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Abstract

We report an unsupervised structural motif discovery algorithm, FoldMiner, which is able to detect global
and local motifs in a database of proteins without the need for multiple structure or sequence alignments and
without relying on prior classification of proteins into families. Motifs, which are discovered from pairwise
superpositions of a query structure to a database of targets, are described probabilistically in terms of the
conservation of each secondary structure element’s position and are used to improve detection of distant
structural relationships. During each iteration of the algorithm, the motif is defined from the current set of
homologs and is used both to recruit additional homologous structures and to discard false positives.
FoldMiner thus achieves high specificity and sensitivity by distinguishing between homologous and non-
homologous structures by the regions of the query to which they align. We find that when two proteins of
the same fold are aligned, highly conserved secondary structure elements in one protein tend to align to
highly conserved elements in the second protein, suggesting that FoldMiner consistently identifies the same
motif in members of a fold. Structural alignments are performed by an improved superposition algorithm,
LOCK 2, which detects distant structural relationships by placing increased emphasis on the alignment of
secondary structure elements. LOCK 2 obeys several properties essential in automated analysis of protein
structure: It is symmetric, its alignments of secondary structure elements are transitive, its alignments of
residues display a high degree of transitivity, and its scoring system is empirically found to behave as a
metric.

Keywords: structural motif discovery; core fold; structural superposition; structural alignment; structural
similarity score; statistical significance score; expectation

Over the past few years, the rate at which new protein folds
have been discovered has not kept pace with the rate at
which protein structures have been determined and depos-
ited into the Protein Data Bank (PDB; Berman et al. 2000).
Although the set of proteins with structures that are solved
is biased both by biological significance and by factors that
contribute to the ease of structure determination, there has
been some speculation that although many naturally occur-
ring fold classes are now represented within the PDB, others
have few or no representatives among known protein struc-

tures (Wang 1998; Zhang and DeLisi 1998; Govindarajan et
al. 1999; Wolf et al. 2000). Just as our understanding of
protein sequences has benefited from sequence alignment
methods and classification schemes, so can our understand-
ing of protein structures benefit from the continued devel-
opment of methods for structure alignment, classification,
and motif discovery. These types of structural analysis
methods complement and extend sequence analysis in the
detection of homologies and other evolutionary relation-
ships among proteins. One of the goals of structural genom-
ics initiatives is to discover all possible folds assumed by
proteins (for reviews, see Sali 1998; Brenner 2001; Chance
et al. 2002); methods for assessing structural similarity are
essential to such endeavors. The large-scale nature of these
efforts requires such methods to be both rapid and auto-
mated.
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Both accurate structural alignments of distantly related
structures and detection of commonly occurring and family-
specific structural motifs have great potential to yield in-
sight into questions such as the conservation of protein
structure, the types of structural interactions “preferred” in
nature, and the relationships among sequence, structure, and
function (Russell et al. 1997; Martin et al. 1998; Orengo et
al. 1999; Huang et al. 2000; Yang and Honig 2000b,c; Bal-
aji and Srinivasan 2001; Todd et al. 2001). The identifica-
tion of structural motifs facilitates and accelerates automated
detection of structural homologies among both closely and
distantly related proteins by focusing on regions of proteins
that have been conserved in the evolution of protein structure
(Holm and Sander 1998; Shindyalov and Bourne 2000; Liang
et al. 2003). Motifs and core folds can also serve as templates
for homology modeling and threading methods (Madej et al.
1995; Panchenko et al. 1999), and can provide guidance to ab
initio fold prediction algorithms (Bystroff and Shao 2002).
Comparisons of the abilities of structural motifs and structural
alignment methods to find distantly related homologs
strongly suggest that motifs provide for greater discrimina-
tion between homologs and analogs than do alignment
methods that do not incorporate information from motifs
(Matsuo and Bryant 1999; Orengo 1999).

Previous efforts to identify commonly occurring struc-
tural motifs can generally be divided into two categories:
those that identify local motifs consisting of a relatively
small number of residues, and those that capture the entire
core fold common to a set of proteins. Many local methods
use sequence information both to identify potential motif
locations and to search structures for the presence of these
motifs. Some such methods map previously known se-
quence motifs (Nevill-Manning et al. 1998; Henikoff et al.
1999, 2000; Huang and Brutlag 2001; Sigrist et al. 2002;
Attwood et al. 2003) onto protein structures (Kasuya and
Thornton 1999; Bennett et al. 2003), whereas others identify
sequence and structure conservation simultaneously
(Bystroff and Baker 1998; Jonassen et al. 2002). Inductive
logic programming has been used to find protein “signa-
tures,” which may be either local or global, by using struc-
tural characteristics such as the lengths and adjacencies of
secondary structure elements (SSEs; Turcotte et al. 2001).

Global motif detection methods frequently perform mul-
tiple structure superpositions of known homologs and iden-
tify motifs and core folds as those portions of the structures
that are aligned (Koch et al. 1996; Leibowitz et al. 2001).
Some methods require further evidence such as low struc-
tural variability (Schmidt et al. 1997) or the presence of
conserved structural properties (Orengo 1999) for inclusion
of residues in a motif. Gelfand et al. (1998; Stoyanov et al.
2000) find the core fold of immunoglobulin families by
examining distances between � carbons and using a mul-
tiple sequence alignment to obtain correspondences among
the residues of the structures, and thus avoid performing

multiple structure alignments. Matsuo and Bryant (1999)
also avoid the need for multiple structure alignments by
defining the homologous core structure of a protein as those
residues that are frequently aligned in pairwise structural
alignments of homologs.

The problem of detecting global structural similarity is
complicated by the presence of strong local structural simi-
larities among proteins that have globally dissimilar struc-
tures. These regions of local structural homology tend to
correspond to commonly occurring motifs consisting of a
few SSEs that are not specific to any single fold or protein
family. An analysis of the CATH structural classification
hierarchy, for example, revealed a number of such local
motifs that are found in a variety of families and folds
(Orengo et al. 1997). This type of structural overlap can
confuse classification efforts in regions of fold space that
are not easily subdivided into distinct families (Orengo et al.
1997; Harrison et al. 2002). The requirement that a motif
definition arise only from a given set of proteins identified
as homologs by an outside standard can cause information
from more distantly related structures to be ignored, and it
is these distant relationships that are most likely to reveal
information not easily gleaned from previously known evo-
lutionary relationships. Because unsupervised motif discov-
ery methods are unencumbered by the limitations of the
existing protein classification systems from which sets of
homologous proteins are typically obtained, they are per-
haps more likely to discover previously unknown motifs
and structural relationships than are supervised methods.

Here, we present an unsupervised motif discovery
method, FoldMiner, that identifies motifs and core folds
from pairwise structural alignments of a query structure to a
database of target proteins. Neither multiple structure su-
perposition nor sequence similarity is required. Because
these alignments and motifs are determined purely from
structure, they are ideally suited for analyses of the rela-
tionships among structure and other properties of proteins,
such as sequence and function. The algorithm may also be
run in a supervised fashion by limiting the target database to
known homologs of the query structure.

As FoldMiner depends on pairwise structural alignments,
it includes a structural superposition algorithm, LOCK 2,
that is capable of detecting distant structural homologies.
LOCK 2 is an improved version of Singh and Brutlag’s
LOCK algorithm (Singh and Brutlag 1997). Although many
structural alignment algorithms are capable of aligning
structurally similar proteins, they tend to produce widely
varying results in the more interesting cases of distantly
related structures (Feng and Sippl 1996; Godzik 1996). In-
sertions and deletions of SSEs, for example, tend to result in
either gapped or high root mean square deviation (RMSD)
alignments (Grishin 2001). Such insertions in one protein
with respect to another can occur both outside and within
the core fold common to both structures. In the former case,
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alignment algorithms must be capable of detecting both
global and local similarities, whereas in the latter case, they
must be able to accommodate large gaps in the residue
alignment. Changes in lengths and orientations of individual
and groups of SSEs are also common (Mizuguchi and Blun-
dell 2000) and require that scoring functions be flexible
enough to detect such changes while still avoiding errone-
ous correspondences.

Most structural alignment algorithms use rigid body
transformations and fall into one of two major categories:
those that operate entirely at the level of individual residues
(often restricted to C� atoms) and those that operate at the
level of SSEs, often using simplified representations of he-
lices and strands to achieve an initial superposition that is
later refined at the residue level. Among commonly used
alignment methods that fall into the first category, the Struc-
tal algorithm is perhaps the most analogous to sequence
alignment methods (Gerstein and Levitt 1996). It uses it-
erative dynamic programming to optimize a global align-
ment with a score that incorporates gap penalties and is
based on interatomic distances between alpha carbons. In-
stead of using RMSD as a measure of structural similarity,
Minarea minimizes the “soap film” surface area between the
� carbon traces of the query and target structures (Falicov
and Cohen 1996). DALI avoids rigid body transformations
by aligning � carbon distance matrices (Holm and Sander
1993). More recently, the Combinatorial Extension (CE)
algorithm was introduced; it builds alignments from small
stretches of equivalent residues in the query and target
structures (Shindyalov and Bourne 1998).

