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Abstract
Anatomically based technologies (CT, MR, etc.) are in routine use in radiotherapy for planning and
assessment purposes. Even with improvements in imaging, however, radiotherapy is still limited in
efficacy and toxicity in certain applications. Further advances may be provided by technologies that
image the molecular activities of tumors and normal tissues. Possible uses for molecular imaging
include better localization of tumor regions and early assay for the radiation response of tumors and
normal tissues. Critical to the success of this approach is the identification and validation of molecular
probes that are suitable in the radiotherapy context. Recent developments in molecular imaging
probes and integration of functional imaging with radiotherapy are promising. This review focuses
on recent advances in molecular imaging strategies and probes that may aid in improving the efficacy
of radiotherapy.

Introduction
The last few decades have seen a remarkable change in our understanding of the genetic,
molecular and cellular basis of disease. With this new understanding there has been a shift in
the management of cancer from an organ-system approach to targeting specific molecular
abnormalities. Until a decade ago our understanding of cancer has been descriptive and has
relied on information gathered from 10–10,000 cells at a time, collected from a heterogeneous
tumor at a single instant. Recent developments in molecular imaging allow one to follow the
same number of cells but the changes can be monitored dynamically. Using parametric imaging
it is possible to map the variations in the architecture and physiology of disease in a three
dimensional mode. This closer look at dynamic processes, however, is limited to very few
cellular events because such dynamic visualization requires a clear understanding of the
molecular nature of the process and the proper tools to study it.

Developments from the human genome project promise to produce more therapeutic targets.
Despite this remarkable progress there has been a steady decline in the number of new agents
reaching the clinic. One explanation for this is the lack of appropriate biologically relevant
screens and models. Recent developments in genetic models of cancer have been addressing
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this problem. Many excellent reviews on this issue exist (1–4). Another reason is the lack of
accurate prognostic markers and a way to monitor them. Imaging may enable more rapid
translation of promising therapeutic agents to the clinic by demonstrating that drugs that are
destined to fail are identified early and inexpensively in the development process and by
enabling selection of appropriate patients, i.e., those with a phenotype that may benefit from
the targeted agent, on whom to initiate clinical trials.

Recent advances in small animal imaging now allow highly specific and sensitive detection of
cellular and molecular events non-invasively. Molecular imaging modalities such as positron
emission tomography (PET) and single photon emission computed tomography (SPECT)
provide spatial resolutions on the order of 1–2 mm. With anatomic small animal imaging
modalities such as magnetic resonance imaging (MRI) and computed tomography (CT) it is
possible to achieve spatial resolutions on the order of 50 μm. Significant advancements have
been made clinically as well, particularly in the area of hybrid technologies such as PET-CT
and SPECT-CT, which allow CT to complement the low resolution molecular imaging
techniques. The details of multimodality imaging devices and their clinical and preclinical
applications are beyond the scope of this review but have been addressed in detail elsewhere
(5–9).

While developments in generating imaging targets and in imaging technology improve our
understanding of biology, there is an unmet need in the development and characterization of
new imaging probes and reagents for specific biological processes. Also, there is a strong
interest in using molecular imaging not only in drug development but also in targeted treatment
planning and monitoring – including image-guided radiation therapy. In this article we will
focus on the current paradigms for targeted multimodality molecular imaging and their
relevance to monitoring radiotherapy for cancer.

Metabolism
The classical PET radiotracer used in the clinic is [18F]2-fluoro-2-deoxy-D-glucose (FDG).
Many tumors are known to have high glycolytic rates compared to normal tissue (10). FDG
exploits that abnormal increase in glucose metabolism to image tumors. FDG is transported
into tumor cells in increased amounts as a result of the upregulation of glucose transport
proteins, i.e., GLUT1 and rate-limiting enzymes, e.g., hexokinase. Once inside the cell, FDG
is phosphorylated into FDG-6-phosphate but does not undergo glycolysis due to the presence
of a fluorine substitution in the molecule. FDG-6-phosphate accumulates and becomes
metabolically “trapped” within the cell. FDG is routinely used in the clinic for diagnosis,
staging, detection of recurrent disease and monitoring therapy of cancer. Many excellent
reviews on FDG use in clinical monitoring have been published in the literature (11–13). The
literature indicates an 84 to 87% specificity and 88 to 93 % sensitivity of FDG-PET in various
oncologic applications (13).

