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Abstract

Accurate prediction of the placement and comformations of protein side chains given only the backbone
trace has a wide range of uses in protein design, structure prediction, and functional analysis. Prediction has
most often relied on discrete rotamer libraries so that rapid fitness of side-chain rotamers can be assessed
against some scoring function. Scoring functions are generally based on experimental parameters from
small-molecule studies or empirical parameters based on determined protein structures. Here, we describe
the NCN algorithm for predicting the placement of side chains. A predominantly first-principles approach
was taken to develop the potential energy function incorporating van der Waals and electrostatics based on
the OPLS parameters, and a hydrogen bonding term. The only empirical knowledge used is the frequency
of rotameric states from the PDB. The rotamer library includes nearly 50,000 rotamers, and is the most
extensive discrete library used to date. Although the computational time tends to be longer than most other
algorithms, the overall accuracy exceeds all algorithms in the literature when placing rotamers on an
accurate backbone trace. Considering only the most buried residues, 80% of the total residues tested, the
placement accuracy reaches 92% for �1, and 83% for �1 + 2, and an overall RMS deviation of 1 Å.
Additionally, we show that if information is available to restrict �1 to one rotamer well, then this algorithm
can generate structures with an average RMS deviation of 1.0 Å for all heavy side-chains atoms and a
corresponding overall �1 + 2 accuracy of 85.0%.

Keywords: side-chain prediction; rotamer library; potential energy function; OPLS parameters; simulated
annealing

The ability to accurately position side chains, given only the
backbone fold as input, has a wide range of applications in
protein folding and design. Several groups have developed
algorithms to examine the side-chain conformations as well
as the backbone fold with the goal of designing new ligand
specificities. Wilson et al. were successful at using a com-

puter design method to alter the substrate specificity of al-
pha-lytic protease to a nonnative substrate with a high level
of activity (Wilson et al. 1991). The FLEXS (Lemmen et al.
1998), FLEXX (Kramer et al. 1999), and FLEXE (Claussen
et al. 2001) algorithms vary side-chain and backbone con-
formations to characterize and design ligand sites for small
molecules. Others have approached the modulation of pro-
tein–protein interactions by demonstrating that the interface
between dimeric coiled coils can be altered through rede-
sign efforts (Keating et al. 2001). Energetic predictions
about specific residue substitutions at the dimer interface
were possible largely because of the accuracies of the side-
chain modeling.
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The efficiency and accuracy of side-chain placement al-
gorithms, brought about in part by the use of discrete rota-
mer libraries (Ponder and Richards 1987), has inspired
many to write algorithms capable of designing mutations to
modulate protein stability. Desjarlais and Handel have been
able to redesign the core of proteins to the extent of making
predictions about the relative stability of substitutions (Des-
jarlais and Handel 1995, 1999). Wernisch et al. have con-
ducted similar studies where a large number of core residues
of several proteins were reoptimized (Wernisch et al. 2000).
Others have used high-speed algorithms to generate mul-
tiple native-like structures to emulate the ensemble of struc-
tures that makes up the native state of the protein. The
variability of rotamer positions in the context of the en-
semble has been used in an attempt to construct a partition
function directly related to the conformational entropy of
the folded protein (Leach and Lemon 1998).

The improved computational power of the standard desk-
top computer has made it possible to generate entire se-
quences that fit with a given backbone topology. In fact,
Looger and Hellinga have demonstrated that with the proper
selection of optimization procedures it is possible to repack
proteins larger than 2400 residues with a fair degree of
accuracy (Looger and Hellinga 2001). Using side-chain re-
packing methods as a tool for rational design, the DeGrado
group engineered many proteins such as �-helical bundles
(Regan and DeGrado 1988), introducing prosthetic groups
into some (Robertson et al. 1994), and used these de novo
designed proteins as models for studying protein folding
and function (Hill et al. 2000). The Mayo group has under-
taken perhaps the most significant protein design project
where an entire protein was designed, involving optimizing
the backbone and side-chain placement as well as the spe-
cific side-chain identities. The significance of their results
was that the predicted structure was uniquely folded, char-
acterizable by NMR, and showed remarkable agreement
between the actual and predicted structures (Dahiyat and
Mayo 1997). This was the first definitive example that given
a fixed backbone position it was possible to create a se-
quence that would maintain the desired fold.

Side-chain repacking is a critical step in ab initio folding
applications. Simulations typically alternate between back-
bone and side-chain optimization to reach a final structure.
The goal of such simulations is to predict the three dimen-
sional structure of the protein knowing only the sequence.
Homology modeling is another approach to determining the
three-dimensional fold, but rather than employing a brute-
force style search of conformational space, the search is
restricted by comparing the new sequence to existing struc-
tures. In these cases, repacking algorithms must be robust
enough to place side chains on backbones that vary slightly
between homologs. Several methods have been developed
to use the local environment of the test residue compared to
known structures to place rotamers on deviated backbones

of a homologous structure (Eisenmenger et al. 1993; Wilson
et al. 1993; Ogata and Umeyama 1997). Alternate ap-
proaches generate ensembles of protein backbones that de-
viate from the native structure by up to 4 Å and then assess
how well an algorithm can repack side chains to resemble
the native positions (Tuffery et al. 1997; Huang et al. 1998;
Mendes et al. 2001).

Most repacking algorithms make use of the fact that side
chains occupy discrete positions that can be modeled by a
discrete rotamer library. The first example was a 67-rotamer
library by Ponder and Richards (Ponder and Richards
1987). Subsequent development has led to increase in the
detail, the conformational space explored, and the size of
the library with the largest discrete library numbering over
7500 rotamers (Xiang and Honig 2001). Methods for sort-
ing through the large number of combinations and the spe-
cific advantages and disadvantages for each method are de-
scribed in detail by Voigt et al. (2000). Briefly, current
methods can be classified into those using dead-end elimi-
nations (Lasters et al. 1995; Dahiyat and Mayo 1997).
Monte Carlo simulated annealing searches (Liang and
Grishin 2002), in combination with neural networks
(Hwang and Liao 1995), “branch-and-terminate” (Gordon
and Mayo 1999), self-consistent mean field optimization
with flexible rotamers (Mendes et al. 1999), and sequential
site optimization with multiple starting points (Xiang and
Honig 2001). Many algorithms use CHARMM22 (Brooks
et al. 1983) as the primary potential energy parameters, but
recently, Liang and Grishin provided evidence that this
long-standing force-field may not be the most optimal
choice for scoring functions (Liang and Grishin 2002).
Their scoring function was shown to be significantly more
effective.

The algorithm presented here also differs from others in
that it develops a potential energy function using the OPLS
parameters set (Jorgensen and Tirado-Rives 1988). It uses a
simple search strategy of simulated-annealing to optimize
the placement of side chains. Most importantly, it pushes
the rotamer library size to nearly 50,000 discrete positions.
This large library size bears associated difficulties, unre-
lated to computational time, that have not been addressed in
previous studies. In addition, constrained simulations high-
light the necessity of using local backbone interactions to
drive �1 accuracy and, correspondingly, the overall accu-
racy to even higher levels. The performance of this algo-
rithm is compared to other side-chain modeling algorithms,
and yields better overall results than existing methods.

Results and Discussion

The rotamer library

The rotamer libraries used in this study were developed with
the idea of sampling a reasonable amount of conformational
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space using fine steps between rotamers. The full details of
the creation of the rotamer libraries is given in the Materials
and Methods, but briefly, the range of about most dihedral
angles was ±15° in 5° steps for a total of seven discrete
positions for any dihedral position or a total of 21 positions
for each rotatable bond. This small step size generates a
corresponding increase in the total number of rotamers in-
cluded. No effort was made to limit the total number of
rotamers based on frequency of occurrence in the Protein
Data Bank (PDB; Berman et al. 2000) or potential intraresi-
due steric clashes that could occur in longer side chains.
Table 1 lists the number of discrete rotamers in the library
for each residue type. The total number of rotamers is
49,042, making it the largest discrete rotamer library used
for this type of study. The effective library size for arginine
is slightly smaller (9477 rotamers) when scaled intraresidue
steric clashes, consistent with the level used to perform the
full repacking operations (see section on simultaneous op-
timization of side chains below), are used to eliminate un-
favorable conformations. When rotamers were checked
against an ideal backbone using the scaled steric clash pa-
rameters the effective number of rotamers in the full library
was reduced to slightly more than half. The prediction ac-
curacy was decreased slightly when using the reduced ro-
tamer set (data not shown) suggesting that using an ideal
backbone to pretest rotamers can lead to improper filtering
of conformations because the backbone in actual structures
does vary from ideality. The small step size, which was the
primary reason for such a large library, offers potential re-
lief positions for rotamers within the same energy well that

might otherwise have been eliminated by steric clashes. A
library with a coarser step size was tested in an attempt to
decrease the computational time; however, the accuracy for
this library was also decreased (data not shown).

