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Abstract

Structure prediction on a genomic scale requires a simplified energy function that can efficiently sample the
conformational space of polypeptide chains. A good energy function at minimum should discriminate native
structures against decoys. Here, we show that a recently developed, residue-specific, all-atom knowledge-
based potential (167 atomic types) based on distance-scaled, finite ideal-gas reference state (DFIRE-all-
atom) can be substantially simplified to 20 residue types located at side-chain center of mass (DFIRE-SCM)
without a significant change in its capability of structure discrimination. Using 96 standard multiple decoy
sets, we show that there is only a small reduction (from 80% to 78%) in success rate of ranking native
structures as the top 1. The success rate is higher than two previously developed, all-atom distance-
dependent statistical pair potentials. Applied to structure selections of 21 docking decoys without modifi-
cation, the DFIRE-SCM potential is 29% more successful in recognizing native complex structures than an
all-atom statistical potential trained by a database of dimeric interfaces. The potential also achieves 92%
accuracy in distinguishing true dimeric interfaces from artificial crystal interfaces. In addition, the DFIRE
potential with the C� positions as the interaction centers recognizes 123 native structures out of a compre-
hensive 125-protein TOUCHSTONE decoy set in which each protein has 24,000 decoys with only C�

positions. Furthermore, the performance by DFIRE-SCM on newly established 25 monomeric and 31
docking Rosetta-decoy sets is comparable to (or better than in the case of monomeric decoy sets) that of a
recently developed, all-atom Rosetta energy function enhanced with an orientation-dependent hydrogen
bonding potential.
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One of the bottlenecks for accurate prediction of protein
structures and the structures of binding complexes is the
immense number of possible conformations accessible to
polypeptide chains (Dill and Chan 1997; Dobson et al.
1998; Honig 1999). One way to increase the computational

efficiency of sampling the conformational space is to use a
reduced, residue-level rather than atom-level representation
of proteins (Levitt 1976; Eyrich et al. 1999; Kihara et al.
2001, 2002; Simons et al. 2001; Bonneau et al. 2002; Gray
et al. 2003; Nanias et al. 2003; Zacharias 2003). Except for
a few semi-physical/empirical energy functions (Lazaridis
and Karplus 2000; Kihara et al. 2001; Pillardy et al. 2001),
most existing residue-based energy functions (Miyazawa
and Jernigan 1985; Hendlich et al. 1990; Sippl 1990; Jones
et al. 1992; Panchenko et al. 2000; Vijayakumar and Zhou
2000; Melo et al. 2002) are knowledge-based potentials
which are obtained from statistical analysis of known pro-
tein structures (Tanaka and Scheraga 1976; Bowie and Ei-
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senberg 1994) and/or optimization of the bias of native
structures against their decoys (Tobi and Elber 2000; Ven-
druscolo et al. 2000; Chhajer and Crippen 2002). Knowl-
edge-based potentials are attractive because they are simple
to construct and easy to use. Basic physical principles, how-
ever, are often violated (or ignored) in this procedure, be-
cause proteins are an inhomogeneous mixture of amino-acid
residues, and the composition of amino-acid residues deter-
mines the statistical outcome. For example, the higher popu-
lation of hydrophobic residues compared to that of hydro-
philic residues at the core of proteins leads to unphysical
long-range repulsion between hydrophobic residues (Thom-
as and Dill 1996) for the distance-dependent pair potential
based on the commonly used Sippl approximation (Sippl
1990). The significantly different compositions at the sur-
face, core, and interface of proteins (Glaser et al. 2001; Lu
et al. 2003; Ofran and Rost 2003) yield quantitatively dif-
ferent distance-dependent pair potentials for folding and
binding studies (Moont et al. 1999; Lu et al. 2003), despite
the fact that folding and binding involve the same physical
interaction, that is, water-mediated interaction between
amino-acid residues. These unphysical characteristics of
statistical potentials have limited their accuracy.

A residue-specific, all-atom, distance-dependent potential
of mean-force was recently extracted from the structures of
single-chain proteins by using a physical state of uniformly
distributed points in finite spheres (distance-scaled, finite,
ideal-gas reference [DFIRE] state) as the zero-interaction
reference state (Zhou and Zhou 2002). Remarkably, the
physical reference state yields a potential of mean-force that
no longer possesses some unphysical characteristics associ-
ated with other statistical potentials. It was shown that the
accuracy of DFIRE-based potential is insensitive to the par-
titioning of hydrophobic and hydrophilic residues within a
protein (Zhou and Zhou 2002). More importantly, the new
structure-derived potential can quantitatively reproduce the
likelihood of a residue to be buried (i.e., the composition
difference of amino-acid residues between core and surface;
Zhou and Zhou 2004). The potential also produces a stabil-
ity scale of amino-acid residues in quantitative agreement
with that independently extracted from mutation experimen-
tal data (Zhou and Zhou 2004). Moreover, the “monomer”
potential (derived from single-chain proteins) is found to be
equally successful in discriminating against docking de-
coys, distinguishing true dimeric interface from crystal in-
terfaces, and predicting binding free energy of protein-pro-
tein and protein-peptide complexes (Liu et al. 2004). The
independence of the performance on amino-acid composi-
tions suggests that the DFIRE-based potential captures the
essence of the common physical interaction masked under
different compositions of amino-acid residues on the sur-
face, at the core, and at the interface of proteins.