As with other aspects of cancer imaging, FDG-PET has been the most widely employed
molecular imaging technique for applications to radiotherapy. One of the main thrusts has been
to use FDG-PET to delineate tumor boundaries more accurately for treatment (14,15). This
has proved particularly useful in lung tumors where a large inter-user variability is observed
in some tumors due to atelectasis (16,17). The addition of FDG-PET has a strong effect on the
size of the region that is identified as tumor. Compared to using CT alone, the inclusion of PET
data changes the size of delineated gross tumor volumes by approximately 20% to 40% in
approximately half of non-small cell lung cancer (NSCLC) patients (15). FDG-PET has also
been employed for tumor definition sites such as head and neck (18,19), primary brain (20),
cervical (21), rectal (22) and esophageal cancers (23) and lymphoma (24).
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Implicit in the use of PET for target definition is the need for a robust means of delineating
tumor boundaries. One widely used method is to set a voxel value threshold above which all
areas are considered tumor (25). The appropriate threshold level is not known a priori,
however, and recent studies have shown that the volume recovered is extremely sensitive to
the exact threshold used (26). In other words, the extent of the tumor depends on the window
and level used. Given those uncertainties, further development, such as the creation of uniform
standards for quantification, is needed before PET can be used confidently to outline target
volumes. One interesting avenue of investigation includes validation studies comparing
pathological specimens with imaging. One recent study employed a careful alignment of
pathological specimens from laryngeal cancers with FDG-PET, CT and MR images obtained
prior to surgery (25). That study showed significant differences in tumor volumes between the
modalities (with FDG-PET returning the largest volumes). Although all of the modalities
overestimated the size of the tumor, each one also missed tumor extension into some regions.
Further study is clearly required.

The second way that PET may be used in radiotherapy is as a predictor or measure of therapeutic
response. In head and neck cancer significantly better local control and disease-free survival
have been shown for lesions with lower standard uptake values (SUVs). SUV is defined merely
as the radioactivity concentration in the tumor/injected amount/patient weight) (27–29).
Decreases in SUV indicating adequate therapy have also been reported for NSCLC (30–33).
FDG-PET has been used extensively to measure the response to radiotherapy in head and neck
cancers (34,35), as well as in lung (31,36) and brain (37–39) tumors.

Monitoring therapy-induced changes in tumor metabolism with FDG is not without limitations.
FDG accumulation can be nonspecific, particularly in cases of inflammation and infiltration
of macrophages, which also readily sequester FDG due to high glucose metabolism (40).
Therapy-induced cellular inflammation was shown to cause a temporary increase in FDG
uptake in esophageal cancer patients treated with chemoradiotherapy (41). In addition,
physiologically high normal “background” metabolic activity can render the quantification of
FDG uptake difficult in some areas of the body such as brain (Figure 1). Furthermore, glucose
metabolic changes may not be apparent in targeted therapies, requiring additional imaging
probes to complement FDG to monitor targeted cancer treatment. On the microscopic level
FDG uptake has been positively correlated with hypoxia and negatively correlated with
proliferation and perfusion in an experimental model (42). It is therefore likely that FDG uptake
is sensitive not only to metabolic activity but other processes as well. We explore more specific
radiotracers below.

Interestingly, non-specific FDG uptake may actually be useful in some clinical situations. A
recent example is a study of breast cancer lumpectomy patients in the context of adjuvant partial
breast irradiation where it is often difficult to identify the lumpectomy bed on CT alone. This
study showed an increased FDG uptake in the lumpectomy cavity, presumably due to
inflammation (Figure 2) (43). The FDG-PET distribution can aid in the definition of the
lumpectomy bed. The volume of the lumpectomy cavity as defined on PET-CT was larger than
that defined on CT. A radiation treatment plan based on CT alone would not adequately treat
the larger PET volume. The plan can be redesigned to cover the larger PET volume, however,
while still respecting the dose constraints to normal tissues.