Table 1 also shows the fraction of native rotamer posi-
tions that can be approximated by rotamers in the library
using dihedral angle deviations from native as the criteria
for declaring a match. In all cases, a match was considered
successful only if all side-chain dihedral angles within the
same rotamer were within 20° or 40° of the native position.
As can be seen for the less strict criterion, greater than 98%
of all residues in the test set could be approximated by the
rotamer library. The average root-mean-squared (RMS) de-
viation for the dihedral angles for matching rotamers was
less than 7.5° for all residues, with the largest variance
attributed to arginine and lysine. The reported RMS devia-
tion is the average deviation between the best-fit rotamer
and the native side chain regardless of whether it satisfies
the dihedral angle criteria. Naturally, side chains with more
degrees of freedom or longer length have higher average
RMS deviations. This is because cumulative effects of small
deviations in each angle translate into large deviations for
the terminal side-chain atom positions. The cumulative pre-
dicted rotamer RMS deviation to the side chains of the test
proteins is 0.21 Å per residue. This is the best the library
could achieve provided the best-fit rotamers were found in
all cases.

The more restrictive angle cutoff of 20° identifies which
residues, namely arginine and lysine, would most likely
benefit from an even larger library. Typically, for these two

Table 1. Number of rotamers and the results of matching the library to native side chains

Residue
Number of

rotamers in library

Fraction of native rotamers

Average residue
RMSD (Å)

Number of side-chain
comparisons

Matched
within 40°

Matched
within 20°

Arg 10,935 0.984 0.850 0.58 561
Asn 630 0.998 0.976 0.15 591
Asp 315 0.999 0.986 0.16 717
Cys 21 1.000 0.996 0.11 229
Gln 6750 0.996 0.959 0.28 468
Glu 3375 0.998 0.966 0.33 584
His 2142 1.000 0.989 0.20 272
Ile 441 1.000 0.995 0.11 655
Leu 441 0.996 0.955 0.18 918
Lys 10,935 0.992 0.924 0.43 648
Met 6615 0.985 0.980 0.30 196
Phe 378 1.000 0.989 0.20 473
Pro 16 1.000 1.000 0.09 542
Ser 504 0.999 0.984 0.07 790
Thr 504 0.997 0.992 0.16 774
Trp 483 1.000 0.990 0.29 210
Tyr 4536 1.000 0.993 0.26 442
Val 21 0.999 0.984 0.08 827

49,042 Cumulative: 0.21 9897

Side-chain repacking using large libraries
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residues a match was usually not found for the terminal
dihedrals. Relaxation of the acceptance criterion for argi-
nine and lysine �4 to ±45° brings the fraction matched to
0.945 for arginine and 0.966 for lysine. Allowing the ter-
minal arginine �5 position to vary ±30° increases the frac-
tion matched even more, but only at the expense of dra-
matically increasing the library size. Making this extra con-
formational space available for arginine and lysine had little
effect on the average RMS deviation for these residues (data
not shown). Therefore, this sampling of extra conforma-
tional space was not used in the algorithm.

The potential energy function

The full energy function used in this study was a combina-
tion of experimental and empirically determined param-
eters. Briefly, the energy for a rotamer was calculated using
the following equation:

Erota �

Evdw + Eelec − 0.1(#Hbonds) + 1.5(Cratio) − 0.4(fnorm).

The van der Waals energy (Evdw), electrostatics (Eelec),
and the number of hydrogen bonds (#Hbonds) were evalu-
ated against the protein background in a fashion that is
typical of previous applications (see below). The contact
ratio (Cratio) is the average steric violation a rotamer makes
with other side chains. This term was intended to be an
approximation for volume overlap and to account for some
accessible surface area effects without the additional com-
putational overhead required for such calculations. The
(fnorm) is the frequency of a specific rotamer conformation
based on a large set of proteins (Dunbrack Jr. and Karplus
1993) from the PDB.

The van der Waals term is derived from a Lennard-Jones
12–6 potential using parameters from the OPLS united-
atom force field for proteins (Jorgensen and Tirado-Rives
1988). This set combines the van der Waals parameters for
all hydrogens with the antecedent atom; however, all polar
hydrogens have unique partial charge terms. The van der
Waals energies were calculated between all atoms more
than three bonds away including backbone atoms of the test
residue. The only exception was that the C� atom of the test
residue was not used in calculations with the backbone be-
cause the energy contribution from this atom does not con-
tribute to its side-chain placement. There was no distance
cutoff for the van der Waals potential. The van der Waals
term was exceedingly large relative to other terms in the
energy function. To prevent this value from dominating, it
was normalized to the number of heavy atoms in the side
chain giving an effective van der Waals contribution per
atom.

The OPLS parameters also include a partial charge list
(Jorgensen and Tirado-Rives 1988), and was used here to
calculate the electrostatic contributions. Electrostatic inter-
actions were calculated between all atoms more than three
bonds away, excluding intraresidue interactions. The mini-
mum distance between charges was not allowed to be less
than 0.8 times the van der Waals radii of the atoms to
prevent unrealistic charge contributions, arising from ran-
dom placement of rotamers forcing charges too close to-
gether, from dominating the energy of the rotamer. Again,
there was no distance cutoff for the electrostatic interac-
tions. In this analysis, the dielectric was set to a uniform
value of 80 regardless of the solvent exposure of the residue.

Potential hydrogen bonds between the test rotamer and all
nearby hydrogen-bonding groups were tallied. Each hydro-
gen bond was considered to contribute a favorable 0.1 kcal/
mole to the rotamer energy independent of distance and
hydrogen bonding geometry. Explicit hydrogens were used
in the rotamer library such that the precise geometry could
be used to predict most potential hydrogen bonding inter-
actions. The hydrogen-acceptor (H:A) distance, the donor-
hydrogen-accepter (DHA) angle, and the hydrogen-ac-
cepter-antecedent carbon (HAC) angle were used to define
a hydrogen bond. The limits for these parameters (Hebert
1997) were set as follows:

H:A distance � 2.58 Å
110° � DHA angle � 180°
90° � HAC angle � 180° for sp2 hybridized atoms
60° � HAC angle � 180° for sp3 hybridized atoms.

The lysine amino group was not rotated in the library
making these hydrogens fixed in position so this explicit
analysis method could not be used. In addition, previously
placed cysteine, serine, threonine, and tyrosine hydrogens
could potentially be rearranged to accommodate new poten-
tial hydrogen bonds to the test rotamer. For these residues
and lysine, rather than increasing computational costs to
explicitly move the hydrogens into place, a parameter set
was devised to approximate hydrogen bonds in the absence
of discrete hydrogen positions. For these cases the donor-
acceptor distance maximum was 3.61 Å. The antecedent
atom-donor-accepter angle had to be within the range of
102°–161°, and the donor-acceptor-antecedent carbon angle
had to be 71°–180° when calculating hydrogen bonds with
lysine, and 41°–180° for hydrogen bonds to sp3 hybridized
atoms. These parameters were determined by modeling hy-
drogen bonds with explicit hydrogens then calculating the
distance and angles between participating heavy atoms.
This method was slightly less accurate at predicting hydro-
gen bonds than using explicit hydrogen positions, but be-
cause of the relatively low contribution from hydrogen
bonds towards placement of these residues, it concluded that
it was not necessary to improve upon this.
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The contact ratio is the average violation of van der
Waals distances between atoms in the rotamer and the other
side chains. It is calculated by summing all pairwise atom
comparisons where the ratio of the calculated distance di-
vided by the sum of the actual van der Waals radii is less
than 1. This sum is then divided by the total number of
violations to yield an average violation per atom. Polar side-
chain hydrogens were included in this calculation, but con-
tacts with the backbone were not.

The frequency term is based on the statistical occurrence
of specific dihedral combinations for a residue in the PDB.
The parameters used are the backbone-dependent frequen-
cies determined by Dunbrack Jr. and Karplus (1993). This
term is the only term in the potential energy function that is
not drawn from the physical properties of the predicted
structure. For each residue library, the highest frequency
rotamer conformation for a given backbone conformation
was used as a normalization parameter such that the highest
frequency was set to 1. The frequency definitions are coarse
in the sense that all rotamers occupying the same dihedral
region had identical frequency terms.

To combine the contact ratio and frequency terms with
the other energy terms suitable coefficients were necessary.
These coefficients were obtained by using a coarse grid
search to find where the average RMS deviation per residue
was at a minimum. The protein test set consisted of seven of
the test proteins. The coefficient for the frequency term was
further adjusted independently for each residue type by
changing the value for a given residue, holding all others
constant, and the value yielding the best accuracy for that
type was kept in the final energy equation. The range of
resulting frequency coefficients was from 0.2 to 1.0, which
means the maximum contribution in this energy function by
the frequency could only be 1 kcal/mole. Proline rotamers
were not assigned frequency values in this algorithm.