The DFIRE-based potential was an all-atom potential. An
initial study of the potential at the level of C� atoms plus

backbone atoms indicated that the accuracy of the potential
reduces somewhat but remains reasonable (Zhou and Zhou
2002). In the present study, we further reduced the number
of atoms for representing a residue to a single united center
such as C� (Melo et al. 2002), C� (Hendlich et al. 1990), or
side-chain center of mass (SCM, geometry; Bryant and
Lawrence 1993; Kocher et al. 1994; Thomas and Dill 1996;
Zhang and Kim 2000). The united-residue potential of mean
force was tested by the multiple decoy sets of single-chain
proteins as well as by docking decoys. We show that the
DFIRE-SCM potential of mean force is even more success-
ful than the all-atom potentials of mean force based on
statistically average reference states (RAPDF; Samudrala
and Moult 1998) and atomic Knowledge-Based Potential
(KBP; Lu and Skolnick 2001) in recognizing native struc-
tures from 96 multiple decoy sets and 21 docking decoy
sets. It is also more successful than a sophisticated semi-
physical energy function enhanced with hydrogen-bonding
interactions (Kortemme-Morozov-Baker [KMB] potential;
Kortemme et al. 2003) in structure discrimination using a
new Rosetta monomeric decoy set, and it is comparably
successful in the Rosetta docking decoy set. Results suggest
that the DFIRE-SCM potential is one of the most accurate
coarse-grained potentials that should be useful in assisting
structure prediction on a genomic scale (Baker and Sali
2001; Schonbrun et al. 2002; Vajda et al. 2002; Janin and
Seraphin 2003).

Results

Structure selections from 96
standard multiple decoy sets

We compiled 96 standard multiple decoy sets available
from the literature to test simplified potentials of mean force
(Table 1). They include the 4state_reduced set (Park and
Levitt 1996), lmds set (through conformational enumeration
of loop region; Keasar and Levitt 2003), fisa set (Simons et
al. 1997), fisa_casp3 set (Simons et al. 1997), Rosetta (Si-
mons et al. 1999; through Rosetta method, Simons et al.
1997), lattice_ssfit (Samudrala et al. 1999; through confor-
mational enumeration on whole protein), and CASP4 decoy
sets (rebuilt by Feig and Brooks 2002). No decoy structures
in the original decoy sets were omitted in this study. The
diverse and comprehensive decoy sets ensure the fair evalu-
ation of the overall quality of a potential.

We first tested which representation of force centroids
(C�, C�, and SCM) yields the most accurate distance-de-
pendent pair potential. The three representations have dif-
ferent characteristics: The C�-C� distance reflects the prox-
imity of backbone atoms, the C�-C� potential is sensitive to
the direction of the side chains, and the center of mass, on
the other hand, takes into account the average side-chain
conformations (Kocher et al. 1994). Figure 1 compares the
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performance of different force centroids in recognizing na-
tive structures from decoys. For all three statistical poten-
tials of mean force (KBP, Lu and Skolnick 2001; RAPDF,
Samudrala and Moult 1998; DFIRE, Zhou and Zhou 2002),
the potential based on the side-chain center of mass (or
center of geometry) is the most accurate one. For example,
the success rate of the DFIRE potential (the percent of na-
tive structures that are ranked by their energy scores as
number one in 96 decoy sets) increases dramatically from
35%, 50%, to 78% as the interaction center moves from C�,
C�, to SCM. For each type of interaction center, the DFIRE-

based potential outperforms the other two methods by a
significant 9% to 22%. More importantly, the average Z-
score increases significantly from 3.26 for RAPDF-SCM
(or 3.99 for KBP-SCM) to 4.30 for DFIRE-SCM. This sug-
gests that DFIRE-SCM provides a stronger bias against de-
coys than the other two methods. Because the potential
based on SCM performs the best, as found earlier (Kocher
et al. 1994), hereafter we shall report the results from SCM-
based potentials only, unless indicated otherwise.

The performances of the three SCM-based potentials are
compared in more detail in Table 2. The results are pre-
sented in terms of the average Z-score and the number of
first-ranked native structures within the decoy sets. Among
the three potentials, DFIRE-SCM has the highest number
of rank-1 native structures and the highest average Z-score
in 4state, lattice_ssfit, and Rosetta decoy sets. For the
fisa_casp3 and fisa decoy sets, DFIRE-SCM has the same
number of rank-1 native structures as KBP-SCM, but the
former has a higher Z-score. In the CASP4 decoy set,
DFIRE-SCM has a somewhat lower Z-score (3.15) than
KBP-SCM (3.83), but the former recognizes more native
proteins (19/23) than the latter (17/23). Thus, DFIRE-SCM
improves over the other two types of statistical potentials in
essentially every single decoy set. This suggests that the
improvement is real and robust. If a success is defined by
ranking the native structure as one of the five lowest-energy
conformations (top 5 rank), the success rate of DFIRE-SCM
increases to 88.5%. This is remarkable considering that each
residue is represented by a single interaction center.

