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Abstract

Given the sequence of a protein, how can we predict whether it is an enzyme or a non-enzyme? If it is, what
enzyme family class it belongs to? Because these questions are closely relevant to the biological function
of a protein and its acting object, their importance is self-evident. Particularly with the explosion of protein
sequences entering into data banks and the relatively much slower progress in using biochemical experi-
ments to determine their functions, it is highly desired to develop an automated method that can be used to
give fast answers to these questions. By hybridizing the gene ontology and pseudo-amino-acid composition,
we have introduced a new method that is called GO-PseAA predictor and operate it in a hybridization space.
To avoid redundancy and bias, demonstrations were performed on a data set in which none of the proteins
in an individual class has �40% sequence identity to any other. The overall success rate thus obtained by
the jackknife cross-validation test in identifying enzyme and non-enzyme was 93%, and that in identifying
the enzyme family was 94% for the following six main Enzyme Commission (EC) classes: (1) oxidore-
ductase, (2) transferase, (3) hydrolase, (4) lyase, (5) isomerase, and (6) ligase. The corresponding rates by
the independent data set test were 98% and 97%, respectively.
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For a newly found protein sequence, the following two
questions are often asked: Is the new protein an enzyme? If
it is, which enzyme family class does it belong to? Both
questions are closely related to the function of the protein as
well as its specificity and molecular mechanism, and hence
are very important to both basic research and drug discovery
practice. Although the answers can be determined by con-
ducting various biochemical experiments, it is time-con-
suming and costly to do so solely by experiment ap-
proaches. Particularly, the number of sequences entering
into data banks has been rapidly increasing. For instance,
the number of total sequence entries in SWISS-PROT

(Bairoch and Apweiler 2000) was only 3939 in 1986; it
jumped to 80,000 in 1999, and recently to 155,596 accord-
ing to Release 44.2 (July 30, 2004) of SWISS-PROT (http://
www.expasy.org/sprot/relotes/relstat.html). With the explo-
sion of protein sequences in data banks, it is highly desirable
to develop a fast and automated method to help deal with
the above two questions.

According to their Enzyme Commission (EC) numbers
(Fig. 1), enzymes are mainly classified into six families
(Webb 1992): (1) oxidoreductases, catalyzing oxidoreduc-
tion reactions; (2) transferases, transferring a group from
one compound to another; (3) hydrolases, catalyzing the
hydrolysis of various bonds; (4) lyases, cleaving C–C, C–O,
C–N, and other bonds by other means than by hydrolysis or
oxidation; (5) isomerases, catalyzing geometrical or struc-
tural changes within one molecule; and (6) ligases, cata-
lyzing the joining together of two molecules coupled with
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the hydrolysis of a pyrophosphate bond in ATP or a similar
triphosphate. Each of these families has its own subfamilies,
and sub-subfamilies. In a previous study, the prediction of
the subfamilies within the scope of oxidoreductases was
conducted (Chou and Elrod 2003). In that study, the pre-
diction was performed by means of the covariant discrimi-
nant function algorithm, which is a combination of the Ma-
halanobis distance (Mahalanobis 1936; Pillai 1985; Chou
and Zhang 1994; Chou 1995) and covariance matrices
(Chou and Elrod 1999b; Zhou and Assa-Munt 2001; Zhou
and Doctor 2003). Although the covariant discriminant
function is a very powerful algorithm, the prediction in the
previous study (Chou and Elrod 2003) was based on the
amino acid composition alone, and hence all the sequence-
order effects were excluded. This might limit the potential
for improving the prediction quality. Also, it would be logi-
cally more reasonable and practically more useful to iden-
tify a query protein according to the order of the two ques-
tions as raised at the beginning of this paper. All the sub-
family predictions should be conducted after the two more
basic identifications have been made. The present study was
initiated in an attempt to deal with these points, introducing
a new and much more powerful method to predict enzyme
family class.