In addition to glucose metabolism, cancer cells also have an accelerated protein metabolism
and upregulated amino acid transport, which could be monitored by labeled amino acids (44–
46). Radiolabeled methionine and tyrosine analogs O-(2-fluoroethyl)-L-tyrosine (FET), 6-
fluoro-L-m-tyrosine (FMT), L-3-iodo-α-methyltyrosine (IMT) have been used (47) for imaging
cancer. Both methionine and IMT have demonstrated very high sensitivity and specificity in
detection of various tumors, particularly brain (48,49). One of the problems associated with
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amino acid-based imaging is the metabolism of these compounds, with generation of a plethora
of radioactive metabolites that render radiotracer kinetic modeling difficult. Imaging with
radiolabeled amino acids is advantageous during radiotherapy monitoring – perhaps more so
than FDG-PET – due to less uptake by inflammatory tissue. That is particularly the case for
brain tumors where it is critical to differentiate recurrent tumor from inflammatory and other
changes due solely to radiation.

Proliferation
Cellular proliferation may be measured in many ways, including use of radiolabeled lipid
precursors (50) and nucleosides (51,52). While lipid precursors tend to have more than one
metabolic pathway, nucleosides, particularly thymidine and its analogs, are quite unique
because they incorporate into DNA and provide a readout of DNA synthesis. Preclinical and
clinical studies (53–55) of thymidine labeled with carbon-11 (20.2 min) showed rapid
catabolism generating considerable amounts of recirculating radioactive metabolites making
[11C]thymidine impractical for routine clinical use (56–59).

Nucleosides with a substitution of fluorine at the 2′- or 3′-position of the pentose sugar are
more resistant to degradation by thymidine phosphorylase. One promising agent is 3′-deoxy-3′-
[18F]fluorothymidine (FLT). FLT is resistant to degradation and is trapped intracellularly after
phosphorylation by tightly regulated S-phase cytosolic thymidine kinase (TK1) (60,61).
Studies have demonstrated correlation of FLT uptake with cellular proliferation in cells,
animals and humans. FLT has been used to detect and monitor changes in proliferation using
PET in various cancers including colorectal (62), brain (63), and lung (64). For example, Kenny
et al. have demonstrated that early changes in proliferation in patients with breast cancer can
be monitored by FLT uptake just after one week of chemotherapy and preceding any observable
changes in tumor volume (65).

Sugiyama et al. have demonstrated that uptake of FLT and changes in FLT uptake after
radiotherapy were more pronounced than FDG and correlated well with proliferating cell
nuclear antigen (PCNA) labeling index (66). In another study Apisarnthanarax et al.
demonstrated the use of FLT in detecting changes in proliferation after chemoradiotherapy in
an experimental model of esophageal carcinoma (67). Yang et al. have also employed FLT to
assess early response to radiation in a xenograft model and compared it to changes in FDG
uptake (68). This study found a marked FLT response to single doses of radiation at early time
points (1–2 days post-therapy) which were larger than those measured with FDG-PET.

Although FLT is very promising as an agent for imaging proliferation, it is not readily
incorporated into DNA and therefore does not reflect the total DNA synthesis. That may be a
limitation to monitor the therapeutic effectiveness of cytostatic agents. Other thymidine
analogs that incorporate into DNA and therefore demonstrate the efficacy more directly such
as (1-(2′-deoxy-2′-[18F]fluoro-β-D-arabinofuranosyl)thymine) (FMAU) (69) and 1-(2′-
deoxy-2′-[18F]fluoro-1-beta-D-arabinofuranosyl)-5-bromouracil (FBAU) (70) are being
investigated.

Elevated choline metabolites such as phosphocholine and phosphatidylcholine, observed in
tumors are a result of increased activities of choline transporters and choline kinase associated
with increased cell membrane synthesis and tumor cell proliferation (71). The highly active
phospholipid metabolism of tumor cells has been targeted with [11C]choline as a marker of
proliferation (72). [11C]Choline imaging has been applied for the detection of several cancers,
particularly brain and prostate (73,74). To increase the effectiveness of lipid metabolism
imaging, efforts have been made to develop [18F]-labeled choline analogs (75,76). Similarly,
Inhibitors of choline kinase and choline transporters such as hemicholinium-3 are being
investigated as potential imaging agents (77). Despite promising initial results obtained with
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[11C]choline, there are conflicting reports on its correlation with measures of proliferation
(78,79).