A close examination of the decoy sets in which DFIRE-
SCM failed indicates that many of those decoy sets belong

Table 1. The standard 96 multiple decoy sets

Source
Decoy
number Target (PDB ID)

4statea 630–687 1ctf, 1r69, 1sn3, 2cro, 3icb, 4pti, 4rxng

lattice_ssfitb 2000 1beo, 1ctf, 1dkt-A, 1fca, 1nkl, 1pgb, 1trl-A, 4icb
lmdsc 343-500 1b0n-Bg,h,i, 1bbag,h,i, 1ctf, 1dtkg,i, 1fc2g,h, 1igdg, 1shf-A, 2cro, 2ovog, 4ptig

fisad 500-1200 1fc2g,h, 1hdd-C, 2cro, 4icb
fisa_casp3e 500-1200 1bg8-A, 1bl0, 1jwe
CASP4f 42-112 t0086(1fw9), t0087(1i74), t0091(1j8b)g,h,i, t0092(1im8), t0096(1e2x), t0098(1fc3), t0100(1qjv), t0103(1ga6), t0104(1fl9),

t0106(1ijx)g, t0107(1i8u), t0108(1j83), t0111(1e9i), t0112(1e3j), t0113(1e3w), t0115(1fwk), t0117(1j90), t0118(1fzr)g,h,
t0121(1g29), t0123(1exs)g,h, t0125(1ghk), t0126(1f35), t0127(1g8p)

Rosettae 1000 1aa2, 1acf, 1ahog,i 1ail, 1ajjg,h,i, 1bdo, 1cc5, 1csp, 1ctf, 1eca, 1erv, 1gvp, 1hlb, 1kte, 1lfbg,i, 1lis, 1lzl, 1mbd, 1msi, 1mzm,
1nxbg,h,i, 1orc, 1pal, 1pdo, 1pgx, 1ptqg,i 1r69, 1ris, 1tul, 1utgg, 1vls, 1who, 2acy, 2erl, 2fdn, 2fha, 2gdm, 2sn3, 4fgf, 5icb, 5ptig,i

a (Park and Levitt 1996).
b (Xia et al. 2000).
c (Keasar and Levitt 2003).
d (Simons et al. 1997).
e (Simons et al. 1999).
f (Feig and Brooks 2002).
g Missed by DFIRE SCM potential in native rank.
h Missed by DFIRE SCM potential in top 5 rank.
i Targets which do not have a corresponding X-ray crystal structure, have >10% difference in the number of atoms between target and decoy structures,
or contain constitutive ligands (e.g., heme groups or iron-sulfur clusters).

Figure 1. The number of correctly identified native structures (top) and
the average Z-score (bottom) in the 96 standard multiple decoy sets by
three potentials using C�, C�, SCM, and all-atoms as the interaction centers.

Zhang et al.

402 Protein Science, vol. 13



to the proteins that do not have an X-ray native structure, or
have more than 10% difference in the number of atoms
between target and decoy structures, or contain constitutive
ligands such as heme groups and iron-sulfur clusters (see
Table 1). If these proteins are removed from the decoy sets
(as in McConkey et al. 2002), the success rate of DFIRE-
SCM (defined as native-rank as top 1 rank) increases further
to 89%.

It is of interest to know the loss in accuracy after reducing
all-atom representation to single-interaction center. Table 3
compares the performance of DFIRE-SCM with those of
all-atom versions of RAPDF, atomic KBP, and DFIRE (see
also Fig. 1). Remarkably, DFIRE-SCM is more accurate
than the all-atom version of RAPDF and atomic KBP in
native structure selections in all decoy sets except 4state the
CASP4 and lattice_ssfit decoy sets. For CASP4 decoy sets,
the number of native structures as rank-1 is 19 for DFIRE-
SCM and 20 for KBP-all-atom and RAPDF-all-atom. How-
ever, the average Z-score from DFIRE-SCM (3.15) is

higher than that from either KBP-all-atom (2.93) or
RAPDF-all-atom (2.17). For lattice_ssfit, only the average
Z-score from DFIRE-SCM (6.19) is lower than that from
either KBP-all-atom (6.61) or RAPDF-all-atom (7.18). For
all of the 96 multiple decoy sets, however, the success rate
of DFIRE-SCM is 10% higher than that of RAPDF-all-atom
(or 15% in the case of atomic KBP). The average Z-score
given by DFIRE-SCM is also higher than those given by
both RAPDF-all-atom and KBP-all-atom. The change in
accuracy after reducing all-atom representation to single-
interaction center for DFIRE is small except for lmds decoy
sets, where the number of rank-1 native structures is seven
for the all-atom DFIRE potential, compared to three for the
DFIRE-SCM potential. (The number of native structures in
the lmds set within top 5 is also seven for DFIRE-SCM,
however.) The overall reduction in success rate based on top
1 ranking for all 96 decoy sets is only 2%. However, both
potentials have nearly the same success rate based on the
top 5 ranking (∼89%). Thus, the abilities of DFIRE-all-atom

Table 2. The success rate and the average Z-score of different SCM potentials
using the 96 standard decoy sets

Source RAPDF-SCM KBP-SCM DFIRE-SCM

4state 5/7 (3.21)a 4/7 (3.91) 6/7 (3.94)
lattice_ssfit 6/8 (5.36) 6/8 (5.11) 8/8 (6.19)
lmds 2/10 (1.78) 4/10 (2.59) 3/10 (2.56)
fisa 1/4 (2.51) 3/4 (3.99) 3/4 (4.70)
fisa_casp3 2/3 (3.70) 3/3 (4.96) 3/3 (6.05)
CASP4 19/23 (2.74) 17/23 (3.83) 19/23 (3.15)
Rosetta 27/41 (3.55) 29/41 (4.16) 33/41 (4.90)

Summary 62/96 (3.26 ± 1.87) 66/96 (3.99 ± 2.13) 75/96 (4.30 ± 2.22)
75/96 (top5)b 77/96 (top5) 85/96 (top5)

a The first number is the number of native structures ranked number one; the second number
is total number of proteins in the decoy set. The numbers in parentheses are the average
Z-scores.
b The first number is the number of native structures that are within the rank of top 5.