In contrast, both the Vector Alignment Search Tool
(VAST; Gibrat et al. 1996) and LOCK 2 obtain an initial
superposition by representing SSEs as vectors and optimiz-
ing their alignment subject to several scoring functions.
VAST uses graph theoretic methods to find clusters of vec-
tors in the query and target structures with similar relative
orientations. LOCK 2 instead uses geometric hashing and
dynamic programming to find a pair of vectors in the query
and a pair in the target which, when aligned, bring the entire
query and target structures into register (Singh and Brutlag
1997). LOCK 2 uses seven scoring functions to examine
various distances and angles among query and target SSEs
in order to find the best registration of the two proteins.
After SSEs are aligned, both LOCK 2 and VAST refine the
alignment at the residue level. LOCK 2 iteratively matches
nearest neighbors, whereas VAST uses a Monte Carlo al-
gorithm to explore the effects of moves such as extending or
shortening aligned regions. Yang and Honig (2000a) have
developed a similar method that aligns SSEs by considering
their relative orientations in two structures. The residue
alignment is then refined by using one round of dynamic
programming followed by an iterative cycle of a rigid body
superposition method introduced by Kabsch (1978) that ter-
minates when the RMSD converges.

A recent algorithm introduced by William Taylor oper-
ates entirely at the level of SSEs (Taylor 2002). Taylor
models interactions between SSEs by representing them as
line segments and examining the overlap of each pair of
segments. The interactions in each protein are represented
as a graph, and the query and target structures are aligned
via a bipartite graph-matching algorithm.

We have tested the ability of LOCK 2 to recognize distant
structural relationships as defined by the Structural Classi-
fication of Proteins (SCOP; Murzin et al. 1995). We con-
sider domains within the same SCOP fold to be structural
neighbors even if they have no known evolutionary rela-
tionship. As even slight changes in orientations of SSEs in
distant homologs make it difficult to achieve a correct, un-
gapped residue alignment, we believe it is both appropriate
and necessary to assess structural homology at the level of
SSEs (Mizuguchi and Blundell 2000). Accordingly, we
have focused our efforts on increasing the accuracy and
sensitivity of SSE alignment phase of LOCK 2. Unlike most
structural alignment algorithms, LOCK 2 now reports the
SSE alignment to the user in addition to the residue align-
ment.

FoldMiner provides several features that are of particular
use in the automatic analysis of protein structures. In the
process of performing a structural similarity search, Fold-
Miner not only reports statistically significant alignments
but also detects the structural motif shared by the query and
high-scoring target structures that is the basis for the struc-
tural similarity. Furthermore, its alignment scores are easily
converted into distances between structures that are empiri-
cally found to obey the triangle inequality. Because LOCK
2 is a symmetric superposition algorithm, this distance is a
metric that measures structural similarity between proteins.
Pairwise alignments of protein structures that share a com-
mon fold are almost completely transitive at the level of
SSEs and are nearly transitive at the residue level. That is,
given three protein structures, two of the three possible
pairwise alignments predict the third alignment. These
properties allow users to take advantage of information con-
tained within pairwise structural alignments in order to de-
tect similarities across multiple structures. We validate
FoldMiner in this study by comparing it to both VAST and
the CE algorithm.

Results

Pairwise alignment scores and expectation scores

We have performed all unique pairwise alignments of struc-
tures in a database of 2448 SCOP domains, no two of which
share >25% sequence identity. These domains were ob-
tained from the ASTRAL compendium (Brenner et al.
2000) and represent 498 folds covering the mainly �,
mainly �, �+�, and �/� SCOP classes as of release 1.55.
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We consider the structural neighbors of a given domain to
be those structures in the same SCOP fold, as these domains
generally have the same overall topology and connectivity
of SSEs. Because some SCOP folds are quite diverse, how-
ever, we do not anticipate that structural alignment algo-
rithms will attain 100% sensitivity.

To assess the statistical significance of LOCK 2 align-
ments, we have developed alignment scores based on the
algorithm’s dynamic programming scoring functions.
Briefly, the relative orientations of aligned SSEs with re-
spect to both one another and the surrounding SSEs in the
query and target structures determine the score as described
by Singh and Brutlag (1997). The final alignment score is
normalized to the larger of the query versus query and target
versus target scores in order to favor alignments that are
global with respect to both the query and target over align-
ments that are local with respect to one or both of the
aligned structures. The score can then be converted into a
distance between the two structures:

d�query,target� = 1 − alignment score ( 1)

These distances obey the triangle inequality within 5% error
for all triples of over a set of three million alignments con-
sisting of all pairwise superpositions of the 2448 structures
described above. That is, for any three structures A, B, and
C, the normalized scores almost always satisfy the follow-
ing condition:

d�A,B� + d�B,C� � d(A,C) ( 2)

Because LOCK 2 is a symmetric algorithm, the distance
described in Equation 1 behaves as a structural similarity
metric. This property will be useful in applications such as
clustering and classification of proteins based on structural
alignments.

To develop expectation scores for structural alignments,
we have created background distributions of alignment
scores for each SCOP fold. The distribution for a given fold
consists of scores obtained from alignments of all structures
within the fold to all structures outside of the fold’s SCOP
class. It is necessary to exclude alignments of structures
within the same SCOP class because many structural simi-
larities cross SCOP fold boundaries. Structures in different
SCOP classes, however, tend to have generally different
compositions and arrangements of SSEs and normally do
not align well at a global level (Murzin et al. 1995). This
process is analogous to aligning random sequences in order
to produce background distributions of scores for sequence
alignment algorithms.

As is the case for alignments of random sequences, these
structural alignment scores follow an extreme value distri-
bution (Equation 3; Altschul et al. 1990; Altschul and Gish
1996). The survival function of the extreme value distribu-

tion therefore gives the probability that an alignment score
is achieved by chance, that is, the probability of obtaining a
false positive (Equation 4).

P�x� =
1

�
�e

− ��x− ��

�
���exp�e

− ��x− ��

�
��� ( 3)

P�false positive� = P �score � x� = 1 − exp � − e
� −

x− �

�
��

( 4)

We have fit the parameters of the extreme value distribu-
tions to our empirically derived background distributions to
obtain expectation scores for LOCK 2 alignments (Fig. 1).
Curve fitting was performed by using the S-PLUS 6 soft-
ware package. Thus, LOCK 2 provides an assessment of the

Figure 1. Statistical significance values and expectation scores for the
ferredoxin-like SCOP fold. All SCOP ferredoxin-like domains (SCOP fold
d.58) in a database of 2448 SCOP domains of <25% pairwise sequence
identity were aligned by LOCK 2 to all other structures in the database that
do not belong to this fold’s SCOP class. (A) The probability density of
alignment scores is shown as bars. (B) The empirical CDF of the prob-
ability density (122,677 points plotted as dots) was fitted to an extreme
value distribution, yielding a residual squared error of 0.004719. Fitted
values are plotted as crosses (+) in both panels.
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statistical significance of an alignment in the form of an
expectation score, which allows us to control the number of
expected false positives obtained in a database search in
accordance with Equation 5:

�number of alignments� � �p-value�
≈ �expected number of false positives� ( 5)

We have chosen to produce a separate distribution for each
fold because the probability of finding insignificant struc-
tural similarities varies with features such as compactness
and secondary structure composition. In cases in which the
query’s SCOP fold is unknown, we use a composite distri-
bution for the query’s SCOP class. If the query’s SCOP
class is also unknown, we use a background score distribu-
tion encompassing all folds in SCOP’s mainly �, mainly �,
�+�, and �/� classes.

Structural similarity searches and motif discovery: The
FoldMiner algorithm

Core folds and structural alignment

Expectation scores allow the user to align a single query
structure to a database of targets at a statistical significance
level determined by the size of the database and a desired
upper bound on the false-positive rate (Equation 5). An
expectation of 10, for example, implies that ∼ 10 results will
be false positives. For the database of 2448 structures used
in this study, an expectation of 10 corresponds to a P value
of 0.004. The amount of time required to perform all 2448
alignments varies among different query structures; the av-
erage time required to align a member of SCOP’s globin
superfamily to the entire target database is 3.6 min on a
1.2-GHz Athlon processor. This corresponds to an average
of less than a tenth of a second per alignment.

FoldMiner performs structural similarity searches using
LOCK 2 to carry out the pairwise structural alignments. It
differs from many other search algorithms in that it outputs
not only a residue alignment but also the secondary struc-
ture alignment and a definition of the structural motif shared
by the query and high-scoring targets. Matsuo and Bryant
(1999) have previously reported improved discrimination
between homologs and analogs by requiring that homologs
align to a well-conserved core structure, compared to dis-
crimination based on similarity measures such as the per-
centage of aligned residues and the RMSD. FoldMiner uses
information about the structural conservation of the query’s
SSEs learned from pairwise superpositions in order to
achieve better discrimination between true and false posi-
tives that lie on the borderline of statistical significance. The
motif is described probabilistically at the level of SSEs and
may be viewed visually by coloring SSEs according to their
observed conservations. Because LOCK 2 favors global

structural alignments, FoldMiner motifs tend to be global as
well, and often represent the core fold of the query protein
and its homologs. This process is described in more detail
below.

Analysis of the background distributions of alignment
scores reveals that very few alignments attain >50%–60%
of the maximum alignment score; we have observed this
trend even among alignments of structures known to be
homologous (data not shown). Many structures within the
SCOP hierarchy contain a number of SSEs that are not part
of the core motif common to all members of a given fold,
and thus even global alignments will rarely encompass the
entire query and target structures. An alignment that is glob-
al with respect to the core fold of the query structure may
not appear to be statistically significant if the target struc-
ture is large, as the raw alignment score is normalized to a
value that is proportional to the total number of SSEs in the
larger of the query and target structures.

