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Abstract. For most known nuclear domains (ND), 
specific functions have been identified. In this report 
we used murine mAbs and human autoantibodies to 
investigate precisely circumscribed structures 0.2-0.3 
#m in diameter which appear as "nuclear dots" dis- 
tributed throughout the nucleoplasm. Nuclear dots are 
metabolically stable and resistant to nuclease digestion 
and salt extraction. The localization of nuclear dots is 
separate from kinetochores, centromeres, sites of 
mRNA processing and tRNA synthesis, nuclear bod- 
ies, and chromosomes. The nuclear dots, therefore, 
represent a novel ND. Nuclear dots break down as 
cells enter metaphase and reassemble at telophase. In 
interphase cells, nuclear dots are frequently "paired," 

and some are visible as "doublets" when stained with 
one particular antiserum. The number of dot doublets 
increased when quiescent cells were stimulated with 
serum although the total number of dots did not 
change substantially. One of the antigens was identi- 
fied as a protein with a molecular mass of ,x,55 kD 
showing three charge isomers in the pI range of 7.4 to 
7.7. Autoantibodies affinity purified from this nuclear 
dot protein (NDP-55) show nuclear dots exclusively. 
Nuclear dot-negative rat liver parenchymal cells be- 
came positive after chemical hepatectomy, suggesting 
involvement of the NDP-55 in the proliferative state 
of cells. 

M 
ORPHOLOGICAL studies have shown the nucleus 
to be composed of structural domains involved in 
various aspects of the major functions of the nu- 

cleus, transcription and replication (Bouteille et al., 1974; 
Hancock and Boulikas, 1982; Ringertz et al., 1986; New- 
port and Forbes, 1987; Fu and Maniatis, 1990; Spector, 
1990). Different nuclear domains (ND) 1 have been identi- 
fied from a structural and functional perspective. The nu- 
clear membrane and the nucleolus, for example, represent 
nuclear landmarks at a gross morphological level. The struc- 
ture and function of other domains are less well under- 
stood, partly because functional compartmentalization, with 
the exception of the nucleolus, is not as apparent within the 
nucleus as it is in the cytoplasm. However, the interphase 
nucleus appears to be organized into domains occupied by 
individual chromosomes (Agard and Sedat, 1983; Malmue- 
lides, 1985) and RNP complexes with associated RNA-pro- 
cessing activities (Lerner et al., 1981; Reuter et al., 1984; 
Nyman et al., 1986; Ringertz et al., 1986; Gall and Callan, 
1989; Pifiol-Roma et ai., 1989). Less defined border regions 
of perichromatin and perinucleolar chromatin have been de- 
scribed as well as fibrillar nucleoplasmic structures of uncer- 
tain function called nuclear bodies (Bouteille et al., 1974; 
LeGoascogne and Baulieu, 1977; Vagner-Capodano et al., 
1982; Chaly et al., 1983a,b). Recent studies have described 
nuclear bodies as a heterogeneous group of nuclear inclu- 
sions 0.2-1.2 #m in diameter, which appear as fibrous gran- 

1. Abbreviations used in this paper: KM, Kern matrix; ND, nuclear domain; 
NDP, nuclear dot protein. 

ules encapsulated by a proteinaceous shell present only in ac- 
tivated cells (Padykula et al., 1981; Fitzgerald and Padykula, 
1983; Brasch et al., 1989; Chaly et al., 1989). 

Some of the known details of nuclear substructure and 
morphology were obtained using immunological methods. 
For instance, immunological probes were used to determine 
that the nuclear envelope was composed of lamins that un- 
dergo cell cycle-dependent phosphorylation (Gerace and 
Blobel, 1980), and that the nucleolus has fibrillogranular 
and "fibrillar center" components containing fibrillarin and 
RNA polymerase I, respectively (Scheer and Rose, 1984; 
Bouvier et al., 1985; Reimer et al., 1988). Antibody stain- 
ing of mammalian ceils was used to identify centers of 
mRNA processing (RNP antigen) and tRNA synthesis (La 
antigen), which showed a coarsely speckled nuclear im- 
munofluorescence pattern (Sharp et al., 1976; Billings et al., 
1982; Rinke and Steitz, 1982; Petersson et al., 1984; 
Stefano, 1984; Habets et al., 1985; Nyman et al., 1986; 
Carmo-Fonseca et al,, 1989; Fu and Maniatis, 1990). The 
nucleolar (rRNA), RNP (mRNA), and La (tRNA) domains 
relate to the transcriptional duties of RNA polymerase I, II, 
and l/I, respectively. 