Significant progress has been made in using MR technology to detect the changes in tumor
phospholipid metabolism (80,81). Several excellent reviews on the use of 1H-, 13C- and 31P-
MR for choline metabolite detection in cancer are available (71,82). Knowledge of
phospholipid metabolism has been extended to characterize the tumor progression and
radiotherapy in gliomas (83,84).

Hypoxia
Solid tumors, due to imperfect and chaotic vasculature, develop regions of low oxygen
concentration regions that are hypoxic. In the majority of solid tumors hypoxia is the basis for
angiogenesis, metastasis and therapy resistance – particularly radiation therapy. The ability to
image hypoxia has potential therapeutic applications. One hope has been that radiation therapy
can be tailored to irradiate hypoxic tumor regions preferentially (85). That could theoretically
give enhanced tumor control even if the tumor only has modest hypoxic subfractions (86). One
difficulty with this approach, however, is that the hypoxic regions appear to change in response
to radiation even at early time points as seen in a model system (87). Work is ongoing to
understand these effects in more detail.

Another possible means of exploiting hypoxic conditions is the use of a prodrug activating
gene that can be specifically triggered by hypoxia-specific promoters or bioreductive drugs
that could be specifically activated at low tumor oxygen concentrations (88–93). Because
hypoxia is a marker for poor prognosis, using hypoxia as a diagnostic marker may also be
helpful for better chemotherapeutic and radiation treatment outcomes (94).

[18F]Fluoromisonidazole, or 3-[18F]fluoro-1-(2′-nitro-1′-imidazolyl)-2-propanol (FMISO),
accumulates in regions with pO2 < 10 mm Hg and is retained in a nitroreductase dependent
manner. FMISO has been evaluated in preclinical (95) and clinical settings and shows
correlative variation in uptake with hypoxic status in various tumors (93,96–98). The
nitrosoimidazole-based SPECT imaging probe, 99mTc-labeled 4,9-diaza-3,3,10,10-
tetramethyldodecan-2,11-dione dioxime [99mTc]HL91, has also been useful in predicting
hypoxia status and changes during radiotherapy (99,100).

Another hypoxia marker that has been extensively investigated is a metal chelating agent Cu-
diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) (101). Uptake of Cu-ATSM has
reliably detected hypoxic regions within NSCLC (102) and cervical tumors and used in image-
guided intensity-modulated radiation therapy (IMRT) of advanced cancers (103). However,
comparison studies in murine squamous cell carcinoma and other models showed better
correlation between FMISO uptake changes and hypoxia levels than Cu-ATSM (101,104). Cu-
ATSM, labeled with 64Cu, due to its favorable β-particle emissions, has also been used as a
therapeutic agent (105–107). Studies have indicated that the Cu-ATSM uptake is particularly
sensitive to the time at which images are acquired, probably due to the passive transport across
cell membranes (108). A new generation of nitrosoimidazoles and labeled azomycin analogs
such as [18F]fluoroazomycin arabinoside (FAZA) and iodo-azomycin-galactosides (IAZG) are
under investigation as PET and SPECT imaging probes to determine the predictive value of
hypoxia directed treatments and chemoradiotherapy (109,110).

Apoptosis
Apoptosis, or programmed cell death, is a tightly regulated and genetically defined cellular
process in vivo. The externalization of phosphatidylserine (PS) to the cell surface is a hallmark
of the caspase-3 activated apoptotic process (111,112). Externalized PS can be detected using
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a 40kDa vesicle protein called annexin, which has been extensively used in molecular imaging
for imaging apoptosis (113–116). 99mTc-labeled annexin uptake after chemotherapy has been
shown to be a predictor of tumor response and prognosis in some human cancers (117).
Radiation induced apoptosis also correlates with the uptake of radiolabeled annexin in follicular
lymphoma patients undergoing radiotherapy (118). Annexin labeled with near infrared optical
imaging probes has also been used for tumor detection and treatment response in animal models
(119,120).

Another molecule that binds to externalized PS is C2 domain of synaptotagmin (121).
Synaptotagmin conjugated with SPIO nanoparticles has been used to detect apoptosis in murine
lymphoma models using MRI (122).

The preceding sections have dealt with imaging agents and related mechanisms (metabolism,
proliferation and hypoxia, and apoptosis) that have been studied to at least some extent in the
context of radiation therapy. We now consider processes that are also amenable to the
development and use of targeted imaging agents but have not yet been studied with respect to
the radiation therapy, namely: receptor-based targets, gene expression and angiogenesis. These
processes are clearly relevant for radiotherapy and could be used either to predict response to
therapy, provide an early measure of outcome, or possibly allow tailored therapy via dynamic
measurements.