Materials and methods

The ENZYME database (ftp.expasy.ch) (Bairoch 2000) was
used to construct the six main enzyme family classes. To
avoid any bias, a redundancy cutoff operation was imposed
within each class so that none of the included sequences had
�40% identity to any other. Thus, a total of 6783 sequences
were generated that consist of 1201 oxidoreductases, 2093
transferases, 2000 hydrolases, 637 lyases, 343 isomerases,

and 509 ligases. Meanwhile, a total of 19,012 non-enzyme
protein sequences were randomly taken from SWISS-PROT
(Bairoch and Apweiler 2000) that were also subject to the
same 40% redundancy cutoff operation. The accession
numbers of the 6783 enzymes (classified into six classes)
and the 19,012 non-enzymes are given in Supplemental Ma-
terial A. Meanwhile, just for a demonstration performed
later, an independent data set was also constructed as given
in Supplemental Material B, in which none of the entries
occurs in Supplemental Material A.

The key for improving the prediction quality of enzyme
family class is to grasp the core features of a protein that are
intimately related to its biological function, and then use
these features to represent it. In this sense, we can use the
source of the Gene Ontology (GO) Consortium (Ashburner
et al. 2000) as a vehicle to formulate the prediction algo-
rithm. The term “ontology” was originally borrowed from
philosophy, where an ontology is a systematic account of
existence. In other words, an ontology is an explicit speci-
fication of a conceptualization. In the GO database, gene
products are organized according to the following three
principles in a species-independent manner: molecular func-
tion, biological process, and cellular components.

The first two principles are directly relevant to the mo-
lecular function of an enzyme and its acting object, whereas
the third one is relevant to its subcellular localization. The
latter, however, is also closely associated with the function
of a protein (Alberts et al. 1994; Chou and Elrod 1999a).
Because the enzyme family classes are classified according
to their molecular functions and acting objects (see, e.g., a
monograph [Webb 1992] and Fig. 1 of a previous paper,
Chou and Elrod 2003), it is anticipated that the prediction
quality will be significantly improved if we use the GO
database to define proteins according to the following steps.

Step 1

Mapping InterPro (Apweiler et al. 2001) entries to GO, one
can get a list of data called “InterProt2GO” (ftp://ftp.ebi.
ac.uk/pub/databases/interpro/interpro2go/), in which each
InterPro entrance corresponds to a GO number. Because a
protein may have one or more molecular functions, be used
in one or more biological processes, and be associated with
one or more cellular components, the relationships between
InterPro and GO may be one-to-many. For instance, the
InterPro entry “IPR_000003” corresponds to “GO_0003677,”
“GO_0004879,” “GO_0005496,” “GO_0006355,” and
“GO_0005634.” Also, because the current GO database is far
from complete yet, some InterPro entrances (such as
IPR_000001, IPR_000002, and IPR_000004) do not have
corresponding GO numbers in the InterProt2GO list.

Step 2

The GO numbers in the InterProt2GO database are not in-
creasing successively and in an orderly manner, and hence

Figure 1. A schematic drawing to show the six main enzyme family
classes according to their EC numbers.
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an operation to reorganize and compress the GO numbers
thus obtained is needed. For example, after such an opera-
tion, the original GO numbers GO_0000012, GO_0000015,
GO_0000030, …, GO_0046413, would become GO-
compress_0000001, GO-compress_0000002, GO-
compress_0000003, …, GO-compress_0001930, respec-
tively. The database thus obtained is called the GO-com-
press database or the 1930D GO database, whose dimen-
sions have been reduced to 1930 from 46,413 of the original
GO database.

Step 3

Each of the 1930 GO numbers will serve as a base to define
a protein P in terms of the following 1930D (dimensional)
vector:

P =�
a1

a2

�

ai

�

a1930

� , (1)

where ai � 1 if there is a hit corresponding to the i-th
(i � 1, 2, …, 1930) GO number when using the program
IPRSCAN (Apweiler et al. 2001) to search the InterPro
functional domain database (release 6.1; Apweiler et al.
2001) for the protein P; otherwise, ai � 0.