Simultaneous optimization of side chains

The repacking algorithm was only given the backbone
structure and sequence as input. Prior to repacking, the pro-
tein was stripped of all side chains leaving only the C�–C�

vectors from the native structure. This vector was used later
to properly orient the rotamer library relative to the back-
bone. Upon placement of the first trial rotamer the native C�

atom was removed. Next, a search was done for potential
disulfide bonds by analyzing pairwise combinations be-
tween all cysteine rotamers at all positions where the C�

atoms were less than 9.5 Å apart. The criteria for the for-
mation of a disulfide bond was the S–S distance must be
within 2.2 ± 0.3 Å and both C�–S–S� angles within
104.2 ± 30°. These parameters are a modified form of the
CHARMM22 parameters for a disulfide bond. If a disulfide
bond was identified the corresponding rotamers were placed

on the backbone and held fixed for the remainder of the
simulation.

The repacking then proceeded by testing the specific li-
brary at each position. All rotamers that clashed with the
backbone or itself were removed from further consideration.
Whether a clash occurred was determined using van der
Waals radii scaled by 0.7 for side-chain to side-chain con-
tacts and 0.8 for side-chain to main-chain contacts. If a
particular site did not yield any passing rotamers the scaling
parameters were incrementally reduced until passing rota-
mers were obtained. The scaling parameters can be altered
at execution time by the user. The use of scaled van der
Waals radii is justified because even in high-resolution crys-
tal structures there are still van der Waals violations present,
and use of the full radii would often eliminate native-like
(i.e., correct) rotamers. The steric-clash tests also included
comparisons to the local backbone atoms and intraresidue
contacts for arginine and lysine. The filtering method elimi-
nated a significant portion of the possible rotamers early in
the simulation. This filtering could have been done during
the generation of the libraries. However, the generation of
the libraries used idealized placement of the backbone at-
oms, whereas in the crystal structures these positions were
expected to vary from ideality. Although the variations
could be slight, rotamers that would otherwise be removed
during the generation process might pass when tested
against the crystal structure backbone.

The number of rotamers that passed through the steric-clash
filter averaged about 500–1000 per test site. The interaction
energies with the backbone were calculated for each rotamer
for later use in calculating the full energy. The initial place-
ment of residues for the start of the repacking portion was
determined randomly. Optimizing side-chain placement
was carried out using a simulated annealing method (Press
et al. 1992) where each new site and rotamer were selected
randomly. The simulated annealing schedule and param-
eters can be found in Materials and Methods. The frequency
of sampling any given site was dependent on the number of
rotamers that passed the steric-clash test. This means that
residues with three or more side-chain dihedrals generally
had significantly more rotamers passing than shorter side
chains, and thus were selected more often. Correspondingly,
residues such as arginine might be sampled 100 times more
often than a proline. This disparity will have an effect on the
accuracy of the lower rotamer-count residues. To counteract
this, each rotamer in the library for Asn, Asp, Leu, Ile, Phe,
and Trp was duplicated, thereby doubling the number of
rotamers given in Table 1, and an eightfold duplication of
rotamers for the very small libraries of Val and Pro. This
increased the probability that the proper rotamer was sampled
sufficiently often, but had the disadvantage of increasing the
sampling of improper rotamers as well as increasing com-
putation time. Despite the apparent disadvantages, this
method improved the accuracy for the core residues.

Side-chain repacking using large libraries
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For even the largest protein in the test set, allowing the
algorithm to proceed to convergence or to the point when
residues were no longer changing positions was not a sig-
nificant computational problem. However, because the al-
gorithm was being tested on a large set of proteins it was
desirable to find a shortcut to near convergence during de-
velopment. As it turned out, this shortcut algorithm per-
forms at nearly an identical level of prediction accuracy, and
therefore became the method of choice. It differs from a
standard simulated annealing in that instead of randomly
setting the probability of accepting an uphill move this
probability was fixed at 0.92. This parameter was deter-
mined empirically on a small subset of the proteins tested,
and remained fixed during the remainder of the develop-
ment process.

One consequence of fixing the unfavorable step-accep-
tance probability was that very unfavorable moves, such as
forcing a change in dihedral positions in a confined space,
become highly improbable and introduces concern that
side chains might become trapped. To reduce the impact on
accuracy from this condition, a method was developed
to combine multiple optimizations into a final predicted
structure. This method examines the predicted positions,
starting with �1 for each residue in multiple predicted
structures, determines in which one of three possible dihe-
dral regions the majority of the conformations lies, and
averages this set of dihedrals to give the final consensus
position at that side-chain dihedral. Only those conforma-
tions that were part of the consensus group from the previ-
ous dihedral angle were used to determine the next dihedral-
angle consensus position. If no consensus position was
found for a dihedral position, the conformations were aver-
aged to give the final predicted position. Residues that fall
into this latter category tend to be positioned less accurately,
so fortunately it was rare that a clear consensus position was
not found.

For the results reported for this work five optimizations
were performed with the number required to form the con-
sensus in �1 set to 3. These values were chosen because it
yielded the best results with the shortest computational
time. Using only three optimization cycles was less accu-
rate, and using seven and nine cycles did not significantly
improve the accuracy to warrant the increase in computa-
tional time (data not shown).

Importance of individual potential energy terms

Of the terms in the energy function, it turns out that the Evdw

contributes most significantly to the placement of residues.
This term is the primary driving force for determination of
the �1 because only van der Waals interactions are calcu-
lated to the local backbone atoms. This result is not new in
that its importance has been noted in the form of indications
that steric constraints are the driving force for organizing
protein conformations (Richards 1977; Srinivasan and Rose
1995). By itself, the van der Waals term predicts the �1 and
�1 + 2 positions with an accuracy of 86.4% and 70.4%, re-
spectively (see Table 2). This term, however, tends to be
much larger in magnitude, and could easily mask the con-
tributions from the other terms. The masking problem be-
comes worse with increases in the number of atoms in the
side chain. Larger residues will usually have larger interac-
tion energies than small residues such that the interaction
energy of a valine with the backbone cannot be compared
directly to that of a tryptophan due to the differences in
overall magnitude. In protein design applications, specifi-
cally where there is a high degree of conformational free-
dom, such as for surface residues, this most decidedly skews
the results towards larger residues because more interac-
tions are being tallied per residue. We also noticed some
cases where very favorable van der Waals interactions with
the backbone overwhelmed very poor electrostatics, hydro-

Table 2. Influence of energy terms on prediction accuracy for 65 high-resolution crystal structures

Energy terms Angle accuracya

Average RMSD (Å)b Overall RMSD (Å)b

van der
Waals Electrostatics

Hydrogen
bonding

Rotamer
frequency

Contact
ratio

All
�1/�1+2

Core
�1/�1+2

Surface
�1/�1+2 All Core All Core

X 86.4/70.4 93.1/84.7 78.4/55.7 0.88 0.51 1.51 0.90
X X 87.0/72.5 93.3/85.4 79.6/59.1 0.82 0.48 1.43 0.85
X X X 87.7/73.4 94.0/86.1 80.1/60.2 0.80 0.44 1.40 0.77
X X X X 88.9/76.8 93.9/87.1 82.9/66.0 0.73 0.44 1.29 0.78
X X X X X 89.3/77.5 94.1/87.4 83.6/67.2 0.72 0.43 1.27 0.75
X X X 88.8/76.5 94.0/86.7 82.6/65.9 0.73 0.44 1.29 0.76
X X 88.4/74.8 93.7/85.6 82.0/63.5 0.76 0.47 1.34 0.82
X X X X 88.5/75.5 93.7/86.1 82.3/64.5 0.75 0.46 1.33 0.82
X X X X 88.8/76.7 93.9/87.1 82.8/65.9 0.73 0.44 1.27 0.76
X X X X 87.4/73.2 93.9/85.9 79.7/60.0 0.80 0.45 1.42 0.80

a Accuracy is cumulative over all proteins and not the average.
b Average of individual protein results.

Peterson et al.

740 Protein Science, vol. 13



gen bonding, or other factors and led to improperly placed
side chains. To avoid this, we chose to normalize the van
der Waals term to the number of heavy atoms in the side
chain. This approach yielded a slight increase in the predic-
tion accuracy over using the full van der Waals energy. The
effect on prediction accuracy of each of the four remaining
terms in various combinations is indicated in Table 2. To
maintain consistency among the simulations, the random
seed and sequential order where the proteins were repacked
was kept constant. This was to assure that the only changes
in accuracy would be due to changes in the contributions
from each energy term.