This problem can be overcome by detecting the core fold
of the query structure via examination of high-scoring align-
ments and by using this information both to recognize more
distantly related structural homologs and also to exclude
false positives by requiring that targets align to this core
fold. The core fold may be thought of as the structural motif
shared by the query and high-scoring target structures. Fold-
Miner determines how well the position of each query SSE
is conserved among the query protein and its homologs in
order to find the regions of the query that are expected to
align well to target structures. Hence, even when all query
SSEs participate in the core fold, the structural conservation
calculations identify both structurally variable and relatively
invariant regions of the query protein. FoldMiner then per-
mits a greater or lesser degree of variability, respectively, in
the positions of aligned target SSEs when searching for
homologous structures.

Data regarding the conservation of various regions of the
query structure can be used to re-examine alignments and
detect homologs not identified in the first pass of the struc-
tural similarity search. This is achieved both by placing less
emphasis on those SSEs that are not part of the core fold or
whose positions that are poorly conserved, and also by
renormalizing raw alignment scores to a more reasonable
value that reflects the size of the core fold and the expected
structural variation among homologous structures. This pro-
cess does not require prior knowledge of the motif or of the
identities of any homologous structures within the target
database. Furthermore, this approach increases both the sen-
sitivity and specificity of the structural similarity search by
using both the alignment score and the region of the query
to which a target is aligned to discriminate between ho-
mologs and high-scoring false positives. As motif discovery
and refinement of the structural similarity search do not require
that additional alignments be performed and involve only pars-
ing of alignment data, these processes are quite rapid.
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Motif discovery and refinement of structural
similarity searches

FoldMiner determines which of the query’s SSEs partici-
pate in the motif shared among the query and its structural
neighbors by examining SSE alignments for high-scoring
target structures. All statistically significant alignments are
taken into account in this process. As LOCK 2 finds a global
alignment whenever possible, these motifs are often consis-
tent with definitions of core folds as described in SCOP
when the target database consists of SCOP domains. Be-
cause the LOCK 2 algorithm assigns a score to each aligned
SSE, FoldMiner can determine the conservation of the po-
sition of each query SSE by calculating an average SSE
score across all targets with statistically significant homol-
ogy with the query structure. This average is weighted such
that highly significant targets contribute most heavily, and
the impact of false positives, which are likely to be of lower
statistical significance, is minimized. Thus, SSEs that fre-
quently achieve high scores in statistically significant align-
ments to target structures are considered to be highly con-
served. Insertions with respect to the core fold are easily
detected because homologs lacking these insertions report
SSE alignment scores of zero within the inserted regions,
thus drastically decreasing the structural conservation val-
ues of the inserted SSEs.

Formally, the conservation of the ith SSE, denoted ci, is
calculated by normalizing its weighted average score across
the statistically significant alignments such that ci lies on the
interval [0, 1]. More details are provided in the Materials
and Methods section. High values of ci correspond to highly
conserved SSEs. Instead of using a cutoff value to exclude
certain helices and strands from the motif entirely, the con-
servation value determines the extent to which each SSE
participates in the motif. Thus, the motif definition incor-
porates all query SSEs, but the user may wish to constrain
the definition to those elements that are highly conserved.
High conservation values identify SSEs in structurally in-
variant regions that are most useful for recognition of struc-
tural homology, whereas low conservation values are asso-
ciated with structurally variable regions or insertions with
respect to the core fold that are less useful for discrimination
between homologs and analogs.

After obtaining a motif definition, FoldMiner uses this
information to refine the structural similarity search. Al-
though poorly conserved SSEs would not normally be con-
sidered to be part of the core fold, ignoring them entirely
would decrease the specificity of the search because struc-
tures that are closely related to the query, and therefore
likely share with it both the core fold and additional SSEs,
would not be distinguished from more distantly related tar-
gets. Therefore, a new maximum SSE score is calculated for
each query SSE by using both its conservation, as deter-
mined by the weighted average score described above, and

a percentage of the original maximum score. This ensures
that no maximum SSE score drops below a user-specified
value. The value x in Equation 6, which lies on the interval
[0, 1], determines to what extent the conservation affects the
new maximum SSE score. The new maximum score for the
ith SSE (Equation 7) is calculated as a percentage pi (Equa-
tion 6) of the original maximum SSE score, and the maxi-
mum score for the entire alignment can be calculated from
the sum of the new maximum SSE scores.

pi = �1 − x� + x�ci�, x ∈ �0,1� ( 6)

si = ith Maximum SSE Score
= �Original Maximum SSE Score� � pi ( 7)

By default, 75% of the new maximum SSE alignment score
is derived from the conservation calculation (x � 0.75). We
find that this value achieves good results across many folds,
but it may need to be adjusted by the user in some cases. If
the target database is small or if the structural similarity
search reveals that it contains few examples of the query’s
fold, the user should reanalyze the alignment results by
lowering the value of x. This process is rapid, as no align-
ments are performed in the reanalysis of results with differ-
ent search parameters.

Now that the motif has been defined in terms of conser-
vation values, FoldMiner uses this information to weight
alignment scores for individual SSEs in order to determine
a new alignment score for each target in the database. The
more strongly conserved a SSE is, the more it will contrib-
ute both to the maximum alignment score and to an indi-
vidual target’s score. The alignment results are refiltered
both by weighting the score for each aligned SSE by pi and
by normalizing the total alignment score to the newly cal-
culated, lower maximum score. To attain a high score, a
target structure must now align well to a specific conserved
region of the query. This process of calculating SSE con-
servations and new maximum scores is repeated until the
maximum scores converge. Hence, FoldMiner provides not
only a list of structures that are homologous to the query but
also the definition of the motif or core fold used to detect
these similarities in terms of the structural conservations of
SSEs. When SSEs are colored by their conservations, the
core fold and well-conserved SSEs can easily be identified
by eye (Fig. 2).

Validation of motifs across multiple structures

Although it seems likely that those query SSEs that rou-
tinely align well to target SSEs are part of a structurally
conserved motif, we sought further proof that highly con-
served SSEs in one structure correspond to highly con-
served SSEs in other structures. That is, if FoldMiner does
detect structural motifs, we would expect that the highly
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conserved SSEs in one structure would tend to align to
highly conserved SSEs in other structures. These SSEs
would then correspond to the most strongly conserved re-
gions of the structural motif. To test this hypothesis, we
examined the conservation values of pairs of aligned SSEs

for structures in seven different highly populated and di-
verse SCOP folds (Table 1). For each fold, this analysis was
restricted to statistically significant alignments of structures
appearing in the low sequence identity database of 2448
SCOP domains used in this study.

Figure 2. Visualizations of motifs from several SCOP folds. Structural similarity searches were performed by using members of four
different SCOP folds as queries and a target database of 2448 SCOP domains of low sequence identity. In each panel, the query’s SSEs
are colored according to their structural conservations (calculated as described in the text) with bright and dark colors representing high
and low conservation values, respectively. (A) Arrows indicate strands of SCOP domain d1neu__ that are insertions with respect to the
conserved core immunoglobulin fold (SCOP fold b.1). (B) Two strands of members of the SH3-like barrel fold (SCOP fold b.34) tend
to be more highly conserved than are the remaining three strands. SCOP domain d1dbwa_ is pictured. (C) In general, strands are more
conserved than are helices among members of the thioredoxin fold (SCOP fold c.47). One helix, however, is well conserved; SCOP
domain d1kte__ is pictured. (D) One helix and the sheet it packs against are well conserved in domain d1eo6a_ of SCOP’s �-grasp
fold (fold d.15), whereas the remaining helices are structurally variable with respect to the corresponding helices in the domain’s
structural homologs. All cartoon diagrams were produced by MOLSCRIPT (Kraulis 1991; Esnouf 1997).
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Because exact conservation values depend on the particu-
lar structure under consideration, they cannot be directly
compared across multiple structures. The Kendall rank cor-
relation test was therefore used to detect correlations in the
conservation values. We have tabulated the percentage of
query structures in each fold for which query SSE conser-
vations are correlated with the conservations of the target
SSEs to which they are aligned. The percentage of queries
for which this correlation was significant at p � 0.01 is
given in Table 2. In most of these folds, conservation levels
are correlated across most fold members.

Although this correlation holds for many queries, it does
break down in some cases. Examination of the structures for
which the correlation does not hold in the immunoglobulin-
like fold (SCOP fold b.1), for example, reveals that several
have low secondary structure content and therefore lack the
fold’s core structure as determined by secondary structure
assignments. Two other uncorrelated immunoglobulin-like
queries are members of the “Cu, Zn superoxide dismutase-
like” SCOP superfamily, which has only three representa-
tives in the target database in total. It is possible that the
core motif of this superfamily is somewhat different than
the motif discovered for the rest of the immunoglobulin-like
fold. In some cases, the uncorrelated structures consist of
entire superfamilies or families. This trend is particularly
prevalent in the �-grasp fold (SCOP fold d.15), indicating
that the superfamilies of this fold may be structurally diver-
gent and perhaps can be distinguished by differences in their
core folds.

