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Abstract
A localization ROC (LROC) study was conducted to evaluate nonprewhitening matched-filter
(NPW) and channelized NPW (CNPW) versions of a multiclass model observer as predictors of
human tumor-detection performance with PET images. Target localization is explicitly performed
by these model observers. Tumors were placed in the liver, lungs, and background soft tissue of a
mathematical phantom, and the data simulation modeled a full-3D acquisition mode. Reconstructions
were performed with the FORE+AWOSEM algorithm. The LROC study measured observer
performance with 2D images consisting of either coronal, sagittal, or transverse views of the same
set of cases. Versions of the CNPW observer based on two previously published difference-of-
Gaussian channel models demonstrated good quantitative agreement with human observers. One
interpretation of these results treats the CNPW observer as a channelized Hotelling observer with
implicit internal noise.

Index Terms
Human; model observers; image quality; localization ROC (LROC); positron-emission tomography
(PET); tumor detection

I. Introduction
In a span of five years, positron emission tomography (PET) with FDG-18 has become a
primary clinical modality for imaging many types of cancer [1], and continues to be the focus
of researchers working to improve its diagnostic capabilities. These efforts invariably contend
with the question of how to gauge diagnostic improvement without resorting to extensive
human-observer studies. One solution uses mathematical model observers that can predict the
tumor-detection performance of the humans [2]. Two well-known examples that have been
applied in PET studies (e.g., [3], [4]) are the nonprewhitening matched filter (NPW) and
channelized Hotelling (CH) observer. To date, these have generally been used in signal-known-
exactly (SKE) ROC studies where lesion locations are known before-hand.

Detection tasks involving lesion localizations are oftentimes more clinically realistic for PET,
yet model observers that are capable of such tasks have only recently been considered. D’
Asseler et al. [5] used a multiclass channelized NPW (CNPW) observer in a localization ROC
(LROC) study that investigated bootstrap resampling of list-mode data. Multiclass observers
represent one way of extending CH-type linear observers from binary (or two-class) detection
tasks to localization-detection tasks, and have been shown to correlate with human observers
in SPECT LROC studies [6].

The basis for our current model-observer work was the alternative free-response ROC
(AFROC) comparison of acquisition modes for whole-body PET that was recently presented
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by Lartizien et al. [7]. This AFROC study required the detection and localization of multiple
targets in an image volume. While our long-term goal is to evaluate the multiclass model
observers in such a task, an impediment to testing them against the human results in [7] was
the clinically oriented design of the AFROC study, which allowed the human observers to
adjust the image display. Our current model observers lack a mechanism for this. Thus, we
considered herein a simpler single-slice LROC study with fixed display settings in order to
maintain task equivalence among the observers. Nonetheless, the imaging simulation was
exactly as detailed in [7], as our PET images were drawn from the reconstructed volumes used
in that work.

The LROC study compared the coronal, sagittal, and transverse display formats for viewing
images. The multiclass NPW and CNPW observers were applied, the latter with multiple
channel models. The multiclass CH observer [8] was not included in this study because the
available images were insufficient for its training.

Sec. II details the imaging simulation, model observers, and study methodology. Study results
are presented in Sec. III. In Sec. IV, the results with the CNPW observer are discussed in the
context of previous comparisons [6] between it and the CH observer.

II. Methods
A. Simulated Acquisition

The mathematical cardiac torso (MCAT) phantom [9] was modified for a whole-body FDG
simulation by the addition of a neck and head, arms, and a bladder. The head and bladder were
not part of the reconstructed volume, but did contribute out-of-field activity to the projection
data. The dimensions of the phantom corresponded to a 170-cm patient with a weight of 70
kg. Spherical tumors in the liver, lungs, and background soft tissue were 1 cm in diameter and
had relative tumor-to-background activities that varied with organ. Five tumor contrasts per
organ were selected such that they would yield fractions of tumors correctly localized (or, more
simply, fractions found) of approximately 0.1, 0.3, 0.5, 0.7, and 0.9 for human observers in the
AFROC study [7]. The contrast assignment to the lesions was randomized. These contrasts
ranged from 2.5–4.75 in the liver, 5.5–9.0 in the lungs, and 6.5–10.5 in the soft tissue. Each
abnormal case contained 7 lesions, dispersed among the organs according to a multinomial
probability distribution that specified means of 2.5 lesions in both the liver and lungs, and 2.0
lesions in the tissue regions. A lesion placement within a given organ was subject to the
restriction that it be no closer than 1 cm from the organ surface or from other lesions, but was
otherwise random. A total of 50 abnormal cases were created.