Step 4

If no hit, that is, no corresponding GO number, is found in
the entire 1930D GO database, the protein P formulated by
equation 1 will correspond to a naught vector. To cope with
such a circumstance, the protein is instead defined in the
(20 + �)D PseAA (pseudo-amino-acid composition) space
(Chou 2001), as given below:

P =�
b1

b2

�

b20

b20�1

�

b20��

� , (2)

where b1, b2, …, b20 represent the 20 components of the
classical amino acid composition (Chou and Zhang 1993;
Zhou 1998), whereas b20 + 1 is the first-tier sequence-order
correlation factor, b20 + 2 the second-tier sequence-order
correlation factor, and so forth (see Appendix A). It is the
additional � components in equation 2 that incorporate
some sequence-order effects into the vector representation
of a protein. Generally speaking, the larger the number of
the � components, the more the sequence-order effects in-
corporated. However, the number � cannot exceed the
length of a protein (i.e., the number of its total residues).
Also, if the number of � is too large, the overall success rate
by jackknife tests might be reduced (Chou 2001). Therefore,
for different training data sets, � may have different optimal
values. For the current study, the optimal value of � is 37.
Given a protein, the (20 + 37) � 57 pseudo-amino-acid
components in equation 2 can be easily derived by follow-
ing the procedures as described in Chou (2001), which
originally introduced the concept of pseudo-amino-acid
composition. Thus, the protein that corresponds to a naught
vector in the 1930D GO space (equation 1) can always be
explicitly defined in the 57D PseAA space (equation 2).

The prediction was performed with the ISort (Intimate
Sorting) predictor, which can be briefly described below.
Suppose there are N proteins (P1, P2, …, PN) that have been
classified into categories 1, 2, …, �. Now, for a query
protein P, how can we predict to which category it belongs?
To deal with this problem, let us define the following scale
to measure the similarity between P and Pi (i � 1, 2, …, N):

��P,Pi� =
P � Pi

�P� �Pi�
, �i = 1, 2, …, N� (3)

where P · Pi is the dot product of vectors P and Pi, and �P�
and �Pi� their modulus, respectively. Obviously, when
P ≡ Pi, we have �(P, Pi) � 1, meaning they have perfect or
100% similarity. Generally speaking, the similarity is within
the range of 0 and 1, that is, 0 � �(P, Pi) � 1. Accordingly,
the ISort predictor can be formulated as follows: If the
similarity between P and Pk (k � 1, 2, …, or N) is the
highest, that is,

��P,Pk� = Max���P,P1�,��P,P2�,…,��P,PN�� , (4)

where the operator Max means taking the maximum one
among those in the brackets, then the query protein P is
predicted to belong to the same category as Pk. If there is a
tie, the query protein may not be uniquely determined, but
cases like that rarely occur. The ISort predictor is particu-
larly useful for the situation in which the distributions of the
samples are unknown.

During the course of prediction, the following self-con-
sistency principle should be followed: If a query protein

Enzyme family class prediction
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could be defined in the 1930D GO space (equation 1), then
the prediction should be carried out based on those proteins
in the training set that could also be defined in the same
1930D GO space. If the query protein in the 1930D GO
space was a naught vector and hence must be defined in-
stead in the (20 + �)D PseAA space (see equation 2), then
the prediction should be conducted according to the prin-
ciple that all the proteins in the training set should be de-
fined in the same (20 + �)D Pse AA space as well. Accord-
ingly, the current ISort predictor actually consists of two
subpredictors: (1) the ISort-1930D GO predictor that oper-
ates in the 1930D GO space and (2) the ISort-57D PseAA
predictor that operates in the 57D PseAA space with
� � 37. The entire process is called the GO-PseAA hybrid-
ization approach.