The frequency term is the single largest contributor to
placement accuracy after the van der Waals term. By itself
it improves the �1 accuracy by 2.0%, and the �1 + 2 accuracy
by 4.4%, as shown in Table 2, line 7, when compared to van
der Waals alone (line 1). The frequency parameters in this
algorithm are derived from the backbone-dependent fre-
quencies determined by Dunbrack (Dunbrack Jr. and
Karplus 1993). This term replaces calculation of torsion
angle energies with a lookup table. As described above, the
weight of this term is residue dependent, as determined by
an iterative fitting of the energy function to a subset of the
proteins. The normalizing of the frequencies to a maximum
of one and the magnitude of the coefficients assures that the
frequency term would never contribute more than a favor-
able 1 kcal/mole to the total energy of the residue. The
average value for the frequency coefficient was around 0.6.
Thus, the magnitude of this term is generally much smaller
than the van der Waals term and the electrostatic term for
polar residues. Therefore, it was surprising that the indi-
vidual contribution to accuracy was so high. Replacing the
backbone-dependent frequencies with backbone-indepen-
dent frequencies, also from the Dunbrack group (Dunbrack
Jr. and Cohen 1997) reduces the overall �1 and �1 + 2 accu-
racies to 88.1% and 74.5%, respectively (data not shown).

The next largest contributor to the prediction accuracy is
electrostatics and hydrogen bonding combined. The energy
from an actual hydrogen bond has contributions from both
van der Waals and electrostatics, so it seemed logical to
include it as well. The improvement in accuracy for �1 and
�1 + 2 over van der Waals alone was 1.3% and 3.0%, re-
spectively (Table 2, line 3). The hydrogen bond term by
itself has only a marginal effect on the prediction accuracy
as shown in Table 2, line 9, compared to line 5. The favor-
able contribution of 0.1 kcal/mole per potential hydrogen
bond, determined iteratively during development, was un-
expectedly low, because hydrogen bonds have been pro-
posed to favorably contribute about 1 kcal/mole per hydro-
gen bond in mutational analysis studies (Myers and Pace
1996). The energy function already includes some of this
energy in the form of electrostatics and van der Waals con-
tributions, so it was not expected to be as large as −1 kcal/
mole. However, adding an additional −0.5 kcal/mole per

hydrogen bond adversely affected surface residue accuracy.
It appeared that using high values for hydrogen bonds fa-
vored the potential formation of hydrogen bonds over more
favorable van der Waals interactions. This is probably not
what occurs in reality for surface residues. An accounting of
the entropic cost of fixing a side chain to form a hydrogen
bond to the protein leads to the observation that for surface
residues, a minimum of two static hydrogen bonds must
form to overcome the penalty. This gross simplification of
hydrogen-bonding energetics led to the reduction of the hy-
drogen bond term such that it would not be the driving force
for placement, but rather a term that would distinguish be-
tween two relatively favorable positions.

The role the contact ratio plays appeared to be counter to
what it had been intended to do. The idea behind the contact
ratio was to emulate, in a coarse sense, the volume overlap
penalty for residues. Here, contact ratio values near 1 indi-
cate low steric violations, while values closer to zero indi-
cate high van der Waals violations. Detailed assessment of
the specific effects of removing this term revealed that it
played a significant role in the placement of the core resi-
dues. This leads to the conclusion that the contact ratio
serves to counteract the repulsive term of the van der Waals
energy by forcing residues closer together than what the
repulsive term would normally allow. The contact ratio val-
ues for the final rotamer positions range between roughly
1.35 and 1.5, including the scaling coefficient. The dynamic
range was therefore quite small, so any correction to the
radii or energy parameters would be expected to be minor.
When the coefficient for the contact ratio was allowed to
vary for individual residue types during the energy function-
fitting procedure we observed a wider range of values. Resi-
dues such as arginine had a coefficient of −2.0, and most
hydrophobics except leucine were around −1.0, while the
other polar residues and leucine had positive values. For
residues such as arginine, turning off this term appears to
lead to more accurate placement. The effect of removing
this term from the full potential energy function is shown in
Table 2, line 4.

The addition of the contact ratio and hydrogen bond
terms increased the overall �1 and �1 + 2 accuracy by 0.5%

Table 3. Accuracy of individual optimization cycles

Run

Angle accuracy

Overall RMSD (Å)
All

�1/�1+2

Core
�1/�1+2

Surface
�1/�1+2 All Core

1 88.3/75.7 93.2/85.7 82.5/65.3 1.32 0.83
2 88.7/76.0 93.8/86.4 82.5/65.2 1.30 0.80
3 88.6/76.0 93.9/86.6 82.3/65.0 1.31 0.80
4 88.4/75.9 93.6/86.0 82.4/65.3 1.32 0.79
5 88.5/76.1 93.5/86.1 82.5/65.7 1.32 0.79
Consensus 89.3/77.5 94.1/87.4 83.6/67.2 1.27 0.75
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and 1.0%, respectively (Table 2, cf. line 5 and line 6).
Comparing Table 2, line 6 to lines 4 and 9, shows that the
effect on prediction accuracy for removing each indepen-
dently to be nearly equivalent to removing both. This sug-
gests that both terms are necessary and are somehow inter-
dependent, and when combined, improve the surface resi-
due �1 accuracy by 1.0% and the �1 + 2 accuracy by 1.3%.
Therefore, despite the modest improvements in overall ac-
curacy associated with these two terms they were left as part
of the energy function because the computational cost for
doing so was minimal, and the combined contributions
maximized prediction accuracy.

Basic performance

This algorithm was developed to make significant use of
interactions with the local backbone atoms with the premise
that these interactions force the side chains into the proper
�1 position (Richards 1977; Dunbrack Jr. and Karplus 1993;

Srinivasan and Rose 1995). To examine how much impact
the backbone had on the placement of side chains, all pro-
teins were subjected to the following analysis. Using only
the van der Waals interactions of the side chain with the
backbone, including the local backbone, the lowest energy
rotamer was placed on the structure. No further optimization
was performed, and all side-chain to side-chain steric
clashes were ignored. This initial placement of rotamers was
subjected to the same dihedral analysis as previously de-
scribed. The algorithm does remarkably well, considering
no optimization was performed, modeling �1 angles with
73% correct for all residues, and 79% correct for core resi-
dues. The composite �1 + 2 was, not surprisingly, quite poor
with 49% and 59% correct for all and core residues, respec-
tively. By far, the residues placed best by this method are
the hydrophobic residues, Leu, Ile, Phe, Thr, Trp, Tyr, and
Val (data not shown). If the electrostatic interactions with
the local backbone atoms were also included, which is not
normally done by the algorithm, those levels decreased to

Table 4. Side-chain RMS deviation and dihedral angle prediction accuracy of repacked proteins

PDB

Side-chain dihedrals Overall RMSD (Å) Average RMSD (Å)
Number of

core residues�1 �1+2 core �1 core �1+2 All Core All Core

153L 93.3 81.1 98.8 93.4 1.05 0.49 0.62 0.34 83
1A7S 89.9 81.0 94.0 91.7 1.49 0.80 0.76 0.40 100
1A8Q 92.4 79.4 97.1 91.7 1.29 0.74 0.67 0.40 139
1AGY 93.2 87.7 95.1 93.4 1.00 0.76 0.53 0.41 81
1AKO 87.6 75.4 92.4 84.5 1.56 1.09 0.88 0.60 132
1AMM 92.4 78.0 98.7 92.7 1.13 0.52 0.72 0.37 76
1ARB 93.1 84.3 92.8 88.6 1.08 0.79 0.52 0.46 125
1B9O 86.6 69.0 92.7 88.9 1.37 0.74 0.82 0.44 55
1BD8 86.0 75.8 93.3 89.5 1.46 0.70 0.80 0.41 60
1BJ7 83.0 67.6 91.4 79.6 1.43 1.06 0.85 0.64 70
1BYI 93.8 78.7 97.9 90.0 1.11 0.68 0.60 0.36 94
1C5E 95.8 84.1 100.0 95.0 1.02 0.38 0.51 0.29 25
1C9O 88.7 78.0 100.0 100.0 1.50 0.17 0.84 0.16 14
1CBN 97.3 90.5 100.0 100.0 0.98 0.17 0.37 0.15 11
1CC7 84.8 71.7 93.1 100.0 1.42 0.49 0.89 0.36 29
1CEM 89.0 80.8 95.2 87.5 1.18 0.84 0.66 0.42 189
1CEX 93.2 85.8 96.3 94.9 1.25 0.67 0.55 0.36 80
1CHD 87.7 73.0 91.4 85.5 1.60 0.71 0.83 0.46 81
1CKU 91.7 78.3 95.7 73.3 0.94 0.57 0.61 0.45 23
1CTJ 93.4 83.0 95.7 94.1 1.02 0.67 0.61 0.34 23
1CZ9 88.3 78.5 91.4 84.6 1.40 0.77 0.80 0.48 58
1CZB 91.0 83.8 94.4 92.1 1.18 0.58 0.68 0.35 54
1CZP 94.0 78.9 97.4 91.7 1.00 0.60 0.62 0.41 38
1D4T 93.3 75.0 95.0 75.0 1.16 0.72 0.68 0.45 40
1DHN 83.8 61.4 97.5 85.2 1.76 0.77 1.08 0.41 40
1ECA 90.7 81.5 96.2 92.7 0.92 0.62 0.61 0.44 53
1EDG 88.8 77.6 93.7 85.1 1.17 0.66 0.68 0.44 205
1GCI 94.3 84.7 97.3 88.2 1.16 1.12 0.51 0.40 113
1HCL 82.6 62.1 85.9 68.5 1.68 1.45 1.05 0.86 142
1IC6 87.3 80.9 91.2 85.0 1.29 1.24 0.65 0.52 136
1IFC 82.3 68.2 96.2 90.0 1.35 0.79 0.93 0.49 52
1IGD 90.0 83.9 100.0 100.0 0.88 0.32 0.59 0.23 14
1IXH 89.7 81.6 91.1 84.6 1.31 1.20 0.70 0.55 146

(continued)

Peterson et al.