The data simulation modeled the characteristics of the Siemens/CTI ECAT HR+ scanner
operated in fully 3D mode [7]. Noiseless transmission and emission sinograms were obtained
using the ASIM analytic projector [10] that accounted for attenuation, scatter, and randoms.
The Poisson noise added to the emission sinograms was consistent with clinical protocols
utilizing a 12-mCi dose and an uptake period of 90 minutes. In addition to a noisy projection
set for each of the 50 abnormal cases, 25 noisy sets of normal projection data were also
generated.

B. Image Reconstruction
Image volumes were reconstructed using 4 iterations (16 subsets for 144 projection angles) of
the FORE+AWOSEM algorithm [11], for which the attenuation correction applied noiseless
weights. Each volume consisted of 225 transaxial slices (2.4-mm thickness), with slice
dimensions of 128 × 128 (5-mm voxel width). These noncubic voxel dimensions led to oval
lesion profiles when the images were viewed in the coronal and sagittal formats. Post-
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smoothing was performed using a 3D Gaussian filter whose 10-mm FWHM was set based on
contrast-to-noise considerations [7]. Once the image slices were extracted for the LROC study,
a final image processing for the study was carried out as described below.

The original multitarget AFROC purpose of these reconstructions conflicted with our one-
target LROC requirement, so we worked with abnormal slices that contained a single lesion
in a given organ. Observers could then be instructed to search within a particular organ in an
image. To avoid problems from out-of-slice lesions, a lesion was used for a given display
format only if its center and that of any other lesion in the same organ were at least five slices
apart. Lesion-absent slices were extracted from both the normal and abnormal volumes, and
were defined in the latter case using a similar five-slice criterion. In units of length, the
minimum separation was 12 mm in the axial direction and 25 mm in the transverse plane,
values that represented a trade-off between garnering enough lesions for the study and limiting
the out-of-slice lesion effects. Table I shows the distribution of activities for the lesions in the
LROC study.

The image slices underwent an organ-specific upper-thresholding that primarily influenced
lesion detection in the lungs. To briefly explain this process, we consider the set of images that
contain a lesion in one of the given organs. The maximum tumor pixel in the ith image is ψi.
The maximum ψmax and standard deviation σψ were determined from the set of ψi, and the
threshold level was set to ψmax + σψ. The thresholding was followed by conversion to greyscale.
The images were then zero-padded to the 256 × 256 dimensions compatible with our viewing
software. Example images are shown in Fig. 1. The coronal slice in Fig. 1(d), thresholded for
a tissue lesion, has a considerable amount of hot artifact at the lower extremes that is caused
by the out-of-field bladder activity. Sagittal slices also suffered from these artifacts.

Not shown in Fig. 1 are the labels that were affixed in the upper left-hand corners of the images
to inform the human observers as to which organ should be searched.

C. Human-Observer Studies
Two members of the medical physics group at the University of Massachusetts Medical School
participated in the study. Both had extensive LROC experience reading simulated images.
There were 104 lesions that satisfied the five-slice separation criterion for all three image
formats, with 21 in the liver, 32 in the lungs, and 51 in the tissue. These formed the test set of
lesions. A training set of 42 lesions (14 per organ) for a given format was formed with lesions
that were specific to that format. With an abnormal/normal image pair for each lesion location,
this amounted to 208 test images and 84 training images per format.

The observers read these images in two equal sessions, with a test subset of 104 images
preceded by a training subset of 42 images. The subset reading order varied with observer.
Ordinal confidence ratings were collected on a discrete, six-point scale, with rating levels 1
and 6 identified with the labels “high confidence absent” and “high confidence present,”
respectively. The observers marked a suspected lesion location with a set of crosshairs that
was controlled with the computer mouse. A localization was assessed as correct if it lay within
a circle of radius Rcl centered on the true location. This radius of correct localization was
determined empirically from the human observer data and a single value was applied for all
the studies. We set Rcl by examining how the fraction found for each image-display format
increases with the circle radius. The objective is to pick a radius within an interval where the
fraction is relatively constant across the different formats. More details on the choice of Rcl
are presented in Sec. III.A.