Table 3. The success rate and the average Z-score of different all-atom potentials
compared to that of the DFIRE-SCM potential

Source RAPDF-all-atom KBP-all-atom DFIRE-all-atom DFIRE-SCM

4state 7/7 (3.01)a 7/7 (3.24) 6/7 (3.49) 6/7 (3.94)
lattice_ssfit 8/8 (7.18) 8/8 (6.61) 8/8 (9.47) 8/8 (6.19)
lmds 3/10 (−0.52) 3/10 (0.53) 7/10 (0.90) 3/10 (2.56)
fisa 1/4 (1.27) 0/4 (1.21) 3/4 (4.80) 3/4 (4.70)
fisa_casp3 3/3 (4.09) 0/3 (2.08) 3/3 (5.40) 3/3 (6.05)
CASP4 20/23 (2.17) 20/23 (2.93) 19/23 (2.61) 19/23 (3.15)
Rosetta 24/41 (3.18) 23/41 (3.17) 31/41 (3.91) 33/41 (4.90)

Summary 66/96 (2.82 ± 2.87) 61/96 (3.01 ± 2.46) 77/96 (3.80 ± 3.31) 75/96 (4.30 ± 2.22)
75/96 (top5)b 70/96 (top5) 84/96 (top5) 85/96 (top5)

a The first number is the number of native structures ranked number one; the second number is total
number of proteins in the decoy set. The numbers in parentheses are the average Z-scores.
b The first number is the number of native structures that are with top 5 rank.
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and DFIRE-SCM to distinguish native structures from de-
coys are comparable for this 96 decoy sets. We also ob-
served similar behavior for the RAPDF and KBP potentials.

Structure selections from 21 docking decoy sets

The docking decoy set consists of 16 and 5 decoy sets
downloaded from the Sternberg group’s Web site (http://
www.bmm.icnet.uk) and the Vakser group’s Web site
(http://reco3.ams.sunysb.edu/data/decoy/database.html), re-
spectively. The 21 decoy sets contain 15 dimers and 6 tri-
mers. Each decoy set has one native complex structure and
99 decoys.

Table 4 compares the results of the DFIRE-SCM poten-
tial with those of the all-atom knowledge-based Lu-Lu-
Skolnick (LLS) potential (Lu et al. 2003). The LLS poten-
tial is the KBP trained with interfacial structures of dimers.
The performance of the all-atom LLS potential is worse
than the DFIRE-SCM potential, although the latter was not
trained with any interfacial information. The success rates
of the all-atom LLS potential based on top 1 ranking are
10/15 (67%) for dimers and 1/6 (17%) for trimers. The
corresponding rates for DFIRE-SCM are 13/15 (87%) and
4/6 (67%), respectively. It is of interest to note that there is
also a residue-level LLS potential whose success rates are
significantly lower than its all-atom counterpart (20% for
dimers and 0% for trimers). The DFIRE-all-atom potential,
on the other hand, achieved 100% success rates for both
dimers and trimers (Liu et al. 2004).

Interface selections

The simplified DFIRE-based potential is used to distinguish
the true interfaces from artificial interfaces in crystalline
state. The data set of 171 interfaces was established by
Ponstingl et al. (2000). In Figure 2, the distributions of

energies of both true and false complexes calculated with
the DFIRE-SCM potential are shown. In general, true in-
terfaces have lower energies than those of artificial inter-
faces. If one uses an energy score of −15 as a cutoff value
to distinguish the true from the false interfaces, 92% of the
dimers or monomers are assigned correctly. In contrast, the
success rate of the residue-level LLS potential is only 59%
for the potential trained by monomer structures and 86% for
the same potential trained by the interfacial regions of
dimers (Lu et al. 2003). The success rate of DFIRE-SCM is
slightly less than 95% by the all-atom LLS potential (Lu et
al. 2003) and 93% obtained by a method of atomic contact
vectors (Mintseris and Weng 2003), but is superior to the
rate of 86% obtained by a sequence-based method (Elock
and McCammon 2001), the rate of 85%–88% by a solvent
accessible surface area and a pair scoring function (Pon-
stingl et al. 2000). Note that the DFIRE-all-atom potential
has a success rate of 93% (Liu et al. 2004).

Structure selections from new Rosetta
single-chain and docking decoy sets

To further test the DFIRE-SCM potential, we used the new
Rosetta monomeric and docking decoy sets that were de-
signed for testing energy functions (Tsai et al. 2003). The
monomeric decoy sets contain 25 proteins, each of which
has about 2000 decoys. The docking decoy set contains 18
complexes of antibody-antigen and 13 other complexes.
There are 400 decoys for each docking structure. For com-
parison, we used the same definition for a successful dis-
crimination as Kortemme et al. (2003); that is, a discrimi-
nation is successful if a Z-score is greater than 1.0.