Additional evidence for FoldMiner’s detection of a motif
that is present in multiple structures comes from the high
degree of transitivity among LOCK 2 assignments. That is,
the alignment of structures A and B and the alignment of
structures B and C predict the alignment of structures A and
C. For statistically significant superpositions of structures
within the same SCOP fold, this relationship holds ∼ 95% of
the time at the level of SSEs. The degree of transitivity at

the residue level varies from ∼ 40%–70%, depending on the
fold of the structures under consideration. It should be noted
that this analysis ignores cases with missing data (that is,
cases in which the residues or SSEs under consideration
were unaligned in one or more of the A versus B, B versus
C, and A versus C alignments). Taken together with the
correlation of conservation values, transitivity implies that
FoldMiner identifies a structural core common to most or all
members of a SCOP fold, that the same portions of this
motif are highly conserved in all of the structures, and that
the motif tends to be correctly aligned.

Detection of local motifs
Although the LOCK 2 scoring system is designed to fa-

vor global alignments, it is possible to detect local motifs in
a query structure if the target database contains few globally
similar structures. In this case, the conservation calculation
will allow the search algorithm to focus on a smaller region
of the query structure. We have performed a structural simi-
larity search by using DNA topoisomerase III from Esche-
richia coli as the query structure. This protein belongs to a
SCOP class excluded from our target database and therefore
has no globally similar structural homologs within the da-
tabase. Over the course of several iterations, the search al-
gorithm detects five conserved SSEs out of the 42 SSEs of
the topoisomerase. These five SSEs show strong homology
with the “winged helix” DNA-binding domain family of
SCOP’s DNA/RNA binding three-helical bundle fold (Fig.
3). This particular family contains two � strands in addition
to the helical bundle.

Some of the winged helix DNA-binding domains have
been cocrystallized with DNA, and the superposition of the
protein-DNA complex and the topoisomerase strongly sup-
ports the hypothesis of Mondragon and DiGate (1999) that
the topoisomerase binds DNA in a groove formed by do-
mains I and IV, located at the N and C termini of the
protein, respectively. It is interesting to note that one of the
helices of the topoisomerase’s three-helical bundle of topoi-
somerase is part of what Mondragon and DiGate identify as

Table 2. Conservations of secondary structure elements of
domains in the same SCOP fold are correlated

SCOP
fold Fold name

Queries with significantly
correlated conservation (%)

a.1 Globin-like 68.8
b.1 Immunoglobulin-like 88.8
b.34 SH3-like barrel 76.5
c.23 Flavodoxin-like 97.5
c.47 Thioredoxin fold 69.2
d.15 �-Grasp (ubiquitin-like) 43.3
d.58 Ferredoxin-like 43.8

a The percent of protein domains for which the correlation of secondary
structure element conservation values is significant, according to the Ken-
dall rank correlation test at p � 0.01.

Table 1. SCOP folds selected for detailed analysis

SCOP
fold Fold name Superfamiliesa Domainsb

Domains
in target
databasec

a.1 Globin-like 2 35 16
b.1 Immunoglobulin-like 14 2673 116
b.34 SH3-like barrel 7 195 20
c.23 Flavodoxin-like 16 441 41
c.47 Thioredoxin fold 3 371 26
d.15 �-Grasp (ubiquitin-like) 9 279 30
d.58 Ferredoxin-like 36 584 73

a Number of SCOP superfamilies in each SCOP fold.
b Total number of protein domains in each SCOP fold.
c Number of domains appearing in the target database, which consists of a
set of SCOP domains with no >25% pairwise sequence identity obtained
from the ASTRAL compendium (Brenner et al. 2000).
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the fourth domain of the protein, whereas the remainder of
the conserved SSEs are all part of the first domain. Fold-
Miner frequently identifies motifs consisting of SSEs that
are not consecutive in sequence space.

If we now force FoldMiner to ignore the SSEs that are
part of the DNA binding motif, we can detect other local
motifs in the structure. The next motif discovered appears to
occur in many types of structures across many SCOP folds;
it consists of a small sheet against which several helices
pack. Continuing to exclude SSEs that appear in motifs the
search algorithm has already detected reveals the presence

of a � barrel. The major cold-shock protein of Bacillus
caldolyticus (SCOP domain d1c9oa�), a member of SCOP’s
cold-shock DNA-binding domain-like family, aligns to a
region of the topoisomerase that would likely be in close
proximity to full-length bound DNA. Figure 3 shows align-
ments of the topoisomerase to these three SCOP domains.

Receiver operating characteristic curve analyses:
Comparison of alignment algorithms

Differing philosophies behind different alignment algo-
rithms make comparisons among them difficult, as the mea-
sure of alignment quality optimized by one algorithm can-
not be fairly applied to the alignment produced by a differ-
ent method designed to optimize a different statistic.
Although LOCK 2 requires that all aligned residue pairs be
no farther than 3.0Å apart, for example, other algorithms
align a greater number of residues at the expense of the
RMSD. Receiver operating characteristic (ROC) curves
provide a means by which we can compare different search
algorithms by using each method’s own measure of align-
ment quality to rank the relative similarities of a database of
structures to a query structure (Swets 1988).

To validate the performance of the FoldMiner algorithm,
we have compared ROC curves produced by FoldMiner,
VAST, and the CE algorithm. Both FoldMiner and VAST
provide alignment scores by which results can be ranked
(although the methods by which these scores are obtained
are different), whereas the CE algorithm ranks results ac-
cording to Z scores. The CE algorithm does not provide
statistical significance values, so we have chosen to discard
alignments with low Z scores. We use the cutoff of 3.7
recommended by Shindyalov et al., who state in the CE
software distribution that the interpretation of alignments
with Z scores of <3.7 requires evidence beyond the align-
ment itself. VAST results with significance values greater
than p � 0.004, the cutoff value used by FoldMiner to
achieve an expectation of 10, were also discarded.

ROC curves measure the abilities of the three algorithms
to rank structures within the queries’ respective SCOP folds,
the true positives, ahead of structures outside their folds,
termed false positives. For a given point on an ROC curve,
the x value denotes the number of structures outside the
query’s fold ranked ahead of the yth true positive. Thus,
steeper ROC curves indicate greater accuracy with respect
to the definitions of true and false positives. We selected
seven of the most populated and diverse SCOP folds for
ROC curve analyses, two from each of the mainly �, �+�,
and �/� classes, and one from the mainly � class (Table 1).
ROC curves were produced for each structure in each fold;
four representative curves are shown in Figure 4.

In general, FoldMiner and VAST outperform the CE al-
gorithm, which often returns fewer results than do the other

Figure 3. Topoisomerase III contains several small domains. A structural
similarity search using DNA topoisomerase III of E. coli (SCOP domain
d1d6ma_) as the query reveals local structural homology with the winged
helix DNA-binding domain superfamily. The alignment of the topoisom-
erase (blue) to chain E of the transcription factor PU.1 of Mus musculus
(SCOP domain d1puee_, shown in red), which is complexed with DNA
(shown in wireframe), lends support to the hypothesis that the DNA could
bind in the groove identified by Mondragon and DiGate (1999). The DNA
reaches the active site of the topoisomerase as well. Repeated applications
of the structural similarity search that exclude the SSEs of motifs already
identified lead to the discovery of the additional motifs described in the
text. The alignment of the topoisomerase to the C-terminal (UDP-binding)
domain of UDP-glucose dehydrogenase (SCOP domain d1dlja3) is shown
in purple, and an alignment of the major cold shock protein (SCOP domain
d1c9oa_) is shown in green. This figure was produced by Molscript and
rendered by Raster3D (Kraulis 1991; Merritt and Bacon 1997).
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two algorithms. In comparison to the CE algorithm, Fold-
Miner usually attains higher sensitivities without encoun-
tering tradeoffs in specificity. FoldMiner’s average sensi-
tivity for each fold was consistently higher than was CE’s,
and its average specificity was lower than was CE’s in only
two of the seven folds (Table 3).

Although VAST achieves higher sensitivities than does

FoldMiner in all but one fold, in most cases FoldMiner
initially ranks more true positives ahead of false positives in
early regions of the ROC curve than does VAST. That is,
FoldMiner more accurately identifies the query’s closest
structural neighbors, but VAST generally identifies a
greater number of the more distantly related structures than
does FoldMiner.

Table 3. Average sensitivities and specificities for seven SCOP folds

SCOP
fold Fold name

Average sensitivitya (%) Average specificityb (%)

LOCK 2 VAST CE LOCK 2 VAST CE

a.1 Globin-like 84 70 75 98 99 96
b.1 Immunoglobin-like 56 80 53 99 99 99
b.34 SH3-like barrel 57 64 16 98 99 100
c.23 Flavodoxin-like 83 80 47 89 93 94
c.47 Thioredoxin fold 60 90 53 100 99 99
d.15 �-Grasp (ubiquitin-like) 55 63 23 100 100 100
d.58 Ferredoxin-like 40 67 33 99 99 99

a 100 × true positives/(true positives + false negatives).
b 100 × true negatives/(true negatives + false positives).