Similarly, sites of DNA replication were detected using 
antibodies to nucleotides incorporated into newly synthe- 
sized chromatin (Nakayasu and Berezney, 1989; Mills et al., 
1989) or with antibodies to proteins involved in the replica- 
tion process such as proliferating cell nuclear antigen (Bravo 
and MacDonald-Bravo, 1987). Using these methods, several 
hundred discrete granular sites of DNA replication were 
identified as cells traverse the S phase. 
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The coarsely speckled nuclear RNP immunofluorescence 
patterns differ recognizably from the staining pattern of cen- 
tromeric antigens which detect individual centromeres, or 
kinetochores in interphase nuclei. These sites are often 
paired, and match the number of chromosomes (Brenner et 
al., 1981; Brinkley et al., 1984). The kinetochore domains 
recognized by antibodies to three kinetochore polypeptides 
(Earnshaw and Rothfield, 1985) are present in both inter- 
phase and mitotic cells (Earnshaw et al., 1987; Kingwell 
and Rattner, 1987; Palmer et al., 1987), although the kineto- 
chore is functional only during mitosis. Telomeres, present 
at the natural ends of eukaryotic chromosomes, contain a re- 
iterated GC-rich terminal nucleotide sequence and may have 
terminal transferase activity (Gottschling and Zakian, 1986; 
Cech, 1988; Morin, 1989). The telomeric domain has been 
shown on each human chromosome through in vivo hybrid- 
ization with a complimentary biotinylated oligonucleotide 
probe (Moyzis et al., 1988). Cytologically, telomeres are 
positioned at the nuclear envelope in interphase ceils and are 
present in prophase cells in pairs corresponding to telomeric 
sequences on sister chromatids (Blackburn and Szostak, 
1984). 

In this study, the immunocytochemicai and immunochem- 
ical reactivities of human autoantibodies showing a discrete 
punctate nuclear dot pattern were investigated. We com- 
pared the distribution patterns between nuclear dot antigens 
and several of the known nuclear components described 
above to determine if protein immnnofluorescence patterns 
overlap, and thus belong to the same functional domain. Our 
studies were facilitated by using two mAbs showing the nu- 
clear dot pattern and by using other specific autoantibodies 
and mAbs to label known NDs as reference points through- 
out the nucleus. 

Materials and Methods 

Antibodies 
Over 1,700 different human antoimmune sera were screened by im- 
munofluorescence microscopy for autoantibedies that recognized a nuclear 
dot pattern. Several sera were selected for further studies, specifically, se- 
rum 455 (lupoid carcinoma), and serum 1157 (primary biliary cirrhosis). 
Additional autoantibodies are present in these sera showing centriolar (se- 
rum 455) and nuclear rim, centriolar, and mitochondrial (serum 1157) 
staining patterns. Antoantibodies present in serum 455 have been partially 
characterized (Freundlic'h et al., 1988). Two mAbs were used that recog- 
nized nuclear dot patterns similar to the autoantibodies. One mAb 1150, an 
IgG, was derived from a human lymphocyte antigen; the other mAb 138, 
an IgM, was generated from a/~-galactosidase fusion protein selected by 
screening a human eDNA expression library with autoantibodies. Antibod- 
ies from various sources were used to determine any coiocalization of 
known ND and nuclear dots, including autoantibodies recognizing 
CENP-A, B, and C polypeptides, an mAb recognizing nucleolar fibrillarin, 
an mAb and autoantibodies recognizing RNP components, and an mAb 
recognizing the La antigen. Antisera were titered by sequential dilution to 
a useful range of 1:500 to 1:2,000 before use. 

Cell Culture 
Stock cultures of HEp2 (human epidermoid carcinoma, larynx), WI38 (hu- 
man diploid, lung), 3T3 (Bnib/c mouse, fibroblast), Indian muntjac (fibro- 
blast, skin), and explanted chicken embryo fibroblast cells were maintained 
in MEM supplemented with 10% (vol/vol) FCS. MCF-7 (human adenocar- 
cinoma, breast) and MDA-MD231 (human adenocarcinoma, breast) cells 
were maintained in MEM supplemented with non-essentiai amino acids, 
sodium pyruvate, and 10% (vol/vol) FCS. All cells were grown in a hu- 
midified atmosphere of 5% COz and 95% air. In certain experiments, 

0.25-25 ~g/mi cycloheximide, 15 t~g/mi puromyein, or 2-25 ttg/mi ~x-ama- 
nitin were added to growing cultures of WI38 or HEp2 cells for varying 
lengths of time to inhibit protein or RNA synthesis, respectively, as de- 
scribed by Jacob (1973). 