An observer’s data from the two image subsets were pooled for scoring purposes. An area
under the LROC curve (AL) was calculated from the pooled data using the maximum-likelihood
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(ML) fitting software described in [12]. The overall score for a format was the average area
computed over the two observers.

D. Model Observers
For a given study image f ̂, a multiclass model observer computes a perception measurement
Zn at each image pixel n in a predefined search region Ω. The max and arg max of Zn are then
recorded as the confidence rating and localization, respectively, for f ̂. For a “signal-known-
statistically, background-known-exactly” (SKS-BKE) detection task, Zn is given by the inner
product

(1)

involving the observer’s template image wn for the image pixel and the mean lesion-absent
image b for the slice. The background subtraction primarily serves to inject observer knowledge
of the patient anatomy into the detection task. The 25 normal reconstruction volumes were
used to estimate b. Noise-free background reconstructions have also worked for this purpose
[13], but none were available for this simulation.

The NPW and CNPW observer templates are constructed to be shift-invariant, allowing
evaluation of (1) for all n by means of a single 2D cross-correlation operation. Both observers
use the 2D lesion profile averaged over location. This mean profile s was estimated from the
training images. The NPW template wn is s centered on the nth pixel.

Using the average lesion profile for the template means that the detection task is SKS not only
because the lesion location is unknown, but also because local variations in the lesion
characteristics are not accounted for. However, these variations (such as lesion shape) are
relatively slight in our images. Also, the characteristics at a given location are fixed. Eckstein
et al. [14] have considered a more general SKS task in which the lesion could vary substantially
at location n. In that case, the model observer comprises a set of templates wn,j, where vector
j indexes the range of lesion variables.

The CNPW-observer template for our task is the mathematical projection of the lesion profile
onto a set of channel responses. With these responses represented by the columns of matrix
Un, the template is

(2)

The channels are defined in frequency space, and the responses are their inverse Fourier
transforms. The three sets of radially symmetric, 2D channels presented in [15] were tested.
One set had four square-profile (SQ) channels [Fig. 2(a)] defined as

(3)

with the 2D frequency vector ρ = (ρx, ρy), c ε{0, 1, 2, 3}, and ρ0 = 0.015 pixel−1. The other two
sets were difference-of-Gaussian (DOG) designs, with the definition

(4)
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The channel standard deviation is σc = αcσ0. A sparse-DOG (SDOG) model had 3 channels,
with σ0 = 0.015, Q = 2, and α = 2 [Fig. 2(b)]. A dense-DOG (DDOG) model used 10 channels
with σ0 = 0.005, Q = 1.67, and α = 1.4 [Fig. 2(c)].

It is important to note that unlike the CH observer, the CNPW observer is sensitive to the means
of channel normalization. In Fig. 2, the spectral responses of the various channel sets have been
normalized to 1.0. Other possible normalizations like integrated power or peak spatial response
would produce a different observer template.

The use of noncubic reconstruction voxels caused the lesions to appear elongated in the coronal
and sagittal slices [see Fig. 3(a)]. This led us to test the CNPW observer with a set of
nonsymmetric SDOG channels, defined according to the formula

(5)

with σx,c the horizontal standard deviation and σy,c the vertical standard deviation. With σx,0 =
0.015 and σy,0 = 0.0075, the one change from the symmetric SDOG channels was a smaller
standard deviation in y. The response for ũ0, centered in the field-of-view, is shown in Fig. 3
(b).

E. Model-Observer Studies
The model observers read the same study images as the humans. The 84 training images per
display format from the human study were used to estimate the observer templates. We
compared the performances of all observers across the three display formats, and also analyzed
their performances on the basis of format and organ.

We applied Swensson’s fitting software to compute the model-observer performances, and
matched the radius of correct localization to the value used in the human study (see Sec. III.A).
Doing so maintained some consistency in scoring across our studies, although one practical
modification was required to handle the continuous rating data produced by (1). In general,
ML methods for fitting ordinal rating data are also valid for continuous data [16]. Ranking the
continuous ratings in ascending (or descending) order defines a natural binning in terms of the
run lengths of the tumor-present and tumor-absent images (see example below). Our difficulty
was that having more than twelve bins led to convergence problems with the fitting software.
To overcome this limitation, we applied an iterative rebinning procedure that reduced the
ratings to the same six-point scale used for the human-observer study.

