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The impact of the next influenza pandemic may be mitigated by inducing immunity in individuals prior to

the start of national epidemics using a pre-pandemic vaccine targeted against current avian influenza

strains. The US Department of Health and Human Services (HHS) intends that pre-pandemic vaccines

will be allocated to states in proportion to the size of their population in predefined priority groups, i.e.

approximately pro-rata. We show that such an equitable policy is likely to be the least efficient in terms of

the number of infections averted. We demonstrate that the potential benefits could be substantial if a fully

discretionary policy is allowed, i.e. if some regions are allocated sufficient vaccines to achieve herd

immunity while other regions are allocated no vaccine. Since such an inequitable policy may be

impractical, we consider the sensitivity of an intermediate policy (in which 50% of the stockpile is allocated

on a pro-rata basis) to key transmission uncertainties. The benefits of the 50% discretionary policy are

sensitive to parameter values which cannot be known in advance. Therefore, despite substantial potential

benefits of non-pro-rata policies, our results suggest that the current HHS policy of pro-rata allocation by

state is a good compromise in terms of simplicity, robustness, equity and efficiency.
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1. INTRODUCTION
The use of a pre-pandemic vaccine against the dominant

avian influenza strain circulating is now being considered

as an option to mitigate the next influenza pandemic

(Bresson et al. 2006; Lin et al. 2006; Treanor et al. 2006).

However, it is unlikely that supply will be sufficient to

provide high coverage for most populations, including the

United States (Monto 2006; Nichol & Treanor 2006).

According to the current US Health and Human Services

(HHS) Pandemic Influenza Plan (www.hhs.gov/pande-

micflu/plan/sup6.html), each state will receive pandemic

vaccines in proportion to the size of its population in

predefined priority groups. These groups include frontline

healthcare workers, emergency service personnel and the

elderly. Because the size of priority groups scales

approximately linearly with the total population size, this

policy approximates to pro-rata allocation under which

vaccines are allocated according to the population size of

each state.

A pro-rata policy is intuitively appealing because it is

equitable and simple, i.e. states are allocated vaccines

according to population size. Thus, every individual in

principle has an equal chance of vaccination (equitable)

and the policy requires no additional epidemiological

information for implementation (simple). However, its

public health consequences have not been examined in

terms of efficiency and robustness which are also desirable

properties of any vaccine distribution policy, i.e. would
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such an allocation policy avert as many infections as

possible (efficiency) and would it perform well under a

range of as yet uncertain epidemiological scenarios

(robustness). Here we show that pro-rata or equitable

allocation may be the least efficient policy in terms of

minimizing the population infection attack rate (IAR).

Motivated by this observation, we then quantify the

tradeoff among the other three goals of equity, simplicity

and robustness for more efficient spatial allocation policies

in the distribution of pre-pandemic vaccines. Because

tradeoff among these objectives is common in control of

epidemics, the insights from this study are not only

restricted to pre-pandemic vaccinations but also appli-

cable to general problems of epidemic control.

We analyse a range of policies under which some

portion of the vaccine stockpile is distributed pro-rata

while the remaining is allocated to minimize IAR.

Following the terminology introduced in Kaplan &

Merson (2002), we call the latter portion of the stockpile

the discretionary stockpile and the associated policies

discretionary policies. Specifically, a d% discretionary

policy reserves d% of the vaccines for the discretionary

stockpile with the remaining (100Kd )% distributed pro-

rata. The associated IAR is denoted by IAR(d ). In this

study, an allocation policy is defined as a map, in the

mathematical sense, that takes the basic reproductive

number R0 and coverage c as inputs and generates a

geographical vaccine allocation aZ(a1, ., aK), where ai
is the proportion of stockpile allocated to geographical

area i. We use a deterministic meta-population model

parameterized with detailed travel data (see §2) to predict

the epidemiological consequences of alternative allocation
This journal is q 2007 The Royal Society
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Figure 1. (a) The 10 standard Federal Regions established by
Office of Management and Budget Circular A-105, ‘Standard
Federal Regions’. (b) The relationship between reduction in
IAR and coverage. Epidemic is impossible if coverage is
higher than the critical coverage c�.
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policies. A similar modelling approach has been used in

recent studies to analyse allocation policies of HIV

resources (Wilson et al. 2006). The quantity IAR(d ) is

used as the primary outcome for efficiency when

evaluating policies. The gain in efficiency provided by

discretionary policies over pro-rata can therefore be

measured by DIAR(d )ZIAR(d )KIAR(0). Values for

DIAR(d ) are given in absolute terms.
2. MATERIAL AND METHODS
We partition the continental US into the 10 Standard Federal