Results and Discussion

The computation was performed in a Silicon Graphics IRIS
Indigo workstation (Elan 4000). For the proteins listed in
Supplemental Material A, we obtained the following results
according to Steps 1–4 above:

(1) Of the 6783 enzyme sequences, 6352 got the hits and
hence were defined in the 1930D GO space, and the
remainder were defined in the 57D PseAA space (Ta-
ble 1).

(2) Of the 19,012 non-enzyme proteins, 14,432 were de-
fined in the 1930D GO space, and the remainder were
defined in the 57D PseAA space.

This means that, if the definition of proteins was only based
on the GO database, 6783 − 6352 � 431 proteins in the
enzyme set and 19,012 − 14,432 � 4580 in the non-enzyme
set would have no definition, leading to a failure of identi-
fying their attribute. That is why it is so important to hy-
bridize with the PseAA approach, by which not only can a
protein always be defined but also its sequence-order effects
may be taken into account considerably (Chou 2001). Thus,
the hybrid algorithm was operated according to the follow-
ing procedures: If a query protein was defined in the GO
database, then the ISort-1930D GO predictor was used to

predict its attribute; otherwise, the ISort-57D PseAA pre-
dictor was used to predict its attribute.

The demonstration is performed by the resubstitution test,
jackknife test, and independent data set test. It is shown in
Tables 2 and 3 that the overall success rates by the resub-
stitution test are 100% for both the case of identifying a
protein sequence between enzyme and non-enzyme, and the
case among the six enzyme family classes, indicating that
the present method has a perfect self-consistency. However,
to really examine the power of a predictor, a cross-valida-
tion procedure is needed. As is well known, the single in-
dependent data set test, subsampling test, and jackknife test
are the three procedures often used for cross-validation in

Table 1. Breakdown of the protein entriesa into the group
defined in the 1930D GO space (eq 1) and the group in the 56D
PscAA space (eq 2)

Data set
1930D

GO space
57D PseAA

space Total

Enzyme 6352 431 6783
Non-enzyme 14,432 4580 19,012

a From Supplementary Materials A.

Table 2. Success rates in identifying enzyme and
non-enzyme proteins

Protein
attribute Resubstitutiona Jackknifea

Independent
data setb

Enzyme 6783

6783
� 100%

6355

6783
� 93.69%

1176

1200
� 98.00%

Non-enzyme 19,012

19,012
� 100%

17,691

19,012
� 93.05%

784

800
� 98.00%

Overall 25,795

25,795
� 100%

24,046

25,795
� 93.21%

1960

2000
� 98.00%

a Using the data of Supplementary Materials A to perform resubstitution
and jackknife tests.
b Using the data of Supplementary Materials A to train the ISort-1930D
GO predictor and ISort-57D PseAA predictor, and then using them to
predict the independent proteins listed in Supplementary Materials B.

Table 3. Success rates in identifying enzyme family classes

Family
class Resubstitutiona Jackknifea

Independent
data setb

Oxidoreductase 1201

1201
� 100%

1152

1201
� 95.92%

200

200
� 100%

Transferase 2093

2093
� 100%

1970

2093
� 94.12%

194

200
� 97.00%

Hydrolase 2000

2000
� 100%

1896

2000
� 94.80%

188

200
� 94.00%

Lyase 637

637
� 100%

536

637
� 84.14%

194

200
� 97.00%

Isomerase 343

343
� 100%

290

343
� 84.54%

195

200
� 97.50%

Ligase 509

509
� 100%

502

509
� 98.62%

196

200
� 98.00%

Overall 6783

6783
� 100%

6346

6783
� 93.58%

1167

1200
� 97.25%

a Using the data of Supplementary Materials A to perform resubstitution
and jackknife tests.
b Using the data of Supplementary Materials A to train the ISort-1930D
GO predictor and ISort-57D PseAA predictor, and then using them to
predict the independent proteins listed in Supplementary Materials B.
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literature (Chou and Zhang 1995). Of these three, the jack-
knife test is regarded as the most objective and effective one
(Zhou and Assa-Munt 2001). A comprehensive discussion
about this can be found in a review paper (Chou and Zhang
1995). Accordingly, the real power of a predictor should be
measured by the success rate of the jackknife test. As shown
in Tables 2 and 3, the overall jackknife success rates ob-
tained by the current GO-PseAA hybridization approach are
93.21% for the case between enzyme and non-enzyme, and
93.58% for the case among the six enzyme family classes.
Finally, as a paradigm to show how to use the present
method in practical applications, the corresponding success
rates performed on the independent data set of Supplemen-
tal Material B are also given in Tables 2 and 3.