Receptor-based imaging
Receptors play a pivotal role in signal transduction and proliferation (123,124). Expression
levels of estrogen receptor (ER) are regularly used for prognosis in patients with breast cancer
and to predict who will respond favorably to endocrine therapy (125). [18F]Fluoroestrodiol
(FES), a ligand that binds ER, has been shown to predict response to endocrine therapy
(126). Dehdashti et al. found that FES-PET imaging was useful in predicting the ultimate
response to tamoxifen treatment within 7 to 10 days of initiating this form of endocrine therapy
(127). Similarly, androgen-dependent prostate carcinomas can be screened for androgen
receptor status with the PET imaging agent, [18F]fluoro-dihydroxytestosterone (FDHT)(128),
with promising initial clinical results.

Growth factor receptors such as epidermal growth factor receptor (EGFR) are also becoming
viable imaging targets. EGFR is overexpressed in NSCLC, bladder, cervical, ovarian, kidney
and pancreatic cancers. Several SPECT-, NIRF- and PET-based EGFR inhibitors and
antibodies are being investigated. Promising results were demonstrated from immunoimaging
with an anti-EGFR antibody in patients with NSCLC (129–131). Small molecule inhibitors of
EGFR such as gefitinib and others are also being functionalized for imaging (132–134).

HER2/neu receptor is significantly overexpressed in breast, ovarian, gastric, lung, bladder,
kidney and several other cancers (135). HER2/neu receptor is a predictive marker for therapy
response in breast cancer patients (136). HER2/neu-based imaging agents, mainly radiolabeled
antibodies, are being investigated for classification of receptor status (137). The first patient
study with [111In]trastuzumab allowed identification of the HER22/neu positive tumors in
patients with metastatic breast cancer (138).

Neuroendocrine tumors express a high density of somatostatin receptors. Scintigraphic
somatostatin receptor imaging of neuroendocrine tumors with radiolabeled somatostatin
analogs such as [111In]DTPA-D-Phe1-octreotide is a routine clinical diagnostic tool (139).
Currently 68Ga- and 64Cu-labeled analogs are also being investigated as PET radiotracers
(140–142) in order to take advantage of the inherently superior sensitivity of PET.

Nimmagadda et al. Page 6

Semin Radiat Oncol. Author manuscript; available in PMC 2009 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



MR imaging of tumor receptors is rather challenging due to the combination of low
concentration of such receptors and the inherent limitation of sensitivity for MR. However,
novel strategies to improve signal intensity for MR-based molecular imaging have been
developed to overcome this limitation. For example, tumors expressing an engineered
transferrin receptor have been imaged using a superparamagnetic iron oxide (SPIO)-labeled
transferrin receptor ligand (143). In another study, Artemov et al. have targeted the HER2/neu
receptor overexpressed in NT-5 breast cancer cells with a two-step avidin-biotin system. In
this approach animals were pretreated with a biotinylated HER2/neu antibody. After clearance
of the unbound antibody streptavidin-conjugated gadalonium-chelates were administered. That
approach allowed controlled signal amplification for specific detection of the HER2/neu
positive tumors (144,145).

Gene expression
The future of gene therapy lies in safe and efficient delivery and controlled expression of
targeted genes at the tissue of interest. Gene delivery remains a considerable challenge because
of poor specificity, inadequate transfer efficiency and lack of correlation between expression
and function of the genetic material introduced (146). To achieve a better therapeutic response,
quantitative and noninvasive monitoring of distribution and knowledge of the magnitude and
duration of gene expression are essential. To improve the assessment of gene delivery, several
imaging platforms employing various reporter gene strategies and reporter probes have been
explored. Some of the most common reporter gene systems based on either enzymes, receptors
or transporters in nuclear imaging are 1) the sodium/iodide symporter (NIS) system with 131I
(147,148), 2) the wild type and mutant dopamine receptor (D2R) system with 3-N-(2-[18F]
fluoroethyl)spiperone (18F-FESP) as the imaging probe (149,150), 3) wild type herpes simplex
thymidine kinase (HSV1-tk) system with radiolabeled analogs of 1-(2′-deoxy-2′-fluoro-1-beta-
d-arabinofuranosyl)-5-iodouracil (FIAU) (151,152) and 4) mutant herpes simplex thymidine
kinase (HSV1-sr39tk) system with 9-(4-[18F]fluoro-3-hydroxymethylbutyl)guanine, [18F]
FHBG (153,154). By tagging an appropriate reporter gene, many cellular processes such as
initiation of transcription (155), transcriptional regulation (156), translation of mRNA (157),
protein-protein interactions (158), and antitumor immune response (159) etc., have been
imaged.