Regions established by the US Office of Management and

Budget (figure 1a). Our results are not significantly different

when a 4-region (defined by the Census Bureau) or 49-‘state’

(the 48 continental states plus the District of Columbia)

model is used (see figure 1 in the electronic supplementary

material). Transmissibility of the virus is characterized by

its basic reproductive number R0, defined as the average

number of secondary infections generated by a typically

infectious individual in an otherwise susceptible population

(Anderson & May 1991). We assume in the base case that

transmissibility is the same in every region with R0 ranging

from 1 to 3 (Mills et al. 2004; Ferguson et al. 2006; Germann

et al. 2006). We assume that vaccine-induced immunity has

fully developed before the pandemic reaches the vaccinated

populations and remains constant throughout the course of

the first wave of the pandemic. Parameter values and

assumptions are summarized in table 1.

(a) A meta-population SIR model

We denote the population size of region i byNi and let the total

population size beNZ
PK

iZ1 Ni whereKZ10. Let Si , Ii andRi

be the number of susceptible, infectious and removed (dead or

recovered) individuals in region i with NiZSiCIiCRi.

Epidemic dynamics in different regions are coupled by a

mixing matrixMZ{mij}, wheremij is the average proportion of

time that a resident of region i spends in region j (see electronic

supplementary material, for the construction of M). The

model without vaccination is defined by

dSi

dt
ZKSi

XK
jZ1

mijbj

PK
lZ1

mljIl

PK
lZ1

mljNl

and
dIi
dt

ZK
dSi

dt
K

Ii
DI

;

for iZ1, ., K, where DI is the mean infectious duration. The

model can be interpreted as follows. We assume homogeneous

mixing within each region. Given that a resident of region i is

present in region j at time t, which occurs with probability mij,
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infectious contacts are made with other individuals present in

region j at rate bj and the proportion of infectious individuals in

population j at time t is
PK

lZ1 mljIl =
PK

lZ1 mljNl . Since we are

interested only in final attack rates, we can omit the latent

stage. In the presence of vaccination, the model further

classifies individuals by their immune states but otherwise

follows the same dynamics (see electronic supplementary

material). We develop an algorithm to compute the final

number of infections in each region, denoted by U1, ., UK, by

solving a system of K nonlinear equations regardless of the

number of immune states (see electronic supplementary

material).

(b) Vaccine efficacy

We assume that the pre-pandemic vaccine has efficacy for

both susceptibility and infectiousness (Longini et al. 2004;

Patel et al. 2005). We use a multi-state leaky vaccine response

model that we developed in a previous study (Riley et al.

2007) to describe the distribution of reduction in suscep-

tibility given by the most potent pre-pandemic vaccine that

has been tested in clinical trials (Lin et al. 2006). We do not

assume a distribution of reduction in infectiousness because it

is not important as long as the mean reduction in

infectiousness is the same (see electronic supplementary

material for details on the vaccine response model). We

assume that vaccine efficacy for both susceptibility and

infectiousness are multiplied by m2[0, 1], which reflects the

degree of antigenic match between vaccine and pandemic

strains (mZ1 for perfect match).

(c) Optimization of vaccine allocation

Let (a1, ., aK) denote an arbitrary vaccine allocation. Given

a set of transmission parameters and the size of vaccine

stockpile V, the allocation for the d% discretionary policy is

obtained by solving the following nonlinear programme in

which the total number of infections is minimized:

minimize
XK
iZ1

Ui

subject to 1K
d

100

0
@

1
ANi

N
%ai%min

Ni

V
; 1

8<
:

9=
;;

1% i%K ;
XK
iZ1

ai Z1:

The lower-bound on (a1, ., aK) is the discretionary stock-

pile size constraint. The upper bound says that vaccines

allocated to a region cannot exceed its population size or the

stockpile size.
3. RESULTS
(a) Pro-rata may be the least efficient policy

We first give a simple example to illustrate why pro-rata may

be inefficient by failing to minimize the population IAR.

When we present results from the US 10-region model later

in this section, we will use this example again to explain the

structure of the discretionary policies. We define the

function r(c) to be the reduction in IAR achieved by vaccine

coverage level c, which is defined as the proportion of

population vaccinated. Owing to herd immunity, the

marginal number of infections averted per additional

individual vaccinated increases as coverage rises until

control is achieved (see electronic supplementary material

for justification of this claim). That is, as c increases, the
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Figure 2. DIAR(100) as a function of basic reproductive
number R0 and coverage c for the 10-region model. The black
contour marks the boundary below which DIAR(100)%6%.