Conclusion

To enhance the success rate of predicting enzyme family
class, the key is to catch the core features of proteins that are
intimately related to their biological functions and acting
objects. This can be realized by defining a protein based on
the Gene Ontology (Ashburner et al. 2000) developed re-
cently. However, the current Gene Ontology does not give
a complete coverage so that some proteins cannot be mean-
ingfully defined. Although the problem will be eventually
solved as the Gene Ontology increases in size, to deal with
such a situation right now, a hybrid approach was intro-
duced by combining Gene Ontology with the pseudo-
amino-acid composition (Chou 2001). With the latter, not
only can a protein always be explicitly defined but also its
sequence-order effects can be considerably incorporated so
as to enhance the success rates as reflected in the predictions
of protein subcellular location (Chou and Cai 2003b) and of
protein quaternary structure (Chou and Cai 2003a). That is
why a hybridization of these two approaches can yield the
very high success rates in identifying non-enzyme and en-
zyme, as well as the enzyme family class.

With the explosion of protein sequences entering into
data banks and the relatively much slower process in deter-
mining their enzymatic attributes by biochemical experi-
ments, the current automated method may become a useful
high-throughput tool for proteomics and bioinformatics.
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Appendix A. The pseudo-amino-acid composition
For the convenience of readers, here we give a brief introduction
to the “pseudo-amino-acid composition.” For a detailed descrip-
tion of it, the readers are referred to an original paper (Chou 2001).

Owing to the huge number of possible sequence-order patterns,
it is hard to directly incorporate the sequence-order information

into a statistical prediction algorithm. Nevertheless, we can indi-
rectly and partially take into account its effects through the fol-
lowing approach: Suppose a protein chain with L amino acid resi-
dues:

R1R2R3R4R5R6R7……RL (A1)

where R1 represents the residue at sequence position 1, R2 the
residue at position 2, and so forth. The sequence-order effect can
be approximately reflected through a set of sequence-order-cou-
pling factors as defined below:

�
�1 =

1

L − 1�i=1

L−1

Ji,i+1

�2 =
1

L − 2�i=1

L−2

Ji,i+2

�3 =
1

L − 3�i=1

L−3

Ji,i+3

……………

�� =
1

L − ��i=1

L−�

Ji,i+�

, �� � L� (A2)

where �1 is called the first-tier coupling factor that reflects the
sequence-order correlation between all the most contiguous resi-
dues along a protein chain (Fig. 2A), �2 the second-tier coupling
factor that reflects the sequence-order correlation between all the
second-most contiguous residues (Fig. 2B), �3 the third-tier cou-
pling factor that reflects the sequence-order correlation between all
the third-most contiguous residues (Fig. 2C), and so forth. In equa-
tion A2, the coupling factor Ji, j is a function of amino acids Ri and
Rj that is defined by the user according to the case investigated. For
example, in the original paper (Chou 2001), the coupling factor is
defined by:

Figure 2. A schematic drawing to show the first-tier (A), the second-tier
(B), and the third-tier (C) sequence-order correlation mode along a protein
sequence. Panel A reflects the correlation mode between all the most con-
tiguous residues; panel B, that between all the second-most contiguous
residues; and panel C, that between all the third-most contiguous residues.
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Ji,j =
1