The first imaging-based readout of human gene therapy was reported by Jacobs et al. in glioma
patients undergoing stereotactic gene therapy. Imaging of the HSV-tk expression was
undertaken with [124I]FIAU-PET (206). Only one out of the five patients showed an indication
of radiotracer accumulation due to transgene expression. In another study Peñuelas et al.
monitored HSV-tk expression in patients with hepatocellular carcinoma after an intratumoral
injection of a recombinant adenovirus. The gene expression levels monitored using [18F]FHBG
showed a viral dose-dependent accumulation of the radiotracer (160).

Instead of using an exogenous reporter gene system, Fu et al. utilized the viral thymidine kinase
expression in Epstein-Barr virus and other gammaherpesvirus-associated tumors in a
preclinical model system. The authors induced the viral TK expression using bortezomib and
monitored the expression levels with [125I]FIAU-SPECT (Figure 3). This mechanistic
approach may be useful in targeting radiolabeled and therapeutic agents to virus-associated
tumors (161).

Hypoxia induces a number of genes and is a significant contributor to the radiation resistance
observed during cancer treatment (162). Greco et al. have successfully achieved a therapeutic
gain in vitro by employing vectors containing hypoxia responsive elements and radiation-
responsive CArG elements from the Egr1 early growth response gene. This novel strategy
utilizes the adverse gene expression triggered in response to hypoxia and/or ionizing radiation
stimuli (89,163). The effectiveness of these combined therapies in vivo are yet to be determined.
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MR-based gene expression imaging is still in its infancy with only a few endogenous reporter
genes in development (164,165). Recently Gilad et al. have developed a chemical-exchange
saturation transfer (CEST)-based lysine-rich protein that could be turned on or off by
selectively saturating at the exchangeable proton-resonance frequency. The authors
demonstrated the ability to image CEST reporter gene stably expressed in brain xenografts
using MRI (166).

Angiogenesis
Angiogenesis, the development of new blood vessels from preexisting blood vessels, is
fundamental to tumor growth and transition from a benign into malignant state (167,168). As
a result angiogenesis has become an important therapeutic target and several novel therapies
based on either the existing tumor blood vessels (vascular disrupting agents) or tumor blood
vessel development (antiangiogenic agents) have been developed (169). Since the effect of the
antiangiogenic drugs seems to be primarily cytostatic, new molecular measures of biological
response based on membrane proteins selectively expressed by angiogenic vessels have been
explored (170). In addition, other physical parameters such as tumor vascular permeability,
perfusion, blood volume, and microvessel density have been investigated with MRI, CT and
PET (171–173). Some of the molecules germane to angiogenesis that have gained particular
attention are vascular endothelial growth factor (VEGF), VEGF receptors (VEGFR), αvβ3
integrin, matrix metalloproteinases (MMPs) and thrombospondin-1 receptor (170,174).

VEGF, a mitogen, plays a critical role in stimulating endothelial migration, proliferation and
angiogenesis (175). Thus VEGF-targeted imaging may provide valuable information on tumor
angiogenesis and antiangeogenic treatments. Several VEGF isoforms (VEGF121, VEGF 165)
were either labeled directly or tagged with chelating agents to label with positron (176) or
gamma emitters (177–179) to visualize the VEGFR expression in preclinical models. Some of
the most valuable information was derived from PET imaging studies of the 124I-labeled
humanized mouse monoclonal anti-VEGF antibody, HuMV833. This study in advanced
cancers revealed a marked variation in the pathophysiologic behavior of tumors, even within
the same patient, to antibody distribution, clearance and biological response demonstrating the
need for a more tailored approach to using cytostatic antiangiogenic agents (180).