Table 1. Parameter values and assumptions. Local transmissibility of region i is given by biZ R̂0 1C3ð Þh=DI, where R̂0is the basic
reproductive number assumed when constructing the discretionary policies.

parameter base case assumptions sensitivity sources

fzS
i g, reduction in susceptibility after
vaccination, and {pi}, the

probability distribution of fzS
i g

vaccine efficacy for suscep-
tibility VESZ0.69 when
antigenic match is perfect

driven by m: zS
i )m$zS

i
Riley et al. (2007)

VEI, vaccine efficacy for infectiousness VEIZ0.8 when antigenic
match is perfect

driven by m: VEI)m$VEI Longini et al. (2004); Patel
et al. (2005)

3, error in estimate of transmissibility no error, i.e. 3Z0 [K0.5, 0.5] Mills et al. (2004); Viboud
et al. (2006)

hi , relative hazard for transmissibility
in region i

transmissibility is the same for
all regions, i.e. hiZ1 for all i

[0.5, 1.5] Mills et al. (2004); Viboud
et al. (2006)

d, relative level of inter-regional
mixing

inter-regional mixing is at
normal level; dZ1 by
definition

[0, 2]
mij)dmij ; isj

m, antigenic match between vaccine
strain and pandemic strain

imperfect match with mZ0.7 [0, 1]
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gradient of r(c) increases (i.e. r(c) is convex) and r(c)

becomes flat only after the critical coverage level c� has been

achieved (figure 1b). (A function is convex if its gradient is

increasing.) Suppose K populations of sizes N1, ., NK are

isolated from each other but have the same disease dynamics

(i.e. r(c) is the same for all populations). Given V doses of

vaccines and an allocation aZ(a1, ., aK), where ai is

the proportion of the overall stockpile allocated to

population i, the total number of infections averted is

T ðaÞZN1rða1V =N1ÞC/CNKrðaKV =NK Þ. Throughout

this paper, we consider only ‘sensible’ allocations that do

not prescribe coverage higher than the critical level c� in any

population; coverage beyond c� has no benefit. We denote

the pro-rata allocation by pZ ðN1=
PK

iZ1 Ni ;.;NK =
PK

iZ1

NiÞ and note thatpminimizesT becauseT is convex andp is

the unique stationary point of T (see electronic supple-

mentary material). Therefore, in terms of minimizing IAR,

pro-rata is the least efficient policy (among all sensible

allocations) in this hypothetical example.

In the remainder of this section, we present results from

the US 10-region model.
(b) The 100% discretionary policy

We first compare pro-rata with the 100% discretionary

policy. Figure 2 shows that as R0 varies between 1 and 3,

DIAR(100) can be as large as 17.8% but remains below

6% when R0%2, which is suggested as the most probable

range in recent studies of influenza pandemic mitigation

(Mills et al. 2004; Ferguson et al. 2006; Germann et al.

2006). At low coverage, DIAR(100) is close to zero

because allocation policy makes no difference when only a

small amount of vaccines is available. At high enough

coverage, DIAR(100) also approaches zero because

control is achieved under both policies. DIAR(100)

becomes non-negligible with higher R0 values. If there is

no inter-regional mixing, DIAR(100) shows similar

patterns but can be as large as 26.6% (see figure 2 in

the electronic supplementary material). In general,

DIAR(100) is inversely related to the degree of inter-

regional mixing. Since the level of inter-regional mixing

will probably be lower than normal during a pandemic,

our base case estimates of gain in efficiency will tend to

be conservative.
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Figure 3 shows that the 100% discretionary policy

typically achieves a lower IAR by sacrificing some regions

to which no or relatively few vaccines are allocated, i.e.