Table 5 compares the Z-scores from DFIRE-SCM and
those from KMB potential (Kortemme et al. 2003) for both
monomer and docking decoy sets. The Z-score of the KMB
potential ranges from −1.53 to 8.22 for the monomeric de-

Table 4. The ranking of the native structures and the Z-scores for the 21 docking decoy sets

PDB IDa 1chg/1hpt 1sup/2ci2 2ptn/4pti 5cha/2ovo 1a2p/1a19 lavz 1bgs 1brc

LLSb 3 2 1 1 4 2 1 1
DFIRE-SCMc 1/4.79 1/2.13 1/2.84 1/1.96 1/2.06 4/1.66 1/2.36 1/2.18

1fss 1ugh 1wql 2pcc 2sic 1cgi 1dfj %Successd

1 1 1 1 1 1 4 10/15 (67%)
1/1.97 1/3.53 1/2.66 4/2.09 1/2.33 1/2.71 1/2.51 13/15 (87%)

PDB IDe 1ahw 1bvk 1dqj 1mlc 1wej 2kai %Successd

LLSb 3 4 4 3 1 14 1/6 (17%)
DFIRE-SCMc 1/2.05 1/1.85 1/1.68 1/1.95 2/1.84 2/1.81 4/6 (67%)

a Dimers.
b The all-atom knowledge-based potential due to Lu, Lu and Skolnick derived from the interfacial structures of a dimer database (Lu et al. 2003). The
number in each cell indicates the rank of the native structure. (The Z-score was not reported in Lu et al. (2003)).
c The DFIRE-based potential derived from a monomer database (Zhou and Zhou 2002). The two numbers in each cell represent the rank of native structure
and the Z-score, respectively.
d The overall success rate based on the first rank.
e Trimers.
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coy sets and from −1.03 to 14.06 for the docking decoy sets.
These strongly fluctuating Z-score values suggest that the
KMB potential is suitable for discriminating some proteins
but not others. On the other hand, the Z-score of the DFIRE-
SCM potential is relatively stable, with a much narrower
range. The Z-score range is between 0.48 and 5.21 for the
monomeric decoy sets and between −0.45 and 3.36 for
docking decoys. The overall success rate for KMB is 22/25
(88%) and 23/31 (74%) for monomeric and docking decoys,
respectively. The corresponding numbers for DFIRE-SCM
are 24/25 (96%) and 23/31 (74%), respectively. Thus, the
DFIRE-SCM is more successful in discriminating against
decoys than KMB for monomeric proteins and is compara-
bly successful for docking decoys. This is remarkable con-
sidering the fact that the KMB potential is an all-atom po-
tential with sophisticated, weight-optimized, energetic
terms for van der Waals, solvation, hydrogen-bond interac-
tions, and rotamer probabilities.

TOUCHSTONE decoy set

The TOUCHSTONE decoy set was generated by the
TOUCHSTONE II structure-prediction program (Zhang et
al. 2003). The decoy set contains a comprehensive 125 pro-
teins, each of which contains 24,000 decoys. As each decoy
has only C� positions, only the performances of RAPDF-
C�, KBP-C�, and DFIRE-C� are compared in Table 6.
DFIRE-C� is able to identify 123 native structures out of
125 decoy sets (98%). This is in sharp contrast to 79 native
structure by RAPDF-C� (63%) and 45 native structures by
KBP-C� (36%). The average Z-score given by DFIRE-C�

(7.96) is also significantly higher than any of those given by
either RAPDF-C� (4.59) or KBP-C� (3.01).

Comparison with other residue-level potentials

It is of interest to compare the DFIRE-based method with
other well established residue-level energy functions. Tobi

and Elber (2000) compared several residue-based energy
functions with their TE-13 potential generated from a linear
programming method. The TE-13 potential is also a dis-
tance-dependent pair potential based on side-chain center of
mass (geometry). Table 7 compares the results of DFIRE-
SCM with those listed by Tobi and Elber (2000) as well as
the methods of Errat (Colovos and Yeates 1993), ProsaII
(Sippl 1993), and VERIFY-3D (Eisenberg et al. 1997). (The
results of Errat, ProsaII, and VERIFY-3D were obtained
from http://www.sbc.su.se/∼bjorn/ProQ/.) The success rate
of the DFIRE-SCM potential is at least 15% more than
those of the other 10 energy functions examined. The
DFIRE-SCM potential also has the highest Z-score among
11 energy functions. For a further comparison with other
residue-based potentials, the distance dependences of the
DFIRE-SCM potential for two representative residue pairs
are shown in Figure 3. We found that the distance depen-
dence of the DFIRE-SCM potential between hydrophobic
residues Phe and Val is qualitatively similar to those of the
TE-13 and Bahar-Jernigan (BJ) potentials (shown in Fig. 1E
of Tobi and Elber 2000). All three have a double well,
although the exact locations are somewhat different. On the
other hand, the distance dependence of the DFIRE-SCM
potential between hydrophobic Met and hydrophilic Arg is
qualitatively different from the TE-13 or the BJ potential
(Fig. 2C of Tobi and Elber 2000). The interaction between
Met and Arg given by the DFIRE-SCM potential is essen-
tially unfavorable at any distance, whereas it is favorable at
most distances for TE-13. For the BJ potential, a long-range
attraction between Met and Arg is observed.