Figure 4. Receiver operating characteristic (ROC) curves compare the performance of FoldMiner, VAST, and CE. Four representative
ROC curves reveal trends observed in the full set of curves determined for all queries in seven different SCOP folds. VAST alignments
are ranked by alignment score; minor changes occur if they are instead ranked by the number of aligned residues as described in the
text. (A) The ROC curve for the globin query d1ew6a_ shows comparable performance of the three algorithms, although FoldMiner
identifies one more member of the phycocyanin superfamily of the globin fold than do VAST and CE. (B) FoldMiner identifies more
structural neighbors of the immunoglobulin query d1qfoa_ before it finds its first false positive than do the other algorithms, but finds
fewer true positives overall than does VAST. CE returned no results with Z scores >3.7 in this particular case. (C) All three algorithms
find a large number of false positives when the flavodoxin structure d5nul__ is used as the query, as the general motif of helices packing
against both sides of a small � sheet is observed in many different folds. (D) FoldMiner and VAST perform equally well overall when
the �-grasp structure d1vcba_ is used as the query, but FoldMiner more accurately ranks true positives ahead of false positives in early
regions of the curve than does VAST.
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The property of placing true positives ahead of false posi-
tives is not captured in the traditional metrics of sensitivity
and specificity, which take into account only the total num-
bers of true and false positives identified, but is well de-
scribed by the area under the ROC curve (Swets 1988). The
ROC curve with the greatest area has most accurately
ranked true positives ahead of false positives. When differ-
ent algorithms achieve different specificities and sensitivi-
ties, however, the areas underneath their curves are not di-
rectly comparable. Hence, we define the crossover points of
two ROC curves as the points at which the specificities and
sensitivities of the two algorithms are equal (that is, the
points at which the x and y values are equal). When more
than one crossover point is present, we choose the one for
which the sensitivity is greatest (that is, the crossover point
with the greatest y value) and truncate the curves at this
point. If no crossover point exists, this implies that the curve
of one algorithm lies above the other curves at all points; in
these cases this algorithm has outperformed the others. Fi-
nally, if the curves are exactly equal from the point (0,0) to
the point at which the algorithm with the lowest overall
sensitivity terminates, the algorithms have performed
equally well. This last case can also be described in terms of
crossover points, as a crossover point exists at all points on
the ROC curves until the curve of the first algorithm termi-
nates, and the areas underneath the curves at all of these
crossover points are equal. The concept of truncating an
ROC curve in order to focus on its most relevant region has
been used by others (Gribskov and Robinson 1996), and is

extended here in order to select the best truncation point for
the purpose of comparing the area under two ROC curves.
In this discussion, we refer to the area under an ROC curve
as the area calculated for the portion of the curve lying
between the origin and the last crossover point.

As the CE algorithm often achieves lower sensitivities
than do VAST and FoldMiner, we have compared Fold-
Miner to the two other algorithms separately. For each
query, we calculate the last crossover point (that is, the
crossover point with the greatest sensitivity). For all queries
in a single SCOP fold, we count the number of cases in
which either a crossover point does exist and the FoldMiner
ROC curve has a greater area than does the second algo-
rithm, or in which no crossover point exists and FoldMin-
er’s curve lies entirely above the curve of the second algo-
rithm. Results are tabulated separately for each fold and for
comparisons between FoldMiner and each algorithm. The
average numbers of true and false positives at which the
crossover points occur are also noted (Table 4). The overall
results do not change when VAST alignments are ranked by
the number of aligned residues instead of the alignment
score, although the performance of VAST does improve
slightly (data not shown).

For five of the seven folds, FoldMiner tends to have more
area under its ROC curves (calculated only up to the cross-
over point) than does VAST. Out of a total of 318 ROC
curves examined, FoldMiner achieves a greater area under
its curve than does VAST in 176 cases, VAST achieves a
greater area under its curve than does FoldMiner in 48

Table 4. LOCK 2 ranks true positives ahead of false positives more accurately than do VAST and the CE algorithm

SCOP
fold Fold name LOCK 2a CEa VASTa Ties

b
False

positivesc
True

positivesc

Comparison of LOCK 2 and CE
a.1 Globin-like 7 3 — 6 19.7 11.5
b.1 Immunoglobulin-like 58 20 — 38 7.4 37.4
b.34 SH3-like barrel 6 0 — 11 0.2 3.3
c.23 Flavodoxin-like 18 7 — 15 42.8 11.3
c.47 Thioredoxin fold 7 1 — 18 0.5 11
d.15 beta-Grasp (ubiquitin-like) 5 4 — 21 0.4 6.5
d.58 Ferredoxin-like 25 9 — 39 3.2 12.6

Totals 126 44 — 148
Comparison of LOCK 2 and VAST

a.1 Globin-like 6 — 7 3 13 10.9
b.1 Immunoglobulin-like 80 — 15 21 8.6 48.2
b.34 SH3-like barrel 10 — 0 7 4.7 6
c.23 Flavodoxin-like 34 — 2 4 101 23.4
c.47 Thioredoxin fold 6 — 1 19 0.5 13.8
d.15 beta-Grasp (ubiquitin-like) 7 — 8 15 2.3 11.8
d.58 Ferredoxin-like 33 — 15 25 2.3 17.5

Totals 176 48 94

a Number of times LOCK 2 or the second algorithm (CE or VAST) ranks true positives ahead of false positives more accurately than
does the other.
b Number of times LOCK 2 and the second algorithm rank true positives ahead of false positives equally well.
c Average numbers of false and true positives at which the last crossover point between LOCK 2 and either CE or VAST ROC curves
occurs.
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cases, and 94 cases are ties. When VAST alignments are
ranked by the number of aligned residues instead of the
alignment score, these numbers become 164, 62, and 92,
respectively, for a net decrease of 26 cases in which the area
under the FoldMiner curve is greater than the area under the
VAST curve.

FoldMiner outperforms the CE algorithm in all seven of
the examined folds. In the case of the CE algorithm, how-
ever, the crossover points tended to occur earlier in the ROC
curve than was the case for VAST, and many results were
ties that occurred at low sensitivities. This result captures
the overall trends of the ROC curves discussed above, in
that FoldMiner consistently performs better overall than
does CE and tends to perform better than does VAST in
early regions of the ROC curves. It does appear, however,
that in the very early regions of the ROC curves, CE occa-
sionally performs better than do FoldMiner and VAST (Fig.
4C). Although VAST achieves greater overall sensitivities
on average, it is perhaps more crucial that alignment algo-
rithms distinguish between false positives and true positives
that are closely related to the query structure than it is that
they achieve high sensitivities overall, particularly given the
wide scope of the definition of true positives (all structures
within a query’s SCOP fold) used here.

The comparison of the area under ROC curves of the two
methods may be biased against the algorithm with higher
sensitivity, as this algorithm is on average more likely to
place false positives ahead of true positives in any given
portion of the ROC curve. If this tradeoff does exist, it
seems to affect VAST to a much higher degree than it
affects FoldMiner. VAST’s overall sensitivities is higher
than that of FoldMiner, and, as would be predicted by this
potential trend, FoldMiner performs better in the crossover
point analysis than does VAST in five out of seven folds.
Although the sensitivity of FoldMiner is consistently higher
than that of CE, however, it still outperforms CE in the
crossover point analysis for all seven folds.

Although all three alignment algorithms at times rank
false positives ahead of true positives, some of these false
positives exhibit strong structural similarity to the SCOP
folds used in this study (Fig. 5). The immunoglobulin fold
(SCOP fold b.1) shows a wide range of structural variation,
particularly with respect to the angle between the two sides
of the Greek key that defines the fold (Halaby et al. 1999).
Other SCOP folds are comprised of Greek keys of different
sizes, and it is not unusual for the relative orientation of the
SSEs in structures from these folds to match the query struc-
ture more closely than do some members of the immuno-
globulin fold itself (Fig. 5A). This issue arises in part be-
cause some SCOP classifications are based on attributes
such as function rather than on pure structural similarity
(Murzin et al. 1995). The flavodoxin-like fold consists of
three layers (���) in which two helices pack against each
side of a five-strand � sheet; this pattern of SSEs appears to

arise in a wide variety of folds and thus the ROC curve for
the flavodoxin fold contains a large number of false posi-
tives (Figs. 4C, 5C). The flavodoxin-like fold may therefore
represent a common theme in protein structure. Such struc-
tural similarities that cross SCOP fold boundaries make it
difficult to analyze the high-sensitivity regions of the ROC
curves, as the inclusion of false positives in the curves, even
when they appear before some true positives, is potentially
not incorrect on the basis of structure alone.

Discussion

FoldMiner is capable of detecting structural motifs in an
unsupervised fashion given only a query protein and a da-
tabase of target structures. It does so without using sequence
information, without performing multiple structure align-
ments, and without prior classification of the target proteins
into families. Instead, the algorithm uses pairwise structural
superpositions performed by LOCK 2 to identify the que-
ry’s structural neighbors and to determine the structural
conservation of each query SSE. Structural conservation
values reflect the variability of each SSE’s position in the
query and its structural homologs. To detect distant struc-
tural relationships and to improve discrimination between
true and false positives, the motif definition is used to re-
analyze alignment results by adapting the scoring system to
focus on conserved regions of the query. This improves both
the sensitivity and specificity of the structural similarity
search both by requiring that a homolog align well to con-
served regions of the query and by placing less emphasis on
structurally variable regions and insertions to the query’s
core fold. FoldMiner iteratively refines the motif definition
from the current set of homologous structures in order to
recruit more distantly related proteins and to discard false
positives. This process ends when the motif definition con-
verges.