concentration of coverage and absence of equity. Further-

more, the policy is ‘choppy’ with many discontinuities as

R0 and c change, i.e. the associated allocation may exhibit

sudden swings with small changes in R0 and c. For

example, with an R0 of 2.4, the allocation to Region 8 falls

from 100 to 0% as c increases from 2 to 2.1%. All

discretionary policies exhibit concentration of coverage

and choppiness, the degree of which scale with the

discretionary stockpile size. These properties are the

consequence of the convex relation between coverage

and reduction in IAR (figure 1b). To see this, consider the

simple example in figure 4, which is a special case of the

example given in the beginning of this section where two

non-interacting populations with sizes N1ON2 have the

same transmission dynamics (see electronic supple-

mentary material for mathematical details). Because the

number of infections averted is a convex function of

allocation, it is never optimal (in terms of minimizing IAR)

to split the stockpile between the two populations unless

control has been achieved in at least one of them. The

optimal policy can therefore be identified by comparing
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Figure 4. (a) The most efficient allocation policy exhibits
concentration of coverage and choppiness. Populations 1
and 2 are non-interacting with sizes N1ON2. In both
populations, reduction in IAR is a convex function of
coverage unless critical coverage c� is reached (figure 1b).
(b) For Population i, the number of infections is Ii without
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only two policies: (i) vaccinate Population 1 then Popu-

lation 2 and (ii) vaccinate Population 2 then Population 1.

It is this immediate consequence of local herd-immunity

effects that accounts for concentration of coverage. Figure 4

shows that there is a switching point s� such that it is

optimal to follow policy (i) if the stockpile size exceeds s�

and follow policy (ii) otherwise. As a result, at the switching

point s�, the optimal allocation to Population 2 drops

discontinuously from 100 to 0%. This accounts for

choppiness. In our meta-population model, inter-regional

mixing is low because individuals spend more than 97% of

their time in their home regions on average. This level of

mixing is low enough such that concentration of coverage

and choppiness are preserved in the 100% discretionary

policy as shown in figure 3. Concentration of coverage has

also been observed in previous studies that optimize vaccine

allocations to different age groups (Longini et al. 1978;

Patel et al. 2005). In those studies, however, mixing among

age groups is high and concentration of coverage is a result

of targeting high-prevalence groups (e.g. school children)

or high-mortality groups (e.g. elderly). Here in our spatial

model, inter-population mixing is low and concentration of

coverage arises owing to different population sizes and the

convex relation between reduction in IAR and coverage.
vaccination and n�i Zc�Ni doses of vaccines are needed to
achieve control. The optimal policy is to give vaccination
priority to the smaller population (i.e. Population 2 first) if
stockpile size is less than s� and to the larger population (i.e.
Population 1 first) otherwise. Note that pro-rata is the least
efficient policy.
(c) Gain in efficiency as a function of discretionary

stockpile size

Consider the quantity r(d )ZDIAR(d )/DIAR(100) which

represents the proportion of maximal gain in efficiency

(given by the 100% discretionary policy) that can be

attained by the d% discretionary policy. The relation

between discretionary stockpile size d and r(d ) is a critical

component of the equity–efficiency tradeoff. If the gain in

efficiency is close to maximal (i.e. DIAR(100)) with a

relatively small discretionary stockpile size (say 30%), an

inequitable allocation, which is a necessary condition

under discretionary policies, may be justifiable (Kaplan &

Merson 2002). This corresponds to the d–r(d ) relation
Proc. R. Soc. B (2007)
being concave (i.e. the gradient of r(d ) decreases as d

increases). We consider only cases whereDIAR(100)R2%.

Figure 5a shows that the relation is roughly linear for large

values of DIAR(100), which means that if d% of the

vaccines is reserved for the discretionary stockpile, then

DIAR(d ) is approximately d% of that shown in figure 2.

As DIAR(100) drops below 6% (which corresponds to

R0%2), the d–r(d ) relation becomes mostly convex. Thus,
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VEZ1Kð1KVESÞð1KVEIÞ is the overall vaccine efficacy. Therefore, given an allocation (a1, ., aK), the degree of overshoot
can be accurately measured by ð1=cNÞ

PK
iZ1 maxð0;aicNKc�i NiÞ which is the proportion of stockpile misallocated due to

overshooting when inter-regional mixing is zero. DIAR(50) drops sharply as the degree of overshoot increases. Each point of
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DIAR(50) drops far below zero when there is overshoot and pro-rata IAR is below 50%.
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the efficiency gain of discretionary policies described here is

minimal unless equity is substantially compromised.
(d) The risk associated with efficiency

maximization

We have shown that regardless of the transmission

scenario, the 100% discretionary policy prescribes highly

inequitable allocations and is thus likely to be impractical.

As a result, we switch our focus to the 50% discretionary

policy, which represents a more equitable allocation

policy, to test the robustness of reduction in IAR provided

by discretionary policies (constructed using the base case

parameter values in table 1). Qualitative results obtained

from the sensitivity analyses below hold for all discre-

tionary policies.