742 Protein Science, vol. 13



70% and 78% for �1, and 45% and 56% for �1 + 2. Using the
former method to generate the starting point for optimiza-
tion, rather than a random assignment of rotamers, actually
decreased the accuracy of repacking. This suggested the pos-
sibility that the criteria for accepting unfavorable moves in the
simulated annealing optimization was probably too restrictive
when using starting points closer to the correct structure such
that rotamers that were not initially placed in the proper �1

space could not readily escape from the wrong conformation.
Table 3 shows the results for the repacking simulations

used to generate the consensus structures considering each
of the five cycles independently. The simulated annealing
parameters for the execution of the NCN algorithm are
listed in the Materials and Methods section. Although the
dihedral prediction accuracy for individual proteins, in
some cases, varied substantially (data not shown), the cu-
mulative efforts are very consistent between runs. The con-
sensus position for each side chain was determined as de-
scribed previously using all five simulations, and reported

in the last row of Table 3. There is an improvement in all
performance categories listed, demonstrating that the pre-
ferred method is to use multiple simulations to generate a
consensus structure. The overall accuracy for �1 and �1 + 2

is 89.3% and 77.5%, respectively, and the overall RMS
deviation for all proteins is 1.27 Å, which represents an
improvement over the averaged scores of the five runs. Of
course, multiple-cycle simulations require correspondingly
longer computational times, but the resultant consensus
structures are significantly more accurate. The prediction ac-
curacies are listed for individual proteins in Table 4, corre-
sponding to the consensus results in the last row of Table 3.

The majority of the proteins are predicted with excellent
accuracy. The number of core residues identified in this
study makes up almost 55% of all the test sites. This per-
centage is significantly higher than other studies, which
typically identify 40%–45% of the residues as core residues
(Holm and Sander 1991; Xiang and Honig 2001; Liang and
Grishin 2002). The reason our analysis routines identified a

Table 4. Continued

PDB

Side-chain dihedrals Overall RMSD (Å) Average RMSD (Å)
Number of

core residues�1 �1+2 core �1 core �1+2 All Core All Core

1KOE 86.8 81.2 92.7 89.3 1.45 0.68 0.74 0.43 82
1MLA 90.7 79.0 95.6 87.2 1.20 0.84 0.67 0.42 137
1MML 86.4 71.0 92.2 82.5 1.37 0.76 0.84 0.51 103
1NAR 90.1 74.1 96.1 86.4 1.17 0.68 0.72 0.46 152
1NLS 88.7 72.8 91.8 82.9 1.36 0.75 0.73 0.47 110
1NOA 95.0 87.5 100.0 100.0 0.97 0.21 0.46 0.17 33
1NPK 89.3 76.7 96.8 93.2 1.41 0.48 0.79 0.32 63
1PLC 86.6 81.0 97.2 91.7 0.88 0.51 0.58 0.36 36
1QJ4 93.6 80.7 97.7 89.8 1.14 0.77 0.65 0.41 131
1QL0 91.5 79.5 95.9 88.5 1.03 0.68 0.57 0.38 122
1QLW 89.6 76.8 93.6 86.0 1.46 0.92 0.74 0.45 157
1QNJ 89.5 80.7 94.5 94.8 1.17 0.61 0.63 0.35 110
1QQ4 90.2 84.8 89.3 89.4 0.96 0.87 0.57 0.52 84
1QTN 81.3 66.4 93.1 81.4 1.85 1.13 1.00 0.59 58
1QTW 88.5 76.8 94.8 85.3 1.42 0.83 0.74 0.46 134
1QU9 90.9 81.2 93.2 92.3 1.00 0.50 0.60 0.33 44
1RCF 93.0 82.7 93.2 85.2 1.32 1.28 0.71 0.59 74
1THV 85.0 81.3 91.3 96.1 1.41 0.55 0.75 0.40 92
1THX 92.7 78.3 97.8 93.5 1.08 0.54 0.63 0.35 46
1VFY 85.7 72.1 100.0 75.0 1.39 0.79 0.75 0.41 19
1VJS 85.2 74.4 88.5 82.6 1.40 1.16 0.80 0.63 244
1WHI 79.2 73.2 88.9 86.4 1.83 1.21 1.02 0.58 45
2BAA 89.9 81.5 93.1 89.3 1.12 0.74 0.67 0.54 102
2CPL 91.7 79.0 98.7 92.3 1.23 0.54 0.68 0.33 79
2END 92.4 80.6 96.6 84.8 1.20 0.73 0.74 0.48 59
2HVM 94.6 82.4 97.0 89.1 1.01 0.62 0.56 0.39 135
2PTH 92.1 82.9 96.2 88.1 1.16 0.93 0.65 0.46 78
2RN2 84.3 60.4 95.0 75.6 2.01 1.72 1.22 0.70 60
3LZT 91.4 82.4 96.6 100.0 1.30 0.44 0.69 0.32 59
5P21 85.4 73.8 92.3 88.7 1.56 1.03 0.88 0.49 78
5PTI 89.1 65.7 100.0 81.8 1.48 0.81 0.88 0.50 16
7RSA 87.2 80.6 92.3 96.6 1.15 0.54 0.67 0.38 52

AVG 89.5 77.9 94.9 88.7 1.27 0.75 0.72 0.43 5375
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larger number was because the standard accessible areas for
residues are based on our rotamer library, and not estab-
lished values from the literature, which are about 10%–20%
smaller. This difference in the number of core residues is
not critical except when comparing core results to other
studies using different analysis programs. For this algo-
rithm, the consensus results in Table 3 show that for the core
54.3% of the residues, the �1 accuracy is 94.1%, the �1 + 2

accuracy is 87.4%, with an overall RMS deviation of
0.72 Å.

The assessment criteria for declaring the correct place-
ment of a side-chain dihedral was fairly loose at 40° but is
consistent with several other studies. Using stricter match-
ing criteria has the expected effect of decreasing the re-
ported dihedral-angle accuracy. Noting only the overall �1

and �1 + 2 scores a 30° matching criteria decreases the num-
ber of properly predicted conformations by 1.5% for �1, and
3.7% for �1 + 2. Using an even stricter criterion of 20° de-
creases the reported accuracy by another 4.6% and 8.9% for
�1 and �1 + 2, respectively. It should be noted that the RMS
deviation score does not depend on the angle accuracy and
remains constant throughout.

The effect on accuracy of restricting the
conformational space available to residues

It was observed that by restricting the number of rotamers
available at each site by reducing the conformational space
available had a dramatic impact on accuracy. One common
method for restricting conformational space is to perform
minimizations one residue at a time, keeping all other resi-
dues in the native position. In such an approach all rotamers
are tested at a given site and the lowest energy rotamer
becomes the predicted conformation. This approach has
been used by several groups (Wilson et al. 1993; Petrella et
al. 1998; Xiang and Honig 2001; Liang and Grishin 2002)
to validate the energy function because it eliminates the
dependency of prediction accuracy on the search strategy
used to sort through the combinations of residues leading to
an optimal solution. Here, this method was used as a means
of restricting conformational space. Each site was subjected
to the same steric clash test as described previously, while
all other side chains were present in their native conforma-
tion. Interestingly, the number of passing rotamers was only

reduced 10%–20% from when no side chains were present.
After the steric clash test, the native side chains were again
stripped off, and the algorithm proceeded in an identical
fashion as previously described.

The second method for reducing the number of rotamers
was to restrict the �1 space to the native region, or one of
three possible energy wells, so that two-thirds of the rota-
mers were eliminated without further testing. All side chains
had been previously removed from the structure, so the only
additional information was the �1 region. As shown in Table
1, most native side chains can be approximated by the ro-
tamer library, so restricting the algorithm to the proper re-
gion should drive the �1 accuracy to nearly 100%. Thus, this
approach tested the ability of the algorithm to effectively
predict the proper �2 position. The number of conformations
available to the simulated annealing algorithm was reduced
to ∼ 60% of the unrestricted approach. As before, the algo-
rithm proceeded in the usual fashion to place the side
chains.

The results for these tests are shown in Table 5. Both
methods show improvements in all accuracy benchmarks
over the consensus structures from the unrestricted method
(Table 3). The restricting of rotamer space using the native
side chains shows an increase in prediction accuracy of
0.6% for �1 and 1.0% for �1 + 2 overall compared to the
consensus structures. There is also an improvement in the
overall RMS deviation 0.07 Å overall, and 0.08 Å for the
core residues. The average residue RMS deviation improves
as well. This suggests that the algorithm can still be im-
proved somewhat, although it appears that much of the im-
provement is in the placement of core residues.