Highly conserved SSEs in one protein domain tend to
align to the highly conserved SSEs of other domains, indi-
cating that the conservation values FoldMiner calculates are
biologically relevant. The algorithm is also able to detect
local structural motifs in structures that have no globally
similar homologs in the target database. Sequential appli-
cation of the motif discovery algorithm can result in the
identification of multiple motifs; extension of the algorithm
to identify multiple motifs in one pass is relatively straight-
forward.

To assess the performance of FoldMiner, we have com-
pared it to VAST and the CE algorithm. Although VAST
tends to achieve greater sensitivities overall, FoldMiner out-
performs VAST at low sensitivities, as it is better able to
distinguish between the query’s close structural neighbors
and false positives than is VAST. The CE algorithm, how-
ever, often fails to detect structural similarities identified by
FoldMiner and VAST.
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All three algorithms at times consider structures in dif-
ferent SCOP folds to be more closely related to one another
than are certain structures belonging to the same SCOP fold.
Although we have labeled structures outside of a given pro-
tein’s SCOP fold as false positives, these results are not
necessarily erroneous. It is important to note that structures
that are members of different superfamilies within the same
SCOP fold generally have no known evolutionary relation-
ship (Murzin et al. 1995). Therefore, evolutionary relation-
ships are not necessarily violated when structures outside of
the query’s SCOP fold are ranked ahead of structures in
different superfamilies within the query’s fold. Because
FoldMiner identifies members of a query’s own superfamily
with high accuracy (data not shown), most false positives
fall into this category. Hence, the structural similarities
identified by FoldMiner that cross SCOP fold boundaries
suggest that protein structure classification systems such as

SCOP that are based on attributes other than structure will
in some cases fail to reveal structural relationships shared
among distantly related proteins. Because FoldMiner is an
unsupervised method that does not use predefined fold defi-
nitions, it easily detects remote homologies between mem-
bers of different SCOP folds. An automatically created
structural classification system based on FoldMiner results
would be unbiased by such predefined fold definitions and
may reveal distant structural similarities not readily appar-
ent in manually created hierarchies.

Detection of structural motifs may aid in the classifica-
tion of protein structures, as identification of motifs helps
focus attention on the conserved regions of a fold. Structural
differences within the motif may be more significant than
are differences in other regions of protein structures and
may help distinguish between members of different super-
families or families that share the same overall fold. Cases

Figure 5. LOCK 2 alignments frequently reveal structural similarities that cross SCOP fold and superfamily boundaries. (A) The
immunoglobulin query d1neu__ (blue) aligns well to many Greek keys outside of the SCOP immunoglobulin fold; an alignment to
d1ycsa_ (red) is shown. (B) An alignment of SCOP domain d1ckaa_ (blue), an SH3-domain, to d1d7qa_ (red), an OB-fold domain,
reveals structural similarities between the two domains. Similarly, other SCOP folds that contain barrels frequently align well to
domains in the SH3-like barrel fold. (C) Many members of the SCOP flavodoxin-like fold show strong structural similarity to the
NAD(P)-binding Rossman fold. Here, a flavodoxin (d3chy__, shown in blue) is aligned to d1dih_1 (red). (D) An alignment of a human
protein from SCOP’s ubiquitin-like superfamily (d1vcba_, shown in blue) to a 2E-2S ferredoxin from a cyanobacterium (d1czpa_,
shown in red) reveals structural similarities between two superfamilies of SCOP’s �-Grasp (ubiquitin-like) fold. This figure was
produced by Molscript and rendered by Raster3D (Kraulis 1991; Esnouf 1997; Merritt and Bacon 1997).
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in which the conservations of SSEs in an entire superfamily
or family of structures are not correlated with the rest of the
SCOP fold suggest that these groups of structures may be
somewhat distantly related to other superfamilies or fami-
lies in the fold. Correlation of SSE conservations may fur-
ther assist in determining evolutionary relationships among
protein structures. Structural conservation values calculated
by FoldMiner may also play a role in fold prediction by
identifying regions of a structural fold that tend to vary
among its members and those whose positions remain rela-
tively fixed.

FoldMiner superpositions are performed by an improved
structural alignment algorithm, LOCK 2, which is capable
of detecting more distant structural relationships than is its
predecessor. We have placed increased emphasis on the
alignment of SSEs and have modified our scoring functions
to take into account such factors as differences in lengths
and orientations of SSEs in distantly related proteins. Be-
cause the secondary structure alignment phase is critical for
accurate detection of distantly related homologs, we now
report the secondary structure alignment to the user. The
algorithm is both symmetrical and nearly transitive, and its
scoring system produces structural distances between pro-
teins that obey the triangle inequality (Equation 2). This
makes LOCK 2 suitable for the construction of an auto-
mated structural classification system using alignment
scores converted into structural distances that obey the
properties of a metric.

We have also developed statistical significance scores for
LOCK 2 alignment scores. This is essential for the devel-
opment of fully automated structural classification systems,
and FoldMiner’s unsupervised identification of homologs
and their common structural core is a first step in this di-
rection. Where possible, statistical significance scores have
been developed for individual SCOP folds. This improves
their accuracies by taking into account features of certain
folds, such as compactness, secondary structure composi-
tion, and the presence of internal repeats, that affect the
probability of obtaining biologically insignificant align-
ments by chance. In cases in which a SCOP fold is only
sparsely populated and a background distribution of align-
ment scores cannot be accurately produced, we use a com-
posite distribution from the entire SCOP class of the fold.
These composite distributions are also used when the query
structure’s SCOP fold is unknown but its class is known. A
distribution encompassing all folds in SCOP’s mainly �,
mainly �, �+� and �/� classes is used when even the que-
ry’s SCOP class is unknown.

Because LOCK 2 alignments are transitive, there is
enough information contained within pairwise alignments to
begin to construct multiple structure superpositions, which
would further enhance visualization of structural similarities
and motifs. The correlation of conservation values among
most structures in a given SCOP fold implies that the mul-

tiple structure alignment would also reveal the regions of
the fold that are highly conserved. We are also exploring
both global and local motif detection at the residue level.

Availability

FoldMiner is available on the Internet at http://fold.
stanford.edu/FoldMiner and LOCK 2 is available at http://
fold.stanford.edu/LOCK. Results for pairwise structural
alignments, which are performed by LOCK 2, are generally
returned in several seconds or less, and a PDB file contain-
ing the coordinates of the superimposed structures is sup-
plied. FoldMiner results are generally obtained in 3 to 10
min, depending on the size and nature of the query. Search
results include both a definition of the structural motif
shared by the query and its structural homologs and also
results for all pairwise alignments, including PDB files for
each superposition. The motif is visualized by coloring
query SSEs according to their conservation values. The
freely available Chime plugin (http://www.mdlchime.com/
chime/) is used to visualize both this motif and pairwise
alignments; controls are provided to select, manipulate, and
visualize the protein structures and the aligned regions.
Source code is available royalty-free for not-for-profit in-
stitutions at http://motif.stanford.edu/software/ and from
Stanford’s Office of Technology Transfer for for-profit in-
stitutions. The code has been tested on Unix and Linux
platforms and is written in C and Perl.

Materials and methods

Nonredundant data set construction

A list of SCOP domains, no two of which share >25% sequence
similarity, was obtained from the ASTRAL compendium (Brenner
et al. 2000). We filtered the list to exclude any domain not in
SCOP’s mainly �, mainly �, �+�, and �/� classes. As of SCOP
version 1.55, this list contains 2448 structures from 498 different
folds. SCOP classifications were used to determine the level of
structural similarity of domains; we consider domains in the same
SCOP fold to be structural neighbors.

The LOCK 2 algorithm

Secondary structure superposition

SSEs are reduced to vectors by computing the centroids of the first
two and last two residues for strands and first four and last four
residues for helices. A pair of SSE vectors from the query is
superimposed on a pair of vectors from the target, and a dynamic
programming algorithm scores the resulting superposition of the
entire query and target structures. All possible vector pairs are used
to obtain and score these initial superpositions; this geometric
hashing algorithm and the dynamic programming scoring func-
tions have been described in detail by Singh and Brutlag (1997).
We have relaxed the assumption of the original LOCK program
that either the query or target pair of vectors used in the geometric
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hashing must be sequential in sequence space and now attempt
hashing with all pairs. However, a given superposition is not pro-
duced or scored if the relative orientations of the pairs of SSE
vectors that would be used to produce it do not match well, and
thus the time complexity of the algorithm tends to increase sig-
nificantly only when many possible registrations of the query and
target are possible. This typically occurs in cases involving com-
pact structures and in structures with many internal repeats. The
time complexity is not substantially increased in most other cases.
This option may be disabled at the user’s discretion in order to
decrease the number of initial superpositions that are tested.

We have also changed the scoring function that computes the
distance between two aligned vectors in order to accommodate
vectors of different lengths and orientations. We require at least a
25% overlap between the query and target vectors, where the
overlapping region is defined as the longest continuous stretch of
one aligned vector that is within 4 Å of the other. To avoid pe-
nalizing alignments of vectors of different lengths, the distance
score does not increase with the extent of the overlap, but instead
increases with decreasing distance between the vectors in the over-
lapping region. The values of 25% and 4 Å were selected by
examining their impact on alignments of structures in different
superfamilies of the same SCOP fold.