First, we conduct univariate sensitivity analyses on the

50% discretionary policy for each of the following

parameters: (i) relative level of inter-regional mixing d,

(ii) antigenic match m, and (iii) error in estimate of

transmissibility 3. Graphical illustrations of these sensi-

tivity analyses can be found in figure 3 in the electronic

supplementary material. DIAR(50) increases as d

decreases because concentration of coverage is more

effective when regions are isolated from each other

(figure 3a in the electronic supplementary material). As

antigenic match m deviates from the base case value of

70%, DIAR(50) drops (figure 3b in the electronic

supplementary material). DIAR(50) can become negative

when m is near 1 (i.e. antigenic match is underestimated)

or when 3 is below zero (i.e. transmissibility is over-

estimated; figure 3b,c in the electronic supplementary

material). The effect of the former condition is much

weaker because m affects all discretionary policies while 3

has no effect on pro-rata. Both conditions translate into
Proc. R. Soc. B (2007)
underestimating vaccine effectiveness in reducing trans-

mission, thus overestimating critical coverage. In these

cases, the strategy of concentrating coverage into a few

regions, which is the cornerstone of discretionary policies,

performs poorly when the prescribed coverage is higher

than the critical levels in these regions. Coverage beyond

the critical level is misallocated because it generates very

little or no reduction in IAR. We term this situation

overshoot. Pro-rata has a smaller risk of overshoot because

it has no dependence on transmissibility and it diversifies

coverage among regions. Underestimating transmissibility

(3O0) has little effect on DIAR(50) in the range of 3

considered (G50%). This suggests that when construct-

ing the discretionary policies, assuming a lower transmis-

sibility (within the range of equally plausible estimates)

may alleviate the risk of overshoot and thereby enhance

robustness. Finally, we perform a multivariate sensitivity

analysis on d, m, 3, as well as the relative hazards for local

transmissibility hi , iZ1, ., K (table 1). Together, these

parametric variations represent model uncertainties

that cannot be accurately predicted until the pandemic

strikes. These include heterogeneities in local transmissi-

bility and efficacies of mitigation interventions besides pre-

pandemic vaccination. In the presence of these parametric

variations, the resultant DIAR(50) is mostly smaller (up to

28%) than the base case DIAR(50) (figure 3d in the

electronic supplementary material), which is the reduction

in IAR expected from the 50% discretionary policy if all

base case assumptions are satisfied. Figure 4b shows that

the 50% discretionary policy can perform significantly

worse than pro-rata (by more than 5% in IAR) when

(i) there is overshoot and (ii) the pro-rata IAR is low

(DIAR(0)%50%). The latter condition corresponds to an

intrinsically weak pandemic or a very effective mitigation
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programme. Such a scenario is unlikely when pre-

pandemic vaccination is the only intervention but

becomes more plausible in the presence of other

interventions. In general, the larger the size of the

discretionary stockpile, the higher the risk of overshoot

and the associated magnitude of underperformance

(relative to pro-rata).
4. DISCUSSION
Other studies have considered targeted allocation of

influenza vaccine based on non-spatial population hetero-

geneities (Longini et al. 1978; Patel et al. 2005). Generally,

our results are consistent with these other studies in which

we find that policies other than pro-rata are potentially

more efficient. However, for the spatial sub-populations of

the United States, although pro-rata may be the least

efficient policy, the work presented here suggests that it

does strike an attractive balance between equity, efficiency,

robustness and ease of implementation. Because the basic

reproductive number R0 for pandemic influenza is likely to

be less than 2, our estimated gain in efficiency from

discretionary policies is not large enough (reduction in

IAR%6%) to justify the associated inequity. Moreover,

this gain in efficiency can be severely attenuated when the

assumptions used to construct the discretionary policies

are violated (figure 3d in the electronic supplementary

material). In some cases, significant overshoot occurs and

renders discretionary policies less efficient than pro-rata

(figure 5b). Such cases become more likely when other

mitigation interventions are present (see below). Finally,

while discretionary policies require detailed knowledge of

the epidemiology of pandemic influenza (a transmission

model and parameter estimates), pro-rata has no such

requirement and is therefore much more straightforward

to implement. These conclusions are robust against a

range of model assumptions and structures. Therefore,

despite substantial potential benefits of non-pro-rata

policies, our results suggest that the current HHS policy

of pro-rata allocation by state is a good compromise in

terms of equity, efficiency, simplicity and robustness.