Fig. 4 diagrams a hypothetical 16-image example that helps explain the rebinning procedure.
The ratings are sorted in ascending order to form a sequence S [Fig. 4(a)]. The sequence
elements pi and ai are the ith largest ratings from the tumor-present and tumor-absent images,
respectively. Beginning with the larger values of S, we use the consecutive runs of p’s and
a’s to define the initial number of bins N0 and the bin contents. We note that these run lengths
also define a nonparametric, or empirical, ROC curve. Our hypothetical data produces four
bins [Fig. 4(b)], based on p-run lengths of 4, 2, 1, 1, and corresponding a-run lengths of 1, 1,
3, 3. According to Metz [16], an ML fit of this ordinal data is equivalent to the ML fit of the
original continuous data. At this point, an iterative rebinning step reduces this to N0 – 1 bins
[Fig. 4(c)] by combining the smallest bin with whichever adjoining bin has the fewer elements.
The iterations continue until the desired number of bins is reached. One justification for this
manner of rebinning is that assimilating the smallest bins will have the least impact on the
shape of the empirical ROC curve.
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This rebinning procedure was first applied by creating the sequence S from the full set of 208
images per display format. Typically, N0 was on the order of 50. However, the different noise
magnitudes and textures in the liver, lungs, and soft-tissue regions raised the question of
whether the model-observer responses would be adequately normalized between these organs.
Obtaining systematically higher responses in one organ than the others could skew the binning.
To test this possibility, we also tried binning the ratings for each organ separately. These binned
ratings were then combined prior to scoring. We refer to this approach as partial binning to
distinguish it from the full binning that treated all images at once. In short, full binning defines
observers that employ one consistent rating scale for all organs. With partial binning, the use
of the rating scale is adjusted for organ in the sense that the discrete rating for a given image
will be influenced only by the other images for that organ.

Previous experiments [6] showed little difference between using six or twelve bins with the
Swensson code. As part of our current analysis of the model observers, we also computed the
Wilcoxon area estimates [17] obtained from numerical integration of the empirical LROC
curves. The rebinning procedure was not applied for these estimates.

All the human and model observers were made aware of the 1-cm minimum separation imposed
between the lesions and the organ boundaries. For the model observers, the search region Ω in
a particular organ was simply defined by the organ area minus a 1-cm margin at the boundaries.
The observers were also tested with definitions of Ω that did not account for the margin.

III. Results
A. Localization Radius

Fig. 5(a) is a plot of the fractions found for the human observers as a function of the radius of
correct localization Rcl. The six curves treat the data from the two observers using the three
display formats. All these curves reach a plateau at about the same point, evidence that the
accuracy of the lesion marking by the individual observers was fairly consistent across formats,
and thus unaffected by the noncubic voxels. On the basis of this graph, Rcl was set to 15 mm.
Partial-volume effects, the Gaussian post-smoothing, and the image interpolation to 256×256
pixels contributed to an Rcl that exceeded the actual 5-mm lesion radius.

The effect of Rcl on the fractions found for the model observers is summarized by the rest of
Fig. 5. The search regions for the observers included the 1-cm margins at the organ boundaries.
Each of the plots (b–d) treats the localization data obtained from the four observers applied to
one of the display formats. The curves for the channelized observers are similar to the human
curves in Fig. 5(a). Although the choice of Rcl was based solely on the human data, it is evident
that small changes in the radius would not significantly change the CNPW-observer
performances. The plateaus for the NPW observer are less distinct and show more variation
across the three formats, indicating that the choice of Rcl will have a somewhat greater effect
on this observer. Still, the localization penalties in this case, particularly with the coronal
images, would have a relatively small impact on our analysis.

B. Aggregate Observer Performance
Table II lists areas under the LROC curve for the two human observers with the three image
formats. A two-way ANOVA coupled with Scheffe’s multiple-comparisons test [18] did not
find a statistically significant interobserver effect (α = 0.05). The differences between the
coronal format and the sagittal and transverse formats were significant. The lower scores for
the coronal slices are attributable in part to the larger areas that must be searched relative to
the sagittal and transverse slices.
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Table II also compares the average human and model-observer performances. The results for
the model observers include AL calculated with the Swensson code and using both the full and
the partial binning schemes. Full binning decreased AL by approximately 0.02 in most cases
compared to the partial binning. With either scheme, each model observer attained its worst
performance with the coronal format. A multiple-comparisons test of the model observers with
the partial binning found significant differences between the coronal format and the other two
formats and between the NPW observer and the CNPW observers.