The previous version of LOCK did not permit gaps in the SSE
alignment simultaneously in both the query and target structures.
This restriction was implemented in order to restrict the alignment
to the best locally aligned region. LOCK 2 favors ungapped sec-
ondary structure alignments, but if no such alignment is possible,
it will attempt to achieve a global superposition by inserting as few
gaps in the SSE alignment as possible.

For each aligned vector pair of the highest scoring initial super-
position, the residues of the longer SSE are matched to the residues
of the shorter SSE by finding their nearest neighbors. No distance
cutoff is used at this stage. The quaternion transformation is used
to superimpose the query and target structures (Horn 1997; Horn
and Hilden 1998). Unlike the original LOCK algorithm, LOCK 2
assigns each residue pair a weight in the transformation procedure
that is inversely proportional to the length of the SSE. This allows
each aligned vector pair to influence the transformation approxi-
mately equally. The dynamic programming algorithm is repeated
and the transformation is refined until the RMSD and dynamic
programming score converge; the original LOCK algorithm did
not require convergence of the dynamic programming score. If the
dynamic programming score for the alignment obtained at the end
of the secondary structure superposition phase is <90% of the
score assigned to it directly after geometric hashing, or if fewer
than three SSEs are aligned, we select a different initial transfor-
mation and repeat the refinement process. This also represents a
change from the original version of LOCK.

Residue superposition

The remainder of the LOCK 2 algorithm considers only C� atoms
and remains relatively unchanged from the original version of
LOCK. Loop residues no longer affect the transformation, but are
considered aligned if they find each other as nearest neighbors
within 3 Å after the final superposition is obtained. LOCK 2 also
requires that aligned target residues be numbered in order with
respect to the query over each SSE; the original version of LOCK
required an in-order numbering over the entire structure. This
change allows for more accurate residue alignments in cases such
as circular permutations and � sheets of differing connectivity,
although the alignment of these residues does not change the align-
ment score. This option may be disabled at the user’s discretion.

After the final superposition is determined, the dynamic program-
ming score is calculated and is normalized to the maximum of the
query versus query and target versus target alignment scores.

Structural similarity searches: The
FoldMiner algorithm

A structural similarity search consists of pairwise alignments of a
query structure to all structures in a target database. A statistical
significance threshold (P1) is determined by the size of the target
database and a user-specified expectation according to Equation 5
in the Results section. Only alignments meeting the statistical sig-
nificance threshold P1 are reported to the user. By default, the
structural conservations of the query’s SSEs are calculated, and the
alignment results are analyzed in an iterative fashion to identify
additional structural homologs. This process is described below.

Calculation of SSE conservations and motif discovery

When a structural similarity search is performed (that is, when a
query structure is aligned to a database of target structures), Fold-
Miner determines the structural conservation of the query’s SSEs
and defines a structural motif in probabilistic terms. Both the sta-
tistical significance threshold P1, described in the Structural Simi-
larity Searches section above, and a more stringent threshold, P2,
are used to determine the structural conservation of each of the
query protein’s SSEs. This second p value is calculated by default
as P2 � 0.1P1 and may be adjusted by the user. All structural
alignments are classified into three groups: alignments with p val-
ues that are less than P2, alignments with p values that are between
P1 and P2, and statistically insignificant alignments with p values
that are above P1. The numbers of alignments in these three classes
are denoted n1, n2, and n3, respectively.

Alignments are ranked in order of decreasing statistical signifi-
cance, and a weighted average over all statistically significant
alignments is calculated for each SSE according to Equations
8–10:

� = ln �0.01

n2
� ( 8 )

wi = �
j= 1

nl

�SSE alignment score�

+ �
j = n1+ 1

n2

��SSE alignment score� �e− �j�� ( 9)

ci =
wi

�
j = 1

n1

1 + �
j= n1 + 1

n2

�e− �j�

( 10)

The weighted average gives the greatest weight to alignments
with statistically significant values that are less than or equal to P2,
the more stringent of the two significant thresholds, and invokes an
exponential decay over the scores of the remaining statistically
significant alignments. The alignment with the highest p value that
is still less than or equal to P1 is given a weight of 0.01. The value
ci, which lies on the interval [0,1], gives the conservation of the ith

SSE. High values of ci correspond to highly conserved SSEs. The
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values of ci therefore define a motif over the query SSEs in proba-
bilistic terms.

To distinguish between alignments with similar scores that align
to different regions of the query structure, new maximum SSE
alignment scores are calculated from the ci values. This score for
the ith SSE is defined as a percentage pi of the original maximum
SSE alignment score and is calculated according to Equations 6
and 7 of the Results section (reproduced below). The value of x is
user-defined and is set to 0.75 by default.

pi = �1 − x� + x�ci�, x ∈ �0,1� ( 6)

si = ith Maximum SSE Score
= �Original Maximum SSE Score� � pi ( 7)

The maximum score for a given alignment is then defined ac-
cording to Equation 11, in which the original maximum alignment
score is the maximum of the original query versus query and target
versus target alignment scores.

maximum alignment score =

� �
i = 1

# query SSEs

si

original query vs. query alignment score
�

� �original maximum alignment score� ( 11 )

New alignment scores are calculated for all alignments, including
those with p values above P1, by weighting SSE alignment scores
by the pi values. The sum of these weighted SSE alignment scores
gives the new alignment score, which is normalized to the maxi-
mum alignment score calculated via Equation 11:

New alignment score =
�
i= 1

# query SSEs

��SSE alignment score� pi�

maximum alignment score
( 12)

The process of calculating conservation values and re-examining
all alignment results iterates until the si values converge. The
structural motif is defined by the final ci values. The alignments
determined to be statistically significant in the last iteration are
reported to the user as the results of the structural similarity search
along with the final ci values.

Acknowledgments

We thank Amit Singh, Steven Bennett, and Serkan Apaydin for
helpful discussions and critical reading of the manuscript. This
work was supported by NIH grant numbers 2HFZ595, NIGMS
grant number 1HLV420, and a National Science Foundation
Graduate Research Fellowship. This publication’s contents are
solely the responsibility of the authors and do not necessarily
represent the official views of the NIGMS, NIH, or NSF.

The publication costs of this article were defrayed in part by
payment of page charges. This article must therefore be hereby
marked “advertisement” in accordance with 18 USC section 1734
solely to indicate this fact.

References

Altschul, S.F. and Gish, W. 1996. Local alignment statistics. Methods Enzymol.
266: 460–480.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic
local alignment search tool. J. Mol. Biol. 215: 403–410.

Attwood, T.K., Bradley, P., Flower, D.R., Gaulton, A., Maudling, N., Mitchell,
A.L., Moulton, G., Nordle, A., Paine, K., Taylor, P., et al. 2003. PRINTS
and its automatic supplement, prePRINTS. Nucleic Acids Res 31: 400–402.

Balaji, S. and Srinivasan, N. 2001. Use of a database of structural alignments
and phylogenetic trees in investigating the relationship between sequence
and structural variability among homologous proteins. Protein Eng. 14:
219–226.

Bennett, S.P., Nevill-Manning, C.G., and Brutlag, D.L. 2003. 3MOTIF: Visu-
alizing conserved protein sequence motifs in the protein structure database.
Bioinformatics 19: 541–542.

Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H.,
Shindyalov, I.N., and Bourne, P.E. 2000. The Protein Data Bank. Nucleic
Acids Res. 28: 235–242.

Brenner, S.E. 2001. A tour of structural genomics. Nat. Rev. Genet. 2: 801–809.
Brenner, S.E., Koehl, P., and Levitt, M. 2000. The ASTRAL compendium for

protein structure and sequence analysis. Nucleic Acids Res. 28: 254–256.
Bystroff, C. and Baker, D. 1998. Prediction of local structure in proteins using

a library of sequence-structure motifs. J. Mol. Biol. 281: 565–577.
Bystroff, C. and Shao, Y. 2002. Fully automated ab initio protein structure

prediction using I-SITES, HMMSTR and ROSETTA. Bioinformatics
18(Suppl 1): S54–S61.

Chance, M.R., Bresnick, A.R., Burley, S.K., Jiang, J.-S., Lima, C.D., Sali, A.,
Almo, S.C., Bonanno, J.B., Buglino, J.A., Boulton, S., et al. 2002. Structural
genomics: A pipeline for providing structures for the biologist. Protein Sci.
11: 723–738.

Esnouf, R.M. 1997. An extensively modified version of MolScript that includes
greatly enhanced coloring capabilities. J. Mol. Graph Model 15: 132–134.

Falicov, A. and Cohen, F.E. 1996. A surface of minimum area metric for the
structural comparison of proteins. J. Mol. Biol. 258: 871–892.

Feng, Z.K. and Sippl, M.J. 1996. Optimum superimposition of protein struc-
tures: Ambiguities and implications. Fold Des. 1: 123–132.

Gelfand, I., Kister, A., Kulikowski, C., and Stoyanov, O. 1998. Geometric
invariant core for the V(L) and V(H) domains of immunoglobulin mol-
ecules. Protein Eng. 11: 1015–1025.

Gerstein, M. and Levitt, M. 1996. Using iterative dynamic programming to
obtain accurate pairwise and multiple alignments of protein structures. Proc.
Int. Conf. Intell. Syst. Mol. Biol. 4: 59–67.