The most dramatic results are achieved when conforma-
tional space is limited to the native �1 region. Considering
only the �1 + 2 results, the increase in accuracy is 7.5%
overall, and results in a significant reduction in the average
and overall RMS deviation by 0.17 Å and 0.27 Å, respec-
tively. The significant increase in dihedral prediction accu-
racy is in large part due to the long side chains Arg, Lys,
Glu, Gln, and Asp each increasing by 10% or more in the
�1 + 2 accuracy. The remaining residues all increased by at
least several percent, with the exception of histidine, which
showed a decrease in �1 + 2 accuracy in this simulation. The
�1 accuracy did not reach 100% because a small percentage
(1.2%) of the native side chains could not be approximated

Table 5. Repacking results using methods to restrict the number of rotamers

Restriction method

Angle accuracy

Overall RMSD (Å) Average RMSD (Å)
All

�1/�1+2

Core
�1/�1+2

Surface
�1/�1+2 All Core All Core

Filtering of rotamers with native side chains present: 89.9/78.5 95.0/88.8 83.9/67.7 1.20 0.67 0.69 0.44
Restricting search space to proper �1 region: 98.8/85.0 99.3/91.1 98.2/78.7 1.00 0.61 0.55 0.35
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by the rotamer library. This latter simulation provides a key
piece of information regarding the approach that should be
taken to further improve accuracy of side-chain placement
algorithms. If information can be generated such that the
correct �1 region (rotamer) can be identified, very accurate
structures can be determined from just the backbone con-
formation.

Comparison to other repacking algorithms

Two methods were selected from the literature for compari-
son to gauge the relative performance of the algorithm. The
selected algorithms were considered to be among the best,
as judged by the reported accuracies and how the algorithm
compared to others as documented in their articles. The first
is the SCAP algorithm from Xiang and Honig (2001), and
the second is from Liang and Grishin (2002). SCAP uses an
energy function consisting of a van der Waals term and
torsion-angle energies. The parameters for these terms are
derived from the CHARMM force-field (Brooks et al.
1983). The rotamer library consisted of 7562 discrete rota-
mers with step sizes between rotamers of at least 10° ex-
tracted from 297 protein structures. The repacking method
used a search strategy where all rotamers for each site were
tested against the protein background, and the lowest energy
rotamer kept for the next cycle. The site selection starts at
the most N-terminal test site, and progresses sequentially
down the backbone. This process is repeated until a static
structure is reached. To overcome potential rotamer bias
arising from the initial placement of residues and the order
of site progression, each protein is subjected to multiple
simulations. The first simulation used the rotamer with the
most favorable energy to the backbone as the initial posi-
tion. The next 59 used random placement to generate the
starting point. The remaining 60 placed rotamers by statis-
tical analysis of the previous simulations to bias the initial
placement. The overall lowest energy rotamer from all
simulations was taken as the predicted position. The re-
ported dihedral accuracy as taken from averaging the results
from Tables 4 and 5 of that paper (Xiang and Honig 2001)
was 84% for �1 and 67% for �1+2. These results are espe-
cially impressive because the angle deviation cutoff used
was 20° compared to 40° used in this and the other com-

parison studies. The SCAP algorithm was run with the larg-
est rotamer libraries available, as suggested in the docu-
ments that were provided with the program. The execution
parameters were set such that 60 optimization cycles were
performed, all atoms were considered by the energy func-
tion, and a minimization procedure was performed on the
final structure.

The Liang and Grishin algorithm (LGA) uses energy
terms derived from physical and empirical properties of the
side chains to yield a scoring function consisting of surface
contact, volume overlap, electrostatics, rotamer frequency,
and solvent accessibility of polar hydrogens. Because these
terms were not necessarily of the same magnitude, the de-
velopers of the algorithm fit the scoring function to a subset
of half the test proteins to yield coefficients for each term to
generate the final form of the function. A Monte Carlo
approach was used to optimize the side-chain placement.
The rotamer library used was based on the backbone-de-
pendent library from Dunbrack Jr. and Cohen (1997). Sev-
eral modifications to the library were described, but no in-
formation regarding potential steps about the dihedral posi-
tions, so direct determination of the number of rotamers in
the library was not possible. The executable for this algo-
rithm was obtained and tested on the protein set without
modification.

The combined results for all studies are reported in Table
6, quantified by methods discussed above. The total execu-
tion time is also included for reference. For the SCAP al-
gorithm, the number of optimization cycles was increased
so that the execution time would be nearly equal to the time
needed for the NCN algorithm. The LGA was not given an
equal opportunity because execution parameters could not
be modified by the user.

Although the NCN algorithm described here is the slow-
est of the three, it does show improvement in all prediction
accuracy benchmarks. The improvement in the overall �1

dihedral accuracy is +0.8% and +6.2% compared to the
LGA and SCAP algorithm, respectively. The improvement
in overall �1 + 2 accuracy is more significant with an in-
crease in accuracy of +3.4% and +7.4%, respectively. The
improvement in the core by this algorithm is less, but still
significant for �1 + 2 prediction accuracy with +2.8% and
+3.4% improvement over the LGA and SCAP algorithm,

Table 6. Prediction accuracy for all 65 proteins by each algorithm

Angle accuracy
All average

overall
RMSD (Å)

Core (20%)
average overall

RMSD (Å)

Core (10%)
average overall

RMSD (Å)

All average
residue

RMSD (Å)

Core average
residue

RMSD (Å)
Execution
time (h)

All
�1/�1+2

Core
�1/�1+2

Surface
�1/�1+2

NCN 89.3/77.5 94.1/87.4 83.6/67.2 1.27 0.75 0.63 0.72 0.43 24
LGA 88.5/74.1 93.7/84.6 82.3/63.1 1.31 0.88 0.75 0.75 0.48 14
SCAP 83.1/70.1 91.4/84.0 73.2/55.7 1.33 0.88 0.70 0.81 0.48 24
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respectively. The surface residues are also included because
these are the most poorly predicted due to the increased
conformational space available to these residues. A recent
paper by Jacobson et al. suggests a target level for �1 pre-
diction accuracy of surface residues >80% (Jacobson et al.
2002). The prediction accuracy for �1 and �1 + 2 for surface
residues by the NCN algorithm are 83.6% and 67.2%, re-
spectively. These represent an improvement of +1.3% and
+4.1% over the LGA, and +10.4% and +11.5% over the
SCAP algorithm. In this analysis, 54.3% of the tested resi-
dues are in the core, which is more than typical of other
studies. If the analysis is repeated such that the number of
residues in the core is 43.4%, which is closer to the number
reported in the comparison studies (Xiang and Honig 2001;
Liang and Grishin 2002), the surface residue accuracy im-
proves to 85.0% and 69.8% for �1 and �1 + 2.

The improvement in the overall RMS deviation reflects
what is seen for the angle accuracy, although the changes
are less dramatic with only a 0.04 Å and 0.06 Å improve-
ment over the LGA and SCAP algorithm, respectively. The
improvements in the core are more significant with an over-
all improvement for the core 54.3% of the test residues of
0.13 Å compared to both algorithms. For residues with only
10% accessible surface area SCAP performs better than the
LGA, but this algorithm still gives an improved placement
of these residues as well. The averaged RMS deviation
shows the same trend as the overall RMS deviation, so will
not be discussed further.

From the overall results it was noted that the SCAP al-
gorithm placed residues with 10% or less accessible surface
area better than the LGA. To further quantify the perfor-
mance of each algorithm on residues with varying degrees
of accessible surface area the predicted proteins were ana-
lyzed starting from the most buried to the most accessible.
The result of this analysis is reported in Figure 1. Residues
that are below a certain accessible surface area threshold are
considered yielding a fraction of the total residues analyzed
for each data point. For residues that are nearly completely
buried, approximately 20% of the total residues, all the al-
gorithms perform nearly equally for �1 dihedral accuracy.
For �1 + 2, the LGA had the lowest accuracy level, confirm-
ing the RMS deviation results from Table 6. SCAP performs
consistently better than the LGA on the core residues until
about 50% of the total residues are considered reflected by
the improved RMS deviation for these residues. However,
the NCN algorithm performs better than both algorithms
over the entire range of accessible surface area. This high-
lights that improvements in the core were still possible.

Another way to compare the algorithms is to examine at
what fraction of residues the overall RMS deviation cross
some arbitrary value such as 1 Å. The SCAP algorithm
predicts 66% of the residues with a �1 and �1 + 2 accuracy of
89% and 81% at the overall RMS deviation of 1 Å. The
LGA predicts 71% of the residues with a �1 and �1 + 2

accuracy of 93% and 82% at the same overall RMS devia-
tion. The NCN algorithm predicts 81% of the residues with
a �1 and �1 + 2 accuracy of 92% and 83%, and still maintains
an overall RMS deviation of only 1 Å. We consider this to
be a significant improvement in prediction accuracy, with
the NCN algorithm able to predict 10% more residues and
still maintain the same overall RMS deviation in the struc-
ture.