Discussion

In this paper, a newly developed all-atom knowledge-based
potential has been simplified to a residue-level energy func-
tion. The application of this reduced energy function indi-
cates that the reduction from a full atomic representation to
the residue-level representation leads to only a small change
in its success rate for native-structure discrimination. More
significantly, its success rate for native discrimination is
higher than those of the all-atom knowledge-based poten-
tials (RAPDF and KBP) and the all-atom semiphysical
KMB potential. The discriminative ability of this reduced
potential is also comparable to a recently developed atom-
atom contact scoring function (McConkey et al. 2002),
which achieved a success rate of 7/7 for 4state, 8/8 for
lattice_ssfit, 6/8 for lmds, 19/23 for Rosetta, and 19/23 for
CASP4. The corresponding rates for DFIRE-SCM are 6/7,
8/8, 3/8, 20/23, and 19/23. (This comparison is based on the
same reduced decoy sets used in McConkey et al. 2002.)
This suggests that the new energy function is likely to be
useful as a screening tool for genomic-scale structure pre-
diction. Unlike previously developed statistical potentials,
the new potential, similar to its all-atom counterpart, can be

Figure 2. The distribution of energy scores of the artificial (open bars) and
true (filled bars) dimeric interfaces.
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used directly and is equally successfully in selecting native
structures from docking decoys. It should be stressed that it
is impossible to make an exhaustive comparison with all
existing residue-level potentials. It is possible that other
published residue-level potentials may exist that outperform
the DFIRE-SCM potential.

The ability to successfully select native structures from
decoys is the minimum requirement for an energy function.
A stricter requirement for an energy function is its ability to
discriminate near-native conformations in the absence of the
native conformation. Although this stricter requirement is
usually reserved for more refined energy functions at an
all-atom level, it is of interest to know the performance of
DFIRE-SCM in this aspect. One way to characterize the
ability of detecting near-native conformations is the near-
native Z-score, that is, the score difference between the
high-rmsd decoys and the low-rmsd decoys normalized by
the score fluctuation of the high-rmsd decoys (Kortemme et
al. 2003). A decoy is considered a low-rmsd decoy if it is in
the lowest 5% of rmsd distribution (Kortemme et al. 2003).

Table 5. The Z-scores for 25 monomeric and 31 docking Rosetta decoy sets

Monomeric decoys Docking decoys

PDB ID KMBa DFIRE-SCMb PDB ID KMBa DFIRE-SCMb

1a32 4.59 1.92 1a2yc 2.47 0.97
1ail 8.22 2.17 1qfuc 0.01 2.14
1am3 2.39 2.14 1cz8c 6.04 1.45
1bq9 6.37 3.07 1wejc 0.79 −0.45
1cc5 −1.53 1.46 1dqjc 5.80 1.65
1cei 5.80 4.38 1e6jc 5.28 1.96
1csp 2.43 4.57 1egjc 0.72 1.04
1ctf 6.01 4.11 1eo8c 0.96 0.82
1dol 0.57 3.34 1fdlc 2.66 1.13
1hyp 3.30 5.21 1fj1c 1.51 2.01
1lfb 0.45 1.90 1g7hc 3.38 1.13
1msi 3.82 2.28 1ic4c 5.29 1.82
1mzm 2.79 2.07 1jhlc 2.31 0.72
1orc 3.57 2.83 1jrhc 8.56 1.35
1pgx 4.47 3.17 1mlcc 2.33 1.20
1ptq 3.18 0.48 1ncac 0.50 2.23
1r69 3.36 4.52 1nsnc −0.36 0.25
1tif 7.09 2.56 1ospc 7.82 1.61
1tuc 4.38 2.10 1acb 11.33 1.84
1utg 4.80 1.25 1avz 1.05 0.73
1vcc 5.50 2.73 1brs 3.43 1.44
1vif 4.47 2.27 1cho 12.06 2.51
2fxb 2.48 3.86 1ugh 2.34 2.52
5icb 5.61 3.95 2btf 4.18 1.73
5pti 6.62 1.92 1mda −1.03 0.52

1ppf 8.77 1.95
1spb 14.06 3.36
2ptc 6.18 1.69
1cse 9.16 1.91
2pcc −0.87 0.59
1fin 3.65 3.08

Average 4.03 ± 2.18 2.81 ± 1.16 4.21 ± 3.91 1.51 ± 0.80
%successd 88% 96% 74% 74%

a The Kortemme-Morozov-Baker empirical free-energy function enhanced by orientation-
dependent hydrogen bonding potential (Kortemme et al. 2003).
b This work.
c Antibody antigen complex.
d The success rate based on the number of decoy sets with Z-score >1 as in Ref. (Kortemme
et al. 2003).

Table 6. The success rate and the average Z-score of C�-based
potentials on the TOUCHSTONE decoy set