The Wilcoxon estimates of AL for the model observers are given in Table III, along with
standard deviations calculated from sets of 10000 bootstrap resampling trials. As these
estimates have only slight differences with the full-binning scores in Table II, the remainder
of the analysis in this section was carried out with the Swensson software alone.

The CNPW observer was effectively indifferent to the switch from the symmetric SDOG
channels to the nonsymmetric ones defined by (5). The nonsymmetric channels produced
partial-binning scores of 0.53 ± 0.04 and 0.74 ± 0.04 for the coronal and sagittal images,
respectively.

C. Stratified Observer Performance
Observer performances calculated on the basis of lesion location and display format are given
in Table IV. Partial binning was applied for the model observers. The higher uncertainties
compared to Table II reflect the relatively smaller numbers of images with which to estimate
each LROC curve. With each format, human performances were lowest for the liver, while
their lung and soft-tissue scores were comparable. In the volumetric AFROC study [7], the
ordering of the human scores was: 1) lungs, 2) soft tissue, and 3) liver. An exact correspondence
between the AFROC and LROC studies should not be expected since the current study used
only a subset of the AFROC cases and its images underwent more-controlled post-processing.

From Table IV, it can be seen that the model observers usually agreed with the humans in the
sense that their scores were considerably worse for liver lesions than for lung and soft-tissue
lesions. The one exception was the NPW observer applied to the sagittal slices. Overall, this
observer deviated the most from the humans, as can be seen by the scatter plots in Fig. 6. These
plots are one-on-one comparisons of the human and model-observer data in Table IV. The
linear correlation coefficients r for the DDOG, SDOG, and SQ versions of the CNPW observer
were 0.91, 0.86, and 0.84, respectively. With full rebinning, the coefficients were 0.92, 0.87,
and 0.88. The r-values for the NPW observer were 0.62 and 0.65, due primarily to its poor
coronal scores. The critical value of r for rejecting the null hypothesis of no correlation at the
α = 0.05 significance level is 0.67.

Although these correlation coefficients offer one measure of agreement between the human
and model observers, they do not account for any systematic biases that might exist between
the observers. For example, Fig. 6(c) suggests a tendency of the SQ-channel CNPW observer
to underperform compared to the humans. The dashed diagonal line in each scatter plot denotes
the ideal model-observer behavior, and we tested the null hypothesis that this fit our
experimental results. For a given scatter plot, a χ2 statistic with 16 degrees of freedom takes
the form of the weighted total-least-squares error

(6)

between the nine data pairs (Ahum,i, Amod,i) and corresponding points (Ai, Ai) on the line. The
latter points were chosen to minimize the error. An assumption underlying this test is that the
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observer scores obey independent Gaussian statistics, and the uncertainties listed in Table IV
were adopted as the standard deviations σhum,i and σmod,i for the distributions. The hypothesis
that the diagonal line fit the NPW-observer data was rejected for α = 0.05. Rejection was not
possible for any of the CNPW observers even when the σmod,i values were halved.

D. Effect of Search Region
All the model-observer results to this point were based on search regions ω having the 1-cm
margin at the organ boundaries. Without these margins, the model-observer performances
dropped sharply: averaged over the three display formats and the three channel models, AL for
the CNPW observers decreased by 0.19 for lung lesions, 0.04 for soft-tissue lesions, and 0.03
for liver lesions. The difficulty in the lungs is that this larger search region forces the observers
to consider possible lesion locations that contain considerable spill-in from the hotter soft-
tissue areas.

IV. Discussion
On the basis of aggregate performance, the best human-model agreement was achieved by the
CNPW observers with the DOG channels. The stratified analysis of performance indicates this
correlation extended to the individual organ types. The largest discrepancy between the CNPW
and human observers was obtained with the square channels applied to the transverse images,
although this difference was not statistically significant.

The NPW observer has the same training requirements as the CNPW observer, as both use
estimates of s and b. That the NPW observer considerably underestimated the human
performances is not surprising in light of earlier SKE-task work (e.g., [19], [20]) and our own
LROC results [6] that have indicated a human ability to partially prewhiten images. Burgess
et al. [20] showed that their human-observer data could not be fit by any modified NPW-
observer model. How, then, to reconcile the performance of the CNPW observer?