The results in Table 7 show the overall dihedral predic-
tion accuracy for �1 and �1 + 2 and the average RMS devia-
tion for each type of residue. This is shown graphically in
Figure 2, and includes accuracy reports for �1 + 2 + 3 and
�1 + 2 + 3 + 4. This method of performance analysis highlights

Figure 1. The dependency of side-chain placement accuracy as a function
of residue burial. The fraction of tested positions was those residues with
accessibilities lower than a set threshold. Only these residues were con-
sidered in the generation of the data points. (A) The �1 dihedral accuracy
is represented by the closed symbols, and the �1 + 2 dihedral accuracy is
represented by the open symbols. The red traces are the results for the NCN
algorithm, the green traces are for the LGA, and the blue traces are for the
SCAP algorithm. (B) The overall RMS deviation as a function of the
fraction of total residues tested.
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where the strengths and weaknesses are for each approach.
For most residues the NCN algorithm is comparable or out-
performs SCAP in dihedral accuracy for every residue ex-
cept cysteine, which was predicted less accurately by nearly
4.8%. For �1 + 2, the NCN algorithm shows significant im-
provement in the polar residues Asn, Asp, Gln, and Glu, but
equally decreased performance in the placement of Trp. The
improved placement of Gln and Glu is also apparent in the
accuracy of �1 + 2 + 3. The most dramatic improvement over
SCAP is in the prediction of proline, which was correctly
predicted only 51.1% of the time by SCAP compared to
89.1% for �1 for the NCN algorithm. This deficiency has a
significant impact on the overall dihedral accuracy for the
SCAP program because there are 542 prolines in the test set.

The NCN algorithm performed comparably to the LGA
with respect to �1 dihedral accuracy. There is slight im-
provement in the placement of the �1 of His, Gln, and Pro
by the NCN algorithm. In general, the NCN algorithm per-
formed better in the placement of the �1 of hydrophobics,
and less so for polar residues. The NCN algorithm did show
significant increase in the accuracy of �1 + 2 for Asn, Asp,
Gln, Met, and Trp. This trend is continued for �1 + 2 + 3 for
Gln and Met. However, for Arg and Lys, the NCN algo-
rithm did not perform quite as well as the LGA.

The average RMS deviation plot in Figure 2D offers an-
other way to compare the effectiveness of each algorithm.
The NCN algorithm performs consistently better than SCAP
for all residues except Cys, Ile, Lys, and Val, although in
several cases the average RMS deviation is nearly the same.
The results for lysine are especially interesting because the
angle prediction accuracy is better by the NCN algorithm

over SCAP, but the average RMS deviation does not show
the same trend. This suggests that the SCAP rotamer librar-
ies for lysine provide a better representation of allowed
conformational space for this residue. This means the li-
brary used by the NCN algorithm contains many more
rotamers that deviate substantially from the average posi-
tions such that when the algorithm improperly predicts the
side-chain position it is more likely to have a higher RMS
deviation than the rotamers in the more restricted library
used by the SCAP program. Additionally, because the size
of the library for lysine and the others is very large, the
potential energy well that is defined becomes much more
broad and flat, making it very difficult to identify the ap-
propriate rotamer. As mentioned previously, the libraries for
lysine and arginine, used by the NCN algorithm, could be
improved based on the results in Table 1 by expanding of
the allowed conformational space for the terminal dihedral
angles. However, this was not done to prevent further lev-
eling of the energy well as well as for computational rea-
sons.

Comparison of the average RMS deviation values be-
tween the LGA and the NCN algorithm show that for most
residues it is fairly equal. Again, by this criterion the NCN
algorithm did worse regarding the placement of lysine, but
the angle accuracies are fairly equal. A reverse situation
occurs for histidine in that both algorithms place the �1 + 2

about the same, but the average RMS deviation is substan-
tially lower using the NCN algorithm. This unusually poor
placement of histidine was noted in the original article (Li-
ang and Grishin 2002). The NCN algorithm also performs
significantly better in the placement of Trp, which can have

Table 7. Average residue RMS deviation and side-chain angle prediction accuracy by residue type

NCN algorithm LG algorithm SCAP algorithm

�1 �1+2

Average
RMSD Å �1 �1+2

Average
RMSD Å �1 �1+2

Average
RMSD Å

ARG 84.3 71.1 1.91 85.2 71.7 1.84 83.4 70.2 1.92
ASN 89.2 65.8 0.80 88.2 52.3 0.93 81.9 55.5 0.95
ASP 87.9 76.6 0.65 89.3 65.0 0.70 73.5 58.2 1.01
CYS 92.1 — 0.33 93.9 — 0.27 98.3 — 0.21
GLN 86.1 70.9 1.18 82.9 65.8 1.30 82.3 65.2 1.23
GLU 75.7 58.7 1.29 77.2 59.8 1.29 73.3 51.9 1.41
HIS 91.9 58.1 1.00 86.8 56.6 1.64 87.5 54.4 1.13
ILE 97.1 87.8 0.34 97.1 89.8 0.30 97.4 89.0 0.31
LEU 95.6 88.5 0.42 94.2 85.8 0.48 93.5 87.1 0.46
LYS 84.9 67.7 1.51 83.3 67.9 1.40 78.5 61.0 1.46
MET 90.8 80.6 0.78 89.3 75.5 0.89 86.7 77.0 0.85
PHE 97.7 95.8 0.45 97.9 94.3 0.55 95.8 93.0 0.56
PRO 89.9 79.9 0.28 85.2 77.9 0.25 51.1 49.8 0.65
SER 75.6 — 0.52 75.3 — 0.50 65.1 — 0.67
THR 94.2 — 0.31 93.4 — 0.25 86.6 — 0.38
TRP 91.4 86.2 0.91 91.9 80.5 1.20 94.8 81.4 1.02
TYR 96.4 94.3 0.61 95.5 90.5 0.73 94.3 90.0 0.68
VAL 92.9 — 0.29 91.4 — 0.29 92.3 — 0.27
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a substantial effect on the overall protein RMS deviation
when it is placed improperly (data not shown). A prediction
from the Liang and Grishin article suggested that improve-
ments in the �1 + 2 could be achieved with a more complex
rotamer library than what was used in their study (Liang and
Grishin 2002), and there does indeed appear to be consistent
improvement in overall �1 + 2 by the NCN algorithm, with a
corresponding improvement in the average RMS deviation
for many residues.

Conclusions

We have developed a side-chain repacking algorithm that
outperforms existing algorithms in the literature. Consider-
ing the least accessible residues, 80% of the total residues
tested, the �1 and �1 + 2 dihedral accuracies were 92% and
83%, respectively. The overall RMS deviation from the na-
tive positions for these residues was only 1 Å. The remain-
ing 20% of the residues constitute the surface residues of the

protein, but even for these the NCN algorithm scored better
on the dihedral angle prediction accuracy. It is not surpris-
ing that the accuracy falls off for mostly exposed residues,
as these are likely to be variable in solution. There was indi-
cation that these results could have been further improved
had the potential energy function been tailored specifically
for each residue type. This is especially true for the longer
side chains such as glutamate, glutamine, lysine, and arginine.

The success of this algorithm was due to the highly de-
tailed rotamer library with nearly 50,000 discrete members.
The fine step size about the favored dihedral positions offers
potential relief positions for conformations that might oth-
erwise have been eliminated from the proper energy well by
steric clashes. Several libraries of similar design but with
coarser step sizes yielded overall results that were less ac-
curate than what was presented here, although the overall
execution time was decreased due to smaller library sizes.
The library used by this algorithm can be easily modified
prior to execution to create libraries of any size.

Figure 2. The placement accuracy for each residue type is noted for each algorithm by dihedral angle: (A) �1 only, (B) �1 + 2 only,
(C) �1 + 2 + 3 and �1 + 2 + 3 + 4 dihedral angles. The last plot (D) shows the RMS deviation for each residue type averaged over all residues
tested. Red is used for the results from the NCN algorithm, blue is for the LGA, and green is for the SCAP algorithm.
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A simple simulated annealing search method was used to
sort through this library based on a potential energy function
derived mostly from first principles. The energy function
was a combination van der Waals, electrostatics, and hy-
drogen-bonding potentials, plus two additional terms with
one being the frequency of rotameric states from the
PDB. The OPLS parameter set used here for van der Waals
and electrostatic terms compares favorably with the
CHARMM22 set in defining the energy landscape for ro-
tameric positions. Simulations performed here indicate that
further improvements in performance can be expected by
devising methods for narrowing the conformational search
to the proper �1 region.