Integrins, a family of cell adhesion molecules, play a key role in endothelial cell migration and
survival during angiogenesis. Of the family of integrins, αvβ3 integrin is significantly
upregulated on activated endothelial cells during angiogenesis and interacts with extracellular
matrix proteins with an exposed RGD (arginine-glycine-aspartic acid) motif such as
vitronectin, fibronectin and fibrinogen (181,182). Several novel radiotracers containing RGD
sequences labeled with 18F, 64Cu, 99mTc, 111In, or 90Yr to target specifically tumor integrins
have shown high tumor/background ratios in preclinical models (183). Cyclic glycosylated
pentapeptides labeled with 18F have been successfully used to image αvβ3 integrin expression
in cancer patients (Figure 4) (184,185).

Other imaging modalities have also been extensively used for integrins; MR imaging with
paramagenetic nanoparticles (186), antibody coated liposomes (187) and Gd-perfluorocarbon
nanoparticle-conjugated antibodies (188) have been used for targeted tumor αvβ3 imaging.
Near infrared-based optical imaging agents (189) and αvβ3 targeted microbubbles for
ultrasound have also been used to image tumor angiogenesis (190).

Matrix metalloproteinases, a class of Zn+2-dependent endopeptidases, play a crucial role in
cancer cell extravasation and invasion (191,192). Of the 25 known MMPs, gelatinases (MMP-2
and 9) are preferentially detected in tumors, are capable of collagen IV degradation and are of
particular interest as imaging targets. Several inhibitors of MMPs, including tissue inhibitors
of MMPs and MMP-specific small molecule inhibitors labeled with several PET and gamma
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emitting radionuclides, have been used for imaging (193,194). So far, studies in preclinical
and clinical imaging with MMP inhibitors have not shown convincing MMP specific tumor
uptake (195–197). In contrast to experience with radiolabeled probes, near infrared optical
imaging “smart” probes designed to be activated by specific MMPs have shown MMP specific
tumor uptake (198,199). Other endothelial markers such as endostatins and E-selectin are under
development and show some promise (200,201).

Future of targeted molecular imaging for radiation therapy
Molecular imaging is emerging as a powerful technique in the management of cancer and
radiation treatment planning. Although the collaborative effort between various science and
engineering disciplines is greater now than ever before, more integration is necessary. With
the exception of FDG, the imaging agents described above are largely unstudied in the context
of radiation therapy. Early studies indicate that some of these compounds may be useful either
for monitoring or predicting the response to radiotherapy or possibly for improving treatment
planning (e.g. better tumor delineation). More studies of the properties of these agents are
needed that address the radiation response and other issues relevant to radiation therapy.

Immediate clinical impact may derive from extending current chemoradiotherapy approaches
to new targeted therapies, such as the use of EGFR inhibitors (202), to achieve a synergistic
effect. Also, development of radiation sensitive gene therapy approaches as described in
hypoxia section above, and radiation-triggered release of chemotherapeutic agents or radiation-
sensitive prodrugs could pave the way for more localized treatment delivery.

From a probe development standpoint, it may be time for chemists to concentrate more on
developing dual or multiple use agents to move into “theragnostic” imaging. Although
radiation treatment planning using molecular imaging techniques could be considered
theragnostic imaging, another meaning could incorporate true dual-use probes – that identify
tissues to be treated and treat them concurrently. Such an agent may be for gene therapy, where
the gene, which contains both an imaging “beacon” and therapeutic moiety, is selectively
expressed within the target lesion. The use of DNA (aptamers) as a direct imaging agent has
showed some promise but additional work is required (203). There is still a great need for the
development and validation of targeted imaging agents and ultimately their use as treatment
endpoints for therapy assessment.

Allowing the use of microdosing to assess the pharmacokinetics and pharmacodynamics of
novel agents (204) and the National Cancer Institute recommending the use of “phase 0” trials
for the new drug/imaging agents (205) are facilitating the rapid translation of the most
promising agents. As evidenced by the proliferation of preclinical and in some cases clinical,
imaging programs within the pharmaceutical industry we can anticipate further streamlining
of imaging agents to the clinic. Soon we will have data to show how much money, if any,
molecular imaging can save in the drug/therapeutic development process. In cases where direct
imaging is not feasible, alternative strategies to image the effector pathways, as gained from
preclinical experience, will be helpful in assessing the therapeutic effect of the new agents
while they are still in phase 0 trials.