As implemented in the CH observer, prewhitening takes the form of an inverse weighting of
the channel responses in (2), using the C × C covariance matrix K for a C-channel model. With
a detection-localization task, K is indexed by search pixel. Generalized with internal noise that
uses an additive scalar a to uniformly increase channel variances [15], the CH-observer
template at the nth pixel is

(7)

where I is the identity matrix. The training for this observer is typically dominated by the
estimation of Kn. A bootstrap study of the training-image requirements based on a SPECT
simulation [6] set a target of approximately 150 tumor-absent images for estimating Kn, far
exceeding the 25 normal images available for this PET study.

From (2) and (7), it is evident that the CNPW observer differs from the CH observer by a
covariance-dependent internal-noise term Kn,noise at the nth pixel given by knI – Kn, where
kn is the largest diagonal element of Kn. In this sense, the CNPW observer has more in common
with the CH observer than with the NPW observer. It is not clear what physical process might
fit such an internal-noise model, especially as Kn,noise is not guaranteed to be a true covariance
matrix, but this formulation does suggest the potential volatility of the CNPW observer as a
computationally simpler substitute for the CH observer. The substitution is obviously least apt
for tasks where the prewhitening has a major impact. With white channel noise, Kn is
proportional to I and the two observers are equivalent. This condition is unlikely to hold exactly
for most realistic channel models and imaging applications, but even with nuclear-medicine
simulations, we have obtained similar performances with the CNPW and CH observers. This
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was the case in our previous LROC experiments with SPECT OSEM images [6], where the
channel noise was strongly uncorrelated but non-white. One explanation for this agreement
relates to the relatively poor resolution of the SPECT images, whereby the white-noise
requirement is weakened since only a subset of relatively low-pass channels contribute to the
lesion detection. To extend this line of reasoning to the higher-resolution PET study, the
effective white-noise requirement is more stringent since more channels play a role in the
detection task. Given truly non-white noise, the degraded performance of the CNPW observer
should then become more apparent with PET images. This would explain why no explicit
internal noise was required for the CNPW observer to fit the human data, whereas it was
necessary for the earlier SPECT studies.

More work is required to assess the reliability of the CNPW observer, as its performance
relative to the CH observer will depend on many factors. One factor is reconstruction algorithm:
CNPW and human performances with SPECT EBP images have compared poorly [6], [21].
Even with statistical reconstruction, however, more extensive ranges of parameters need to be
tested. The effects for SKE tasks should also be evaluated, as this observer has rarely been
applied for such tasks in emission imaging. Above all, as with any other human-model observer,
the use of the CNPW observer for new applications should be validated against human data.

Our method of data analysis was not a constraint on the use of the CNPW observer. We make
extensive use of the Swensson code in our LROC studies, coupled with rebinning of the
continuous rating data from the model observers. Comparison with Wilcoxon estimates of
AL from the original rating data did not find appreciable differences. Working with ROC
analysis, Metz and colleagues [16], [22] employed similar rebinning procedures as a means of
shortening the ML computation times, and found slightly reduced statistical efficiency and
increased bias in standard-error estimates as consequences [16].

V. Conclusions
The multiclass CNPW observers with DOG channels demonstrated good quantitative
agreement with the human observers for this set of LROC studies. An explicit internal-noise
model was not required for the data fit, although these model observers can be interpreted as
versions of the CH observer containing implicit internal noise. More extensive studies are
needed to test the overall applicability of the CNPW observer as a model for humans in
emission-imaging studies.
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Fig. 1.
Example study images. Down the left-hand column (a—c), a case with a lesion in the right
lung is shown in the coronal, sagittal, and transverse views. The coronal image (d) has been
thresholded for a tissue lesion, while (e) and (f) are noisy and noise-free images of a case with
a liver lesion. The stretched appearance of the phantom along the axial direction is a
consequence of the noncubic reconstruction voxels.
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Fig. 2.
Profiles of the rotationally symmetric channels applied with the CNPW observer, (a) Four
square-profile channels; (b) the three sparse-DOG channels; (c) the 10 dense-DOG channels.
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Fig. 3.
(a) The mean lesion in the coronal view as estimated from 42 pairs of tumor-present/tumor-
absent images. (b) The response from a nonsymmetric SDOG channel.
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Fig. 4.
Diagram describing the binning procedure, a) Sequence S lists the ratings for tumor-present
(pi)and tumor-absent (ai) images in ascending order. The vertical bars indicate the initial
binning defined by the consecutive runs of p’s and a’s. b) The initial binning in tabular form.
c) An iterative rebinning step decrements the number of bins by removing the one with the
fewest elements.
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Fig. 5.
The observers’ fractions found as a function of radius of correct localization Rcl. The selected
value of Rcl = 15 mm is marked by the arrows. Plot (a) summarizes the localizations for the
two observers and three display formats. Each of the plots (b)–(d) summarizes the model-
observer localizations for one display format.