Materials and methods

The rotamer libraries

The libraries were built around the favored dihedral angles as
listed by Dunbrack Jr. and Cohen for backbone-independent rota-
mer positions (Dunbrack Jr. and Cohen 1997). Except where
noted, side-chain dihedral angles were moved ±15° of the favored
dihedral angles in 5° steps for a total of 21 discrete positions about
each dihedral. The residues Arg, Lys, Glu, and Gln, because of the
high degrees of freedom, had a coarser step size. For Arg and Lys,
this was 15° and for Glu, Gln, and the terminal Met dihedral it was
7.5°, for 9 and 15 discrete positions per dihedral, respectively. The
conformational space for Arg and Lys was expanded to ±30° for
the �4-dihedral position. The terminal dihedral for Asp, Asn, Glu,
and Gln was allowed to rotate ±20° of the mean positions in 10°
steps. Asn and Gln were rotated 180° about the final dihedral, and
the movements repeated, thereby doubling the number of rotamers
for these residues over Asp and Glu. The �2 angles for residues
His, Phe, Tyr, and Trp were rotated approximately ±40° in 10°
steps of 0 and 90°. Histidine was also flipped by 180° about �2 for
dihedral positions of 180 and −90°. Histidine also required defi-
nitions for the two singly protonated states and one doubly proto-
nated state, thus tripling the total number of rotamers for this
residue. Discrete hydroxyl hydrogen positions at 15° intervals for
Ser and Thr, and at 30° intervals for Tyr were included. Lysine had
three discrete amino hydrogens, but these were fixed in position to
keep the size of this library as small as possible.

The size of this library is substantial with 49,042 distinct rota-
mers (Table 1). Construction of the library used coordinates de-
rived from the standard geometry of the ECEPP/2 force field (Mo-
many et al. 1975; Nemethy et al. 1983) as listed in the program
DYANA (Guntert et al. 1997). The atomic radii for heavy atoms
were taken from Chothia (Chothia 1976), and all hydrogens in the
library were assigned a radii of 1 Å. The libraries were all oriented
such that the C�–C� vector was aligned exactly along the +z-axis
with the C� atom at the origin. The relative backbone position was
such that the nitrogen atom was in the xz-plane along the −x-axis.
Setting the libraries in this fashion eliminated much of the rotation
and translation calculations that would otherwise be needed during
algorithm execution.

The rotamer library was tested against the wild-type crystal
structures to assess the degree to which natural rotamers could be
approximated by a rotamer from the library (Table 1). This was
done by orienting the N, C�, and C� atoms exactly between the
native structure and library, and then searching for the rotamer in
the library that best approximated the native side chain by mini-

mizing the dihedral RMS deviation at all rotatable positions. A
successful match between the library and structure was achieved
only if all dihedral positions within the same rotamer were within
20° or 40° of the wild-type position. The fifth dihedral was in-
cluded for arginine because it does vary in real proteins, although
it is kept fixed at zero in the rotamer library. The RMS deviation
for all heavy atoms in the test and native rotamer was calculated
for the rotamer with the lowest dihedral RMS deviation. The
atomic RMS deviation was averaged over all residues and proteins
to obtain the values in Table 1. The dihedral-angle RMS deviation
at each dihedral position is not reported.

Simulated annealing parameters

For the results presented for the NCN algorithm the following
execution parameters were used to generate five independent
structures for each protein that was used to generate a final con-
sensus structure. The maximum number of trial rotamer confor-
mations at each annealing temperature was set to 25% of the total
number of conformations that passed the initial steric-clash test
with the backbone. The number of successful moves at each tem-
perature is 10% of the number of trial steps. The algorithm pro-
gressed to a new annealing temperature if the maximum number of
successful moves or the number of trial moves was reached. The
temperature was initially set to 50° and scaled by 0.7 after comple-
tion of each annealing cycle. This was repeated for a total of 15
annealing steps. The annealing schedule was very similar to that
followed in the strategy of Liang and Grishin (2002).

The simulated-annealing scoring method always accepted a
more energetically favorable or downhill move, and sometimes
accepted an uphill move. The acceptance of an uphill move was
based on the following relationship:

P > exp(Eold − Enew)/T

where P was some probability, Eold and Enew were the energies of
the old and new rotamers in their corresponding protein back-
grounds, respectively, and T was the annealing temperature. Due to
the large number of rotamers available as trial moves, and in the
interest of reducing computational time, the criterion for accepting
an uphill move was modified to use a fixed probability rather than
random. The probability of accepting an uphill move, determined
empirically, was set to 0.92.

Assessment of algorithm performance

There are three primary methods in the literature used to analyze
the performance of algorithms such as this (De Maeyer et al.
1997). One method is to use the deviations of side-chain �1 and �2

dihedrals from experimental, another is to calculate the RMS de-
viation of the side-chain heavy atoms, and the last is volume
overlap between native and predicted rotamers. Although the vol-
ume overlap was shown to be the most rigorous method for as-
sessing algorithm performance, there were two reasons it was not
used here. The primary reason was that most other work that this
algorithm was being compared to did not use this method. The
second, volume overlap, scores a successful prediction if the pre-
dicted rotamer occupies the same space as the native rotamer, but
does not discriminate when Asn, His, or Gln differ from the native
structure. This was a main point for classifying volume overlap as
a better method for assessing performance, but in this work, we
were interested in the specific orientation of the residues.
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Therefore, the deviation of dihedrals and RMS deviation were
used here to quantify performance of the algorithm. Residues that
had multiple conformations in the structure file were included in
the evaluation by checking the predicted rotamer against each
discrete conformation. The symmetrical nature of Arg, Asp, Glu,
Phe, and Tyr was taken into account when evaluating �2 and RMS
deviation. The core residues were defined as residues with <20%
accessible surface area in the native crystal structure calculated
using the method devised by Lee and Richards (1971). The stan-
dard accessible surface area values were determined by calculating
the average accessibility of the rotamers from the library placed on
an extended (� � 180°, � � −180°) Ala-X-Ala peptide. Pro-
grams were written by this lab to ensure these tests were conducted
in a predictable and known fashion. These programs were thor-
oughly tested using secondary methods to confirm the accuracy of
the analysis.

Side-chain dihedrals were calculated such that values ranged
from −180 to +180. The deviation was calculated using the fol-
lowing simple method:

deviation � | AngWT − Angpred | if | AngWT − Angpred | >180

else, the

deviation � 360 − | AngWT − Angpred |

where AngWT and Angpred represent the angles for the wild-type
and predicted rotamers, respectively. If the deviation was less than
40°, the rotamer was considered correct for that dihedral angle. For
all residues except Ser, Thr, Val, and Cys the �2 was also evaluated
to obtain the reported composite values for �1 + 2. The �2 deviation
was only calculated if the �1 position was correct. In cases where
multiple conformations were present in the crystal structure the
predicted rotamer was considered correct if it passed testing
against any discrete native conformation. Again, for the �1 + 2

composite score, the predicted �1 and �2 had to be correct within
the same rotamer conformation.

The RMS deviation, in all cases, was calculated with backbones
of the predicted and crystal structure overlaid exactly. This is an
important distinction to methods that minimize the deviation be-
tween two structures before calculation of RMS deviation. The
overall deviation from the latter method will always be less, or at
worst, equal to the former method. Only the former method will
give a true measure of the performance of the algorithm. The
overall RMS deviation was calculated for all heavy side-chain
atoms in the protein, not including alanine. The average RMS
deviation differs in that it is the deviation between individual side-
chains couples averaged over the entire protein. In all cases the
RMS deviation included the C� atom, which did lower the RMS
deviation value because typically the deviation for this atom type
was near zero. However, it was included in this study because the
side-chain rotamers were not placed directly on the C� atom of the
crystal structure.

Selection of proteins in the test set

The majority of the 65 test proteins were taken from the primary
test sets used in the comparison studies. Thirty of the proteins were
from the work of Liang and Grishin (2002). Only 28 of 33 proteins
were taken from the Xiang and Honig (2001) protein test set. The
remaining five contained a significant number of missing atoms or
side chains. The remaining seven proteins were selected from the
PDB using the criteria of having crystallographic resolutions better
than 1.2 Å, and sequence length between 150–300 residues. To

maintain consistency between the Liang and Grishin study pre-
dicted structures were compared to the test proteins that had been
optimized using the program REDUCE (Word et al. 1999). This
utility optimizes the �2 dihedral for asparagine and histidine, and
�3 dihedral for glutamine by testing the � + 180° rotamer for im-
proved hydrogen bonding interactions. The rotamer with the maxi-
mum number of hydrogen bonds formed was kept as the optimized
conformation. If there was no difference, the original orientation
was maintained. The predicted structures were not optimized prior
to analysis. There was an overall improvement in the �2 accuracy
of about 1% as a result of comparing the test set to the optimized
protein structures.

Execution of the SCAP algorithm

The SCAP algorithm was run with the largest rotamer libraries
available. The execution parameters were set such that 60 optimi-
zation cycles were performed, all atoms were considered, and a
postminimization step was performed to arrive at the final pre-
dicted structure.
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