Method RAPDF-C� KBP-C� DFIRE-C�

# Correct/Total 79/125 45/125 123/125
〈 Z score〉 4.59 ± 2.20 3.01 ± 2.37 7.96 ± 3.24
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For a separate 23 monomeric Rosetta decoy sets (Kortemme
et al. 2003), there are only four proteins whose near-native
Z-scores are greater than 1 for the KMB energy function.
The corresponding number is four for DFIRE-all-atom and
two for DFIRE-SCM. For 31 Rosetta docking decoys, there
are 22, 22, and 14 proteins with a Z-score (near-native) > 1
for the KMB, DFIRE-all-atom, and DFIRE-SCM, respec-
tively. Another way to characterize the ability to detect
near-native conformations is the correlation between energy
score and rmsd when the rmsd is smaller than about 3 Å
(Kortemme et al. 2003). In the docking decoy set, the num-
ber of proteins whose correlation coefficients are equal to or
greater than 0.5 is 18 for KMB, 23 for DFIRE-all-atom, and
15 for DFIRE-SCM. Examples are given in Figs. 4–6,
where the rmsd values of decoys are plotted against their
energy scores for some selected monomeric proteins, anti-
body/antigen, and non-antibody complexes. It is clear that
DFIRE-SCM is not as good as DFIRE-all-atom or KMB in
detecting near-native conformations, whereas DFIRE-all-

atom and KMB have comparable ability in detecting near-
native structures based on this Rosetta decoy set. However,
as a common practice, the above results were obtained by
DFIRE-all-atom and DFIRE-SCM without performing any
minimization on either native structures or decoys due to
discretization of knowledge-based potentials. We are cur-
rently developing techniques for minimization. Preliminary
results suggest that minimization can further improve the
detection of near-native conformations by DFIRE-all-atom
and DFIRE-SCM. The details will be reported elsewhere.

Materials and methods

DFIRE-based potential

The derivation of equations, and the method for extracting the
DFIRE-based potential using a structure database as well as the
resulting potential have been described or obtained previously

Table 7. The success rate and the average Z-score of different potentials using a subset of the
Levitt’s multiple decoy sets

Methoda TE-13 MJ GKS BT HL BJ

# Correct/Totalb 13/15 11/25 9/25 9/25 8/25 15/25
〈 Z score〉 3.53 ± 1.14 2.82 ± 2.27 2.36 ± 2.53 2.65 ± 2.37 2.67 ± 2.02 2.75 ± 2.10

Method XCJ Errat ProsaII Verify3D DFIRE-SCM

Correct/Total 11/19 11/25 15/25 10/25 19/25
〈 Z score〉 2.72 ± 1.82 4.04 ± 2.45 3.05 ± 1.63 2.40 ± 1.74 4.52 ± 1.75

a Energy functions listed: Tobi and Elber (TE-13) (Tobi and Elber 2000), Miyazawa and Jernigan (MJ) (Mi-
yazawa and Jernigan 1999), Godzik, Koliniski, and Skolnick (GKS) (Godzik et al. 1995), Betancourt and
Thirumalai (BT) (Betancourt and Thirumalai 1999), Hinds and Levitt (HL) (Hinds and Levitt 1992), Bahar and
Jernigan (BJ) (Bahar and Jernigan 1997), Xiang, Chang and Jie (XCJ) (Li et al. 2003), Colovos and Yeates
(Errat) (Colovos and Yeates 1993), Sippl(ProsaII) (Sippl, 1993), Eisenberg, Luthy, and Bowie (VERIFY-3D)
(Eisenberg et al. 1997), and DFIRE-SCM (this work).
b The number of correctly ranked as number one in the total of 25 multiple decoys used in Tobi and Elber (2000).
The decoy sets include 4state_reduced (1ctf,1r69,1sn3,2cro,4pti,4rxn), fisa (1fc2,1hdd-C,2cro), fisa_casp3
(1bg8-A,1bl0,1jwe), lattice_ssfit (1etf,1dkt-A, 1fca,1nkl,1pgb,1trl-A) and lmds (1ctf,1dtk,1fc2-C,ligd,1shf-
A,2cro,2ovo).

Figure 3. Distance dependence of the DFIRE-SCM potential between hydrophobic residues Phe and Val (left) and between hydro-
phobic Met and hydrophilic Arg (right).
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(Zhou and Zhou 2002). Here, we give a brief summary for com-
pleteness.

The DFIRE potential of mean force u(i, j, r) between atom (or
residue) types i and j that are distance r apart is given by (Zhou and
Zhou 2002):

u�i, j, r� = �−�RTln
Nobs�i, j, r�

�r�rcut�
���r��rcut�Nobs�i, j, rcut�

0,r � rcut,

,r � rcut,

(1)

where � (� 0.0157) is a scaling constant, R is the gas constant,
T � 300K, � � 1.61, Nobs(i, j, r) is the number of (i, j) pairs
within the distance shell r observed in a given structure database,
rcut � 14.5 Å, and �r(�rcut) is the bin width at r(rcut). (�r � 2 Å,
for r < 2 Å; �r � 0.5 Å for 2 Å < r <8 Å; �r � 1 Å for 8 Å < r
<15 Å.) The exponent � for the distance dependence was obtained
from the distance dependence of the pair distribution function for
uniformly distributed points in finite spheres (finite ideal-gas ref-
erence state). The number of observed atomic (force centroids)
pair (i, j) with the distance shell r [Nobs(i, j, r)] was obtained from
a structural database of 1011 nonhomologous (< 30% homology)
proteins with resolution <2 Å, which was collected by Hobohm et
al. (1992), http://chaos.fccc.edu/research/labs/dunbrack/culledpdb.
html. The potential u(i, j, r) is set to 2� if Nobs(i, j, r) � 0.