WI38 cells were seeded at low density (1 × 104 cellsdcm 2) onto sterile 
12-ram glass coverslips placed in 24-well plates (Falcon Labware, Oxnard, 
CA). After 2 d the cells were rinsed three times with serum-frec medium 
and were then deprived of serum for 8 d. We replenished the serum of the 
quiescent cells according to a staggered time series. Under these conditions 
DNA synthesis began 15-18 h after the addition of serum (Phillips and 
Cristofalo, 1981). 

Cryofixation of Tissue 
Sections of liver from male Wistar rats were excised, immersed immedi- 
ately in OCT compound (no. 4583; Tissue-TEK, Miles Laboratories, Inc., 
Elkhardt, 1L), and frozen in liquid nitrogen for cryosectioning. In certain 
experiments male rats weighing ,~300 g received a single intrngastric dose 
of CCh at 0.25 mi/100 g body wt 48 h before killin~ tO induce liver 
regeneration (Smuckier et al., 1976; Touruier et al., 1988). The CCh was 
mixed with an equal volume of eom oil before garage. Control animals re- 
ceived an equivalent volume of corn oil. Water was supplied ad lib. 

Immunofluorescence Microscopy 
Nuclear antigen localization was determined in cultured cells grown on 
glass coversfips or tissue sections deposited onto glass coverslips after cells 
were fixed for 5 min on ice with freshly prepared 1% (wt/vol) paraformalde- 
hyde in PBS, pH 7.4. After three washes with PBS, cells were permeabilized 
for 20 rain on ice with 0.2% (~ml/vol) Triton X-100 (Sigma Chemical Co., 
St. Louis, MO) in PBS. Permeabilized cells were allowed to react with ti- 
tered autoimmune sera or mAb diluted in PBS for 1 h at room temperature. 
Avidin-fluoreseein or avidin-Texas Red were complexed with primary anti- 
bodies through biotinylated secondary antibodies (Vector Laboratories, 
Burlingame, CA). Goat anti-human IgG conjugated with fluorescein was 
used in double label immunofluorescence experiments. Cells were stained 
with 0.5 tLg/ml bis-benzimide (Hoechst 33258; American Hoechst, San 
Diego, CA) in PBS to visualize DNA before mounting using Fluoromount 
G (Fisher Scientific, Springfield, NJ). Fluorescence images were recorded 
using a Nikon Optiphot with a Plan 100× objective. Blue excitation for 
fluorescein, green excitation for Texas Red, and violet excitation for bis- 
benzimide were used. P3200 black-and-white print film or EES P800/1600 
color reversal film (Eastman Kodak Co., Rochester, NY) were used for 
photography. 

In Situ Cell Fractionation 
HEp2 cells grown on glass coverslips were extracted under varying condi- 
tions or digested with enzymes to determine biochemical properties of the 
nuclear antigens and to develop a strategy for the enrichment of nuclear pro- 
teins for immunohlotting. In sire cell fractionation was used because im- 
munofluorescence was the only assay for nuclear dots. The method of 
Staufenbiel and Deppert (1984) was modified resulting in a "nuclear matrix" 
preparation devoid of DNA, RNA, and soluble nuclear proteins. Briefly, 
cells were washed three times at 4°C for 15 rain with Kern matrix (KM) 
buffer (10 mM MES, pH 6.2, 10 mM NaCI, 1.5 mid MgCI2, 0.5 t~M 
PMSF, 10% (vol/vol) glycerol) to affix the cells to glass coverslips. No other 
fixation was used. All reactions were subsequent to this pretreatment. The 
immunofluorescence assay was used after each step to assess the effects of 
treatments on nuclear dots, and other nuclear components such as RNP, his- 
tones, kinetochores, and nucleolar antigens. After pretreatment, cells were 
washed twice (3 and 27 rain) with KM buffer containin~ 1% (vol/vol) NP-40 
at 4"C, with gentle shaking. Washes with KM buffer as before to remove 
detergent preceded digestions with nucleases. Nuclease digestions O0 rain 
at 25"C) were carried out in 24-well plates (Falcon Labwaro) (2 ml vol) 
using RNase A (50/~g/mi), DNase I (0.2/~g/ml), and micrococcal nucleas¢ 
(1.0 ~g/rnl) (Gibco Bethesda Research Laboratories, Gaithersburg, MD). 
After nuclease digestions, cells were washed three times with KM buffer 
containing 2.0 M NaC1 at 40C for 15 rain per wash with gentle shaking, 
followed by three washes with KM buffer as before. 