For molecular imaging to realize its full potential in facilitating personalized patient care, the
localization of specific imaging probes will need to be correlated carefully with established
prognostic markers and linked to gene and tissue arrays derived from patient specimens.
Perhaps nowhere more in cancer therapy than in radiation treatment planning can molecular
imaging provide guidance. Although of increasing sophistication, the anatomic imaging
methods currently used will soon give way to sensitive molecular imaging techniques for
providing the utmost in specific, and in many cases targeted, radiation therapy.
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Figure 1. Comparison of FDG and FLT
An 11-year-old male with a germ cell tumor of the basal ganglia. MRI shows subtle changes
(arrow) in the right basal ganglia. On FDG-PET, the right basal ganglia lesion shows slightly
decreased uptake compared with the contralateral basal ganglia but increased uptake compared
with normal white matter. 3′-Deoxy-3′-[18F]fluorothymidine (FLT)-PET, however, reveals
intensely increased uptake, suggesting the presence of a malignant tumor (arrow). Based on
the FLT-PET results, a stereotactic biopsy was performed in the right putamen. could be
performed in the right basal ganglia (63).
From: Choi SJ, Kim JS, Kim JH, et al. [18F]3′-deoxy-3′-fluorothymidine PET for the diagnosis
and grading of brain tumors. Eur J Nucl Med Mol Imaging. Jun 2005;32(6):653–659.
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Figure 2.
Representative axial slices from CT (left) and FDG-PET (right) scans of a breast cancer patient
after lumpectomy surgery. The lumpectomy cavity was delineated for further treatment with
the partial breast irradiation technique. Contours based on FDG-PET-CT (blue) were generally
larger than those defined on CT alone (green). (From Ford et al., 2007).
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Figure 3. Viral TK induction
Time course of uptake of [125I]FIAU by Burkitt’s lymphoma xenografts [EBV(+) Akata]
following treatment with bortezomib as assessed by planar gamma scintigraphy in vivo. Large
arrows, tumors. The dark area (A, small arrow) represents lead shielding of bladder to improve
the dynamic range of the images. Each animal has one tumor placed in the hind limb. A, no
tumor uptake is evident in animals pretreated with PBS only (control). B, tumors are visualized
at later time points in the pretreated animals (2 μg/g bortezomib).
From: Fu DX, Tanhehco YC, Chen J, et al. Virus-associated tumor imaging by induction of
viral gene expression. Clin Cancer Res. Mar 1 2007;13(5):1453–1458.
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Figure 4. Correlation of tracer accumulation and αvβ3 expression
(A–C) patient with a soft tissue sarcoma dorsal of the right knee joint. (A) The sagittal section
of a [18F]galacto-RGD PET acquired 170 min p. i. shows circular peripheral tracer uptake in
the tumor with variable intensity and a maximum SUV of 10.0 at the apical-dorsal aspect of
the tumor (arrow). (B) The image fusion of the [18F]galacto-RGD PET and the corresponding
computed tomography scan after intravenous injection of contrast medium shows that the
regions of intense tracer uptake correspond with the enhancing tumor wall, whereas the non-
enhancing hypodense center of the tumor shows no tracer uptake. (C) Immunohistochemistry
of a peripheral tumor section using the anti-αvβ3 monoclonal antibody LM609 demonstrates
intense staining predominantly of tumor vasculature. (D–F) patient with malignant melanoma
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and a lymph node metastasis in the right axilla. (D) The axial section of a [18F]galacto-RGD
PET acquired 140 min p. i. shows intense focal uptake in the lymph node (arrow). (E) Image
fusion of the [18F]galacto-RGD PET and the corresponding computed tomography scan after
intravenous injection of contrast medium. (F) Immunohistochemistry of the lymph node using
the anti-αvβ3 monoclonal antibody LM609 demonstrates intense staining predominantly of
tumor cells and also blood vessels.
From: Noninvasive Visualization of the Activated αvβ3 Integrin in Cancer Patients by Positron
Emission Tomography and [18F]Galacto-RGD Haubner R, Weber WA, Beer AJ, Vabuliene
E, Reim D, et al. PLoS Medicine Vol. 2, No. 3, e70 doi:10.1371/journal.pmed.0020070
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