Gibrat, J.F., Madej, T., and Bryant, S.H. 1996. Surprising similarities in struc-
ture comparison. Curr. Opin. Struct. Biol. 6: 377–385.

Godzik, A. 1996. The structural alignment between two proteins: Is there a
unique answer? Protein Sci. 5: 1325–1338.

Govindarajan, S., Recabarren, R., and Goldstein, R.A. 1999. Estimating the total
number of protein folds. Proteins 35: 408–414.

Gribskov, M. and Robinson, N. 1996. Use of receiver operating characteristic
(ROC) analysis to evaluate sequence matching. Computers Chem. 20: 25–
33.

Grishin, N.V. 2001. Fold change in evolution of protein structures. J. Struct.
Biol. 134: 167–185.

Halaby, D.M., Poupon, A., and Mornon, J. 1999. The immunoglobulin fold
family: Sequence analysis and 3D structure comparisons. Protein Eng. 12:
563–571.

Harrison, A., Pearl, F., Mott, R., Thornton, J., and Orengo, C. 2002. Quantifying
the similarities within fold space. J. Mol. Biol. 323: 909–926.

Henikoff, S., Henikoff, J.G., and Pietrokovski, S. 1999. Blocks+: A non-redun-
dant database of protein alignment blocks derived from multiple compila-
tions. Bioinformatics 15: 471–479.

Henikoff, J.G., Greene, E.A., Pietrokovski, S., and Henikoff, S. 2000. Increased
coverage of protein families with the blocks database servers. Nucleic Acids
Res. 28: 228–230.

Holm, L. and Sander, C. 1993. Protein structure comparison by alignment of
distance matrices. J. Mol. Biol. 233: 123–138.

———. 1998. Touring protein fold space with Dali/FSSP. Nucleic Acids Res.
26: 316–319.

Horn, B.K.P. 1997. Closed-form solution of absolute orientation using unit
quaternions. J. Opt. Soc. Am. 4: 629–642.

Horn, B.K.P. and Hilden, H.M. 1998. Closed-form solution of absolute orien-
tation using orthonormal matrices. J. Opt. Soc. Am. 5: 1127–1135.

Huang, J.Y. and Brutlag, D.L. 2001. The EMOTIF database. Nucleic Acids Res.
29: 202–204.

Motif discovery and structural superposition

www.proteinscience.org 293



Huang, C.C., Novak, W.R., Babbitt, P.C., Jewett, A.I., Ferrin, T.E., and Klein,
T.E. 2000. Integrated tools for structural and sequence alignment and analy-
sis. Pac. Symp. Biocomput. 8: 230–241.

Jonassen, I., Eidhammer, I., Conklin, D., and Taylor, W.R. 2002. Structure
motif discovery and mining the PDB. Bioinformatics 18: 362–367.

Kabsch, W. 1978. Discussion of the solution for the best rotation to relate two
sets of vectors. Acta Crystallog. A 34: 827–828.

Kasuya, A. and Thornton, J.M. 1999. Three-dimensional structure analysis of
PROSITE patterns. J. Mol. Biol. 286: 1673–1691.

Koch, I., Lengauer, T., and Wanke, E. 1996. An algorithm for finding maximal
common subtopologies in a set of protein structures. J. Comput. Biol. 3:
289–306.

Kraulis, P. 1991. MOLSCRIPT: A program to produce both detailed and sche-
matic plots of protein structures. J. Appl. Crystallog. 24: 946–950.

Leibowitz, N., Fligelman, Z.Y., Nussinov, R., and Wolfson, H.J. 2001. Auto-
mated multiple structure alignment and detection of a common substructural
motif. Proteins 43: 235–245.

Liang, M.P., Brutlag, D.L., and Altman, R.B. 2003. Automated construction of
structural motifs for predicting functional sites on protein structures. Pac.
Symp. Biocomput. 5: 204–215.

Madej, T., Gibrat, J.F., and Bryant, S.H. 1995. Threading a database of protein
cores. Proteins 23: 356–369.

Martin, A.C., Orengo, C.A., Hutchinson, E.G., Jones, S., Karmirantzou, M.,
Laskowski, R.A., Mitchell, J.B., Taroni, C., and Thornton, J.M. 1998. Pro-
tein folds and functions. Structure 6: 875–884.

Matsuo, Y. and Bryant, S.H. 1999. Identification of homologous core structures.
Proteins 35: 70–79.

Merritt, E.A. and Bacon, D.J. 1997. Raster3D: Photorealistic molecular graph-
ics. Methods Enzymol. 277: 505–524.

Mizuguchi, K. and Blundell, T. 2000. Analysis of conservation and substitutions
of SSEs within protein superfamilies. Bioinformatics 16: 1111–1119.

Mondragon, A. and DiGate, R. 1999. The structure of Escherichia coli DNA
topoisomerase III. Structure Fold Des. 7: 1373–1383.

Murzin, A.G., Brenner, S.E., Hubbard, T., and Chothia, C. 1995. SCOP: a
structural classification of proteins database for the investigation of se-
quences and structures. J. Mol. Biol. 247: 536–540.

Nevill-Manning, C.G., Wu, T.D., and Brutlag, D.L. 1998. Highly specific pro-
tein sequence motifs for genome analysis. Proc. Natl. Acad. Sci. 95: 5865–
5871.

Orengo, C.A. 1999. CORA: Topological fingerprints for protein structural fami-
lies. Protein Sci. 8: 699–715.

Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., Swindells, M.B., and Thorn-
ton, J.M. 1997. CATH—a hierarchic classification of protein domain struc-
tures. Structure 5: 1093–1108.

Orengo, C.A., Todd, A.E., and Thornton, J.M. 1999. From protein structure to
function. Curr. Opin. Struct. Biol. 9: 374–382.

Panchenko, A., Marchler-Bauer, A., and Bryant, S.H. 1999. Threading with
explicit models for evolutionary conservation of structure and sequence.
Proteins 3: 133–140.

Russell, R.B., Saqi, M.A., Sayle, R.A., Bates, P.A., and Sternberg, M.J. 1997.

Recognition of analogous and homologous protein folds: Analysis of se-
quence and structure conservation. J. Mol. Biol. 269: 423–439.

Sali, A. 1998. One-hundred thousand protein structures for the biologist. Nat.
Struct. Biol. 5: 1029–1032.

Schmidt, R., Gerstein, M., and Altman, R.B. 1997. LPFC: An Internet library of
protein family core structures. Protein Sci. 6: 246–248.

Shindyalov, I.N. and Bourne, P.E. 1998. Protein structure alignment by incre-
mental combinatorial extension (CE) of the optimal path. Protein Eng. 11:
739–747.

———. 2000. An alternative view of protein fold space. Proteins 38: 247–260.
Sigrist, C.J., Cerutti, L., Hulo, N., Gattiker, A., Falquet, L., Pagni, M., Bairoch,

A., and Bucher, P. 2002. PROSITE: A documented database using patterns
and profiles as motif descriptors. Brief Bioinform. 3: 265–274.

Singh, A.P. and Brutlag, D.L. 1997. Hierarchical protein structure superposition
using both secondary structure and atomic representations. Proc. Int. Conf.
Intell. Syst. Mol. Biol. 5: 284–293.

Stoyanov, O., Kister, A., Gelfand, I., Kulikowski, C., and Chothia, C. 2000.
Geometric invariant core for the CL and CH1 domains of immunoglobulin
molecules. J. Comput. Biol. 7: 673–684.

Swets, J.A. 1988. Measuring the accuracy of diagnostic systems. Science 240:
1285–1293.

Taylor, W.R. 2002. Protein structure comparison using bipartite graph matching
and its application to protein structure classification. Mol. Cell Proteomics
1: 334–339.

Todd, A.E., Orengo, C.A., and Thornton, J.M. 2001. Evolution of function in
protein superfamilies, from a structural perspective. J. Mol. Biol. 307:
1113–1143.

Turcotte, M., Muggleton, S.H., and Sternberg, M.J. 2001. Automated discovery
of structural signatures of protein fold and function. J. Mol. Biol. 306:
591–605.

Wang, Z.X. 1998. A re-estimation for the total numbers of protein folds and
superfamilies. Protein Eng. 11: 621–626.

Wolf, Y.I., Grishin, N.V., and Koonin, E.V. 2000. Estimating the number of
protein folds and families from complete genome data. J. Mol. Biol. 299:
897–905.

Yang, A.S. and Honig, B. 2000a. An integrated approach to the analysis and
modeling of protein sequences and structures, I: Protein structural alignment
and a quantitative measure for protein structural distance. J.Mol. Biol. 301:
665–678.

———. 2000b. An integrated approach to the analysis and modeling of protein
sequences and structures, II: On the relationship between sequence and
structural similarity for proteins that are not obviously related in sequence.
J. Mol. Biol. 301: 679–689.

———. 2000c. An integrated approach to the analysis and modeling of protein
sequences and structures, III: A comparative study of sequence conservation
in protein structural families using multiple structural alignments. J. Mol.
Biol. 301: 691–711.

Zhang, C. and DeLisi, C. 1998. Estimating the number of protein folds. J. Mol.
Biol. 284: 1301–1305.

Shapiro and Brutlag

294 Protein Science, vol. 13