Residue-specific atomic types were used (167 atomic types;
Samudrala and Moult 1998; Lu and Skolnick 2001). For a residue-
based potential, all atoms in a residue are replaced by a united
interaction site located at C�, C�, and SCM, respectively. The
numbers of types of force centroids for all three reduced potentials
are 20. We use the same equation (1), same parameters, and same
bin procedures to generate DFIRE-C�, DFIRE-C�, and DFIRE-
SCM that denote C�-based, C�-based, and SCM residue-level po-
tentials, respectively. This is reasonable because residue-specific
atomic types were used in generating the all-atom DFIRE poten-
tial.

The RAPDF and KBP potentials

In order to compare the DFIRE-based potentials with the RAPDF
(Samudrala and Moult 1998) and KBP (Lu and Skolnick 2001)
potentials, we regenerated the two potentials using the same pro-
cedures described in their original papers. For RAPDF (Samudrala
and Moult 1998), the first bin covers 0–3.0 Å, and the distance
between 3.0–20 Å is binned every 1 Å. The total number of bins
is 18. All 18 bins with a cutoff distance of 20 Å are used for
scoring. For KBP (Lu and Skolnick 2001), the distance between
1.5 Å to 14.5 Å, is binned every 1 Å and the last bin is from 14.5
Å to infinite. The total number of bins is 14. The first and second
sequence neighbors are excluded whereas backbone atoms are in-
cluded in counting contacts. When used in scoring, only the bins
covering 3.5–6.5 Å are used. In all cases, contacts between atoms
within a single residue are excluded from the counts and scoring.
In case of zero pairs, both potentials are set to be 2� kcal/mole.
The structural database is the 1011 structures described above for
the DFIRE-based potentials rather than the 265 proteins used in
RAPDF and 1291 proteins used in atomic KBP in their respective
original publications. It was shown that the change of database has
little effect on the overall accuracy of the RAPDF and atomic KBP
potentials (Zhou and Zhou 2002). For RAPDF and KBP residue-
based potentials, we used the force centroids as for DFIRE. We
used the same equation, same parameters, and same bin procedures
to generate RAPDF-C� (KBP-C�), RAPDF-C� (KBP-C�), and
RAPDF-SCM (KBP-SCM) denoting C�-based, C�-based, and
SCM residue-level potentials, respectively. No attempts were
made to optimize the parameters and/or procedures presented in
the original papers for possibly better performance.

Structure selections from decoys

For a given 3-D structures of a protein, the total residue–residue
potential of mean force, G, is

G =
1

2�I, J

u�I, J, rIJ� (2)

Figure 4. Scatter plots of the DFIRE-SCM score (left) and DFIRE-all-atom score (right) vs. rmsd of decoy from the native structure
(based on C� atoms). Results of two proteins (1r69 at top and 1vif at bottom) from the 23 monomeric single-domain Rosetta decoys
sets are shown.
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where the summation is over all pairs of residues. In structure
selections from decoy sets, the total potential G is calculated for
each structure, including native state and decoys. The native state
is correctly identified if its structure has the lowest value of G.
Z-score is defined as

��G decoy� − G native�����G decoy�2� − �G decoy�2,

where <> denotes the average over all decoy structures of a given
native protein, and Gnative is the total residue-residue potential of
the native structure. Z-score is a measure of the bias toward the
native structure. To characterize the ability of detecting near-native
conformations, the near-native Z-score, which is the score differ-
ence between the high-rmsd decoys and the low-rmsd decoys nor-
malized by the score fluctuation of the high-rmsd decoys, was used
(Kortemme et al. 2003). The near-native Z-score is expressed as
(Kortemme et al. 2003)

Zscore �near native� =
�G decoy�hi − �G decoy�lo

�hi
(3)

where 〈 Gdecoy〉 lo( 〈 Gdecoy〉 hi) is the average energy score of the low
(high)-rmsd decoys, and �hi is the standard deviation of the energy
score of the high-rmsd decoys. A decoy is considered a low-rmsd
decoy if it is in the lowest 5% of rmsd distribution (Kortemme et
al. 2003). The low-rmsd decoys represent the near-native struc-
tures.

Structure selections from docking
decoys/artificial interfaces

The binding free energy of a dimer AB is obtained as follows:

�Gbind = Gcomplex − �GA + GB�. (4)

Because the structures of monomers are approximated as rigid
bodies and the residues at the interface contribute most to �Gbind,
equation 4 can be further simplified to

�Gbind =
1

2 �
I, J

interface

u�I, J, rIJ�, (5)

where the summation is over any two atoms belonging to an “in-
teracting” residue pair from different chains at the interface. We
follow the definition, due to Lu et al. (2003), in which an inter-
acting residue pair is a pair of residues from different chains that
have at least one pair of heavy atoms within 4.5 Å of each other.
Equation 5 can also be used for complexes with more than two
partners. The binding free energy �Gbind

decoy is calculated for each
docking decoy (or artificial interface). The native state is correctly
identified if �Gbind

native is the lowest value among all �Gbind
decoy values

(the first rank). A Z-score is defined as

���G bind
decoy� − �G bind

native������G bind
decoy�2� − ��G bind

decoy�2,

Figure 5. As in Figure 4 but for 1e6j (top), 1nca (middle), and 1qfu (bottom) in the antibody/antigen docking decoy sets.
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where <> denotes the average over all decoy structures of a given
protein. The Z-score is a measure of the free-energy bias toward
the native complex structure. For docking decoys, we used the
same definition of near-native Z-score to evaluate the ability of
recognizing near-native structures for a potential, except that the
energy for monomer decoys is replaced by binding free energy
�Gbind

decoy.
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