been made to find the MP or
ML tree for a given data set by developing faster and faster
algorithms under the assumption that the optimal tree is
closest to the true tree (18, 19, 21, 27, 43). However, what is
necessary is to develop an efficient method of finding the true
topology. Ideally, it would be nice to develop a method that
gives ‘‘unbiased estimators’’ of true topologies, though we do
not know how to do it at this moment. At the same time, it is
desirable to develop a simplified method of obtaining optimal
trees to save computer time. In the case of the ME principle,
the NJ method seems to be as efficient as or slightly more
efficient than the ME method in finding the true topology, as
shown by the present and previous studies (5, 44, 45). There-
fore, unlike the suggestion made by Swofford et al. (26), there
is no need to search for the ME tree. Particularly, if we
construct a bootstrap consensus tree, both methods give
essentially the same conclusion. For the MP and ML methods
there is no simple algorithm like NJ. In the present study we
used the single-tree MM and TT algorithms for convenience.
For model trees A and B, they worked almost as well as the
exhaustive search methods, but with model tree C they did not.
Implementation of the CNI algorithm with a fewer number of
cycles may improve the performance of the single-tree MP and
ML algorithms.

In the present paper, we are not particularly concerned with
the comparison of the efficiency of obtaining the correct
topology among different tree-building methods, because this
is a complex problem and depends on many factors (8, 46–48).
When the extent of sequence divergence is low and the
deviation from the constant rate of evolution is not large, MP,
ME, and ML seem to be nearly equally efficient (5, 48–51).
When the extent of sequence divergence is high and the
evolutionary rate varies extensively with evolutionary lineage,
ML usually gives a higher probability of obtaining the correct
topology than other methods, provided that the patterns of
nucleotide substitution used for generating simulated se-
quences and for inferring the phylogeny are the same (48, 50,
52).

However, the performance of ML is highly dependent on the
pattern of nucleotide substitution, and the actual pattern of
nucleotide substitution is very complex and apparently changes

Table 2. Percent bootstrap confidence (PB) values for three interior branches—a, b, g—of the trees D, D1, and D2 in Fig. 1

Method

Interior branch Interior branch Interior branch Interior branch

a b g a b g a b g a b g

(a) Tree D1 (b) Tree D1 (c) Tree D2 (d) Tree D1

MP 97y93 46y59 100y100 100y100 66y54 100y100 100y97 63y60 100y100 100y100 82y69 100y100
ME (NJ) 99y98 55y55 100y100 100y100 57y58 100y100 100y100 66y62 100y100 100y100 46y47 100y100
ML 90y92 74y68 100y100 100y100 82y77 98y98 100y98 62y57 95y94 100y100 58y44 100y100

(e) Correct topology (f) Correct topology (g) Correct topology (h) Correct topology
MP 99y96 85y72 100y100 100y100 100y92 100y100 99y96 76y58 100y100 100y100 92y88 83y70
ME (NJ) 100y100 84y88 100y100 100y100 96y96 100y100 100y99 76y77 100y100 94y95 91y93 100y100
ML 92y90 55y50 100y96 100y98 100y94 100y99 80y82 61y56 100y100 62y62 91y88 100y100

Eight different sets of simulated sequence data generated from model tree D with dmax 5 1.0 and n 5 600 were subjected to the bootstrap test.
Original data sets a–d produced incorrect topologies, whereas data sets e–h generated the correct topologies. PB values before and after the y sign
refer to those of the exhaustive search and the single-tree search bootstrap tests. The NJ tree was identical with the ME tree in all the eight cases.

12396 Evolution: Nei et al. Proc. Natl. Acad. Sci. USA 95 (1998)



with time because different species often have different nu-
cleotide frequencies and codon usages (53, 54). For this and
other reasons, the mathematical model to be used in actual
data analysis is often unclear (8, 15). By contrast, MP performs
poorly when the heterogeneity of evolutionary rate is very
high. However, as long as the extent of rate heterogeneity is no
more extreme than that of model tree B, MP seems to work
reasonably well. Note that if we consider the expected branch
lengths rather than realized (observed) branch lengths, which
are much more variable than the expected (M.N. and S.K.,
unpublished data), rate heterogeneity in most real data may
not be much greater than that represented in model tree B
(55–57). If we consider these factors, it is difficult to make any
definitive conclusion about the relative efficiencies of different
tree-building methods. The present study has shown that in
phylogenetic inference simple methods are often as effective
as complicated ones when the bootstrap test is used.
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