Gifford et al. Page 15

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2008 April 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Comparison of model-observer and average human performances taken from Table IV. A
linear correlation coefficient r is given for each set of data. The ideal model-human relationship
is represented by the diagonal line.
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TABLE II
Comparison of Model-Observer and Human-Observer Performances (AL) With the Three Display Formats. The
Uncertainties for the Average Human Scores Account for Observer Variability and Uncertainties in the Data
Fitting

Format

Observer Coronal Sagittal Transverse

Human observer 1 0.55 ± 0.04 0.69 ± 0.04 0.67 ± 0.04
Human observer 2 0.54 ± 0.04 0.65 ± 0.04 0.68 ± 0.04
Human average 0.54 ± 0.03 0.67 ± 0.04 0.67 ± 0.03
CNPW-DDOGa 0.54 ± 0.03 0.71 ± 0.03 0.68 ± 0.03
CNPW-SDOG 0.50 ± 0.03 0.72 ± 0.03 0.68 ± 0.03
CNPW-SQ 0.50 ± 0.03 0.65 ± 0.03 0.60 ± 0.03
NPW 0.25 ± 0.03 0.58 ± 0.03 0.57 ± 0.03
CNPW-DDOGb 0.54 ± 0.04 0.72 ± 0.04 0.70 ± 0.04
CNPW-SDOG 0.52 ± 0.04 0.74 ± 0.04 0.71 ± 0.04
CNPW-SQ 0.52 ± 0.04 0.65 ± 0.04 0.61 ± 0.04
NPW 0.27 ± 0.04 0.60 ± 0.04 0.57 ± 0.04

a
full binning;

b
partial binning

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2008 April 4.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Gifford et al. Page 19

TABLE III
Wilcoxon Estimates of Model-Observer Performances (AL) With the Three Display Formats. The Uncertainties
Are Based on Resampling Trials

Format

Observer Coronal Sagittal Transverse

CNPW-DDOG 0.54 ± 0.04 0.69 ± 0.04 0.69 ± 0.04
CNPW-SDOG 0.52 ± 0.04 0.71 ± 0.04 0.68 ± 0.04
CNPW-SQ 0.52 ± 0.04 0.63 ± 0.04 0.60 ± 0.04
NPW 0.25 ± 0.04 0.57 ± 0.04 0.58 ± 0.04

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2008 April 4.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Gifford et al. Page 20

TABLE IV
Observer performance (AL) by individual organ for the three display formats

Format

Observer Organ Coronal Sagittal Transverse

Human average liver 0.34 ± 0.07 0.49 ± 0.08 0.56 ± 0.07
lungs 0.62 ± 0.07 0.71 ± 0.08 0.74 ± 0.05
tissue 0.62 ± 0.05 0.73 ± 0.04 0.68 ± 0.04

CNPW-DDOG liver 0.37 ± 0.10 0.56 ± 0.10 0.55 ± 0.10
lungs 0.62 ± 0.08 0.86 ± 0.05 0.75 ± 0.07
tissue 0.58 ± 0.06 0.70 ± 0.06 0.77 ± 0.05

CNPW-SDOG liver 0.36 ± 0.10 0.62 ± 0.10 0.60 ± 0.10
lungs 0.57 ± 0.08 0.87 ± 0.05 0.75 ± 0.07
tissue 0.57 ± 0.06 0.71 ± 0.06 0.74 ± 0.05

CNPW-SQ liver 0.42 ± 0.10 0.41 ± 0.10 0.46 ± 0.10
lungs 0.57 ± 0.08 0.80 ± 0.06 0.68 ± 0.07
tissue 0.52 ± 0.06 0.64 ± 0.06 0.64 ± 0.06

NPW liver 0.20 ± 0.08 0.60 ± 0.10 0.46 ± 0.10
lungs 0.31 ± 0.07 0.60 ± 0.08 0.57 ± 0.08
tissue 0.30 ± 0.06 0.61 ± 0.06 0.63 ± 0.06
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