The validity of our results, as with all similar studies, is

somewhat limited by the underlying assumptions of our

model. We have used a deterministic model to evaluate

vaccine allocation policies. Although stochastic effects

may be important when control is nearly achieved in one

or more regions, we expect that a stochastic model will

lead to similar conclusions because the population sizes

are large and parameter uncertainties have a much larger

effect. We have assumed in our base case that transmis-

sibility is the same in all regions. If transmissibility differs

among regions, the relation between reduction in IAR and

coverage (figure 1b) will also differ (e.g. different c�) but

the general shape (convexity) will remain unchanged for

all regions. Consequently, discretionary policies will still

exhibit concentration of coverage and choppiness, and

their efficiency remains susceptible to overshoot. The gain

in efficiency over pro-rata will require further analysis.

However, it is not yet clear how a systematic difference in

local–regional transmissibility, if it exists, can be estimated

to support such an analysis: estimation of R0 for the 1918

pandemic influenza strain in 45 US cities showed no

correlation between R0 and various city characteristics
Proc. R. Soc. B (2007)
(including population size, latitude and longitude; Mills

et al. 2004).

Here, we have considered the minimization of attack

rate to be the main objective of pre-pandemic vaccination

policies. There are a number of alternative approaches

that could be taken. One would be to minimize the post-

vaccination reproductive number (Ball & Lyne 2002). In

the electronic supplementary material, we show that the

reproductive number under pro-rata is near optimal

(within 15%) under this objective. We also show that

allocations which minimize the reproductive number do

not necessarily minimize the attack rate, and vice versa,

because the reproductive number describes the early

dynamics of the epidemic while the attack rate is a

summary outcome of the entire epidemic. Minimization of

the reproductive number may be suitable if the objective is

to minimize the initial epidemic growth rate (instead of the

eventual total number of infections averted) which may

help maintain healthcare services during the early phase of

the pandemic. A second alternative policy goal might be to

minimize the number of deaths. Because the case fatality

ratio will probably be age-specific, this objective would

require detailed knowledge of the age-specific mortality

rate for the novel influenza strain, which was very different

during the different pandemics of the twentieth century.

The resulting formulation is similar to cases where

geographical vaccine allocation is further optimized by

targeting high-risk groups or high-prevalence groups

(Patel et al. 2005; Bansal et al. 2006). In these cases, the

relation between reduction in IAR r(c) and coverage c will

take a more complicated form than that shown in

figure 1b. For instance, if there are two risk groups in

each population and vaccination priority is given to the

group that has higher infectiousness (e.g. children), the

c–r(c) relation comprises two convex regions (see figure 4

in the electronic supplementary material). Suppose all

high-risk groups must be vaccinated (Phase 1) before any

of the low-risk groups can be vaccinated (Phase 2) within

each of these two phases, the discretionary policies will

have the same structure shown here because convexity is

preserved. However, if some low-risk groups can be

vaccinated before all high-risk groups have been fully

vaccinated, the structure of the discretionary policies will

be more complex and would require further investigation.

Recent studies of pandemic influenza mitigation have

come to the consensus that an effective programme will

comprise multiple targeted, layered interventions includ-

ing quarantine, isolation, vaccination and antiviral pro-

phylaxis (Ferguson et al. 2006; Germann et al. 2006; Wu

et al. 2006). Our conclusions will probably remain valid in

the context of multi-component mitigation as long as the

relation between reduction in IAR and coverage takes the

form as shown in figure 1b. For instance, the presence of

other interventions is roughly equivalent to lower

transmissibility (lower R0), which in turn means a smaller

DIAR(100) (figure 2). In this case, the relationship

between gain in efficiency and discretionary stockpile

size that we describe remains applicable because we have

characterized how this relation depends on DIAR(100)

(figure 5a): DIAR(d ) will probably be lower when other

interventions are in place and the tradeoff between

discretionary stockpile size and gain in efficiency is

worsened. This further strengthens our conclusion that
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pro-rata is the most appropriate policy for allocating pre-

pandemic vaccines to different geographical areas.

Although we have focused on evaluating pre-pandemic

influenza vaccine allocation policies throughout this

paper, our major results are applicable in a wider

epidemiological context. Specifically, we have shown

that for a meta-population with different population

sizes and low inter-population mixing: (i) the convex

relation between IAR reduction and vaccination coverage

result in concentration of coverage and choppiness for

policies that minimizes attack rate, (ii) the performance

of these policies are susceptible to overshoot and

therefore very sensitive to estimates of key epidemiologi-

cal parameters, and (iii) minimization of attack rate is

different from minimization of reproductive number both

in terms of the underlying policies and the associated

outcomes.
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