3
��h1�Ri� − h1�Rj��

2 + �h2�Ri� − h2�Rj��
2

+ �M�Ri� − M�Rj��
2� (A3)

where h1(Ri), h2(Ri), and M(Ri) are, respectively, the hydropho-
bicity value, hydrophilicity value, and side-chain mass of the
amino acid Ri; and h1(Rj), h2(Rj), and M(Rj) the corresponding
values for the amino acid Rj. Note that before substituting these
values into equation A3, they are all subjected to a “standard
conversion” as defined by the following equation:





 h1�Ri� =

h1
0�Ri� − �

k=1

20 h1
0��k�

20

��u=1

20 �h1
0��u� − �

k=1

20 h1
0��k�

20 �2

20

h2�Ri� =

h2
0�Ri� − �

k=1

20 h2
0��k�

20

��u=1

20 �h2
0��u� − �

k=1

20 h2
0��k�

20 �2

20

M�Ri� =

M0�Ri� − �
k=1

20 M0��k�

20

��u=1

20 �M0��u� − �
k=1

20 M0��k�

20 �2

20

(A4)

where we use Ri (i � 1, 2, …, 20) to represent the 20 native amino
acids according to the alphabetical order of their single-letter
codes: A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and
Y. The symbols h1

0, h2
0, and M0 represent, respectively, the origi-

nal hydrophobicity value (Tanford 1962), hydrophilicity value
(Hopp and Woods 1981), and the side-chain mass of the amino
acid in the brackets right after the symbols. The data obtained by
such a standard conversion (equation A4) will have a zero mean
value and will remain unchanged if going through the same con-
version procedure again. As we can see from equations A1–A4 as
well as Figure 2, a considerable amount of sequence-order infor-
mation has been incorporated into the � correlation factors through
the hydrophobic and hydrophilic values as well as the side-chain
masses of the amino acid residues along a protein chain.

By merging the � correlation factors into the classical amino
acid composition, we obtain an augmented discrete form to rep-
resent a protein sample P:

P =�
p1

�

p20

p20�1

�

p20��

� , (A5)

where

pu =�
fu

�
i=1

20

fi + w�
j=1

�

�j

,
�1 � u � 20�

w�u

�
i=1

20

fi + w�
j=1

�

�j

,
�20 + 1 � u � 20 + ��

(A6)

where fi (i � 1, 2, …, 20) are the normalized occurrence frequen-
cies of the 20 native amino acids in the protein P, �j the j-tier
sequence-correlation factor computed according to equation A2,
and w the weight factor. In the current study, we chose w � 0.05
to make the results of equation A6 within the range easier to be
handled (w can, of course, be assigned other values, but this would
not have a great different impact on the final results). As we can
see, the first 20 numbers in equation A5 represent the classic
amino acid composition, whereas the components from 20 + 1 to
20 + � are � correlation factors along a protein chain reflecting the
effect of sequence order. A set of such 20 + � components is called
the pseudo-amino-acid composition. Using such a name is because
it still has the main feature of amino-acid composition, but on the
other hand, it contains information beyond the conventional
amino-acid composition.

The pseudo-amino-acid composition thus defined has the fol-
lowing three advantages:

1. It contains more sequence-order effects not only than the 20D
conventional amino acid composition (Nakashima et al. 1986),
but also than the 210D pair-coupled amino-acid composition
(Chou 1999) and the 400D first-order coupled amino-acid com-
position (Liu and Chou 1999), as reflected by a series of se-
quence-coupling factors with different tiers of correlation (Fig.
2; equation A2).

2. The coupling factors are defined by a combination of correla-
tion functions that allows users to introduce any other bio-
chemical quantities (in addition to the hydrophobicity, hydro-
philicity, and side-chain mass as explicitly expressed in equa-
tion A3) to obtain the optimal results for various cases
concerned.

3. The pseudo-amino-acid composition has the same formulation
as the conventional one except containing more components
(equation A5); accordingly, all the existing prediction algo-
rithms based on the conventional amino acid composition can
be straightforwardly extended to cover the pseudo-amino-acid
composition as well.
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