Protein Analysis 
Preparations of residual nuclear proteins enriched for the nuclear dot anti- 
gen were collected by washing flasks with 5 ml of PBS buffer containing 
0.1% (wt/vol) SDS and 0.5/xM PMSF, then dialyzed exhaustively against 
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Figure 1. The relationship between auto- 
antibodies in serum 455, serum 1157, and 
mAb 1150 is shown by single and double 
exposures of HEp2 cells after double-im- 
munofluorescenee labeling with FITC or 
Texas Red conjugated antibodies. In A and 
C, the staining patterns of FITC-labeled 
autoantibodies in serum 455 and Texas 
Red-labeled mAb 1150 are shown as single 
exposures, respectively. In B, a double ex- 
posure of these two staining patterns shows 
that the nuclear dots overlap precisely. Ad- 
ditional autoantibodies in serum 455 stain 
the centrioles which are marked with ar- 
rowbeads. In E and G, the staining patterns 
of FITC-labeled autoantibodies in serum 
1157 and Texas Red-labeled mAb 1150 are 
shown as single exposures, respectively. 
Autoantibodies in serum 1157 stain several 
doublet dots (2 contiguous dots). In F,, a 
double exposure of these two staining pat- 
terns shows that the mAb 1150 recognizes 
only one of the two nuclear dots which con- 
stitute the doublet (arrows in F and G). In 
D and H, a diagram of the nucleus shows the 
approximate number and spatial distribu- 
tion of these NDs. In D the schematic stain- 
ing pattern of serum 455 or mAb 1150 is 
shown. These structures vary in size and 
frequently appear as pairs. In H, the sche- 
matic staining pattern of serum 1157 is 
shown. Bar, 5 t~m. 

0.I M ammonium carbonate containing 0.01% (wt/vol) SDS and 0.5 ~M 
PMSF, and lyophilized. Proteins separated on 10% SDS-polyacrylamidc 
gels (I.,a~mmll, 1970) were transferred to 0.22-/an nitrocellulose membrane 
(Towbin et al., 1979). Biotinylated molecular weight markers (Bio-Rad Di- 

agnostics, Richmond, CA) were coelectrophoresed for size determinations. 
Nitrocellulose sheets were cut into parallel strips before probing with au- 
toimmune sera or mAbs. Horseradish peroxidase (Vectastain ABC kit; Vec- 
tor Labs) was used to visualize the immune complex. 
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Table I. Frequency of Nuclear Dots in Proliferating Human 
Cells in Vitro 

Cells Serum n Dots + SD Range 

HEp2 455 30 12.2 + 3.2 7-21 
1157 30 14.5 + 3.5 6-28 

79 30 57.0 + 8.4 37-85 
WI38 455 40 10.1 + 4.2 4--24 

1157 40 12.9 5:3.0 0-32 
Fibroblast 455 50 26.4 :t: 4.1 6-40 
Keratinocyte 455 50 8.5 + 2.9 4-17 
Melanocyte 455 50 14.9 -1- 4.4 6-23 
MCF-7 ( -E2)  455 100 14.6 + 4.4 4-40 
MCF-7 (+E2) 455 100 15.7 + 4.2 6-35 
MDA-MB-231 ( -E2)  455 100 12.8 ± 4.5 4-40 
MDA-MB-231 (+E2) 455 100 12.4 + 4.0 7-33 

Serum 455 stains single nuclear dots; serum 1157 stains the same dots but in 
addition a variable number of dot doublets; serum 79 stains the kinetochore of 
each chromosome. The hormone-sensitive MCF-7 and hormone-insensitive 
MDA-MB-231 call lines were stained with serum 455 after 48 h of growth in 
the presence and absence of 17-hydroxy-fl-estrediol (E2). 

Two-dimensionat electrophoresis of residual nuclear proteins was per- 
formed according to the method of O'Farrell (1975). Both equilibrium and 
nonequilibrium buffer systems were used to determine isoelectric points. 
Proteins separated in ampholines ranging from pH 8 to pH 2 followed by 
10% SDS-PAGE, were then transferred to nitrocellulose for immunoblot- 
flag. pH gradients were determined by measurements of gel slices and by 
the position of proteins with known isoelectric points (Dngenats et al., 
1984). In other experiments, the apparent migration of the antigen was de- 
termined under reducing and non_reducing sample buffer conditions using 
diagonal electrophoresis (Mad et at., 1984). 

Affinity purification of antibodies against a 55-kD antigen was performed 
according to the method of Smith and Fisher (1984). As a control, immuno- 
globulin was extracted from an area of the same nitrocellulose sheet that 
showed no specific band. 

Resul ts  

We have observed that autoantibodies in selected human au- 
toimmune sera show a discrete punctate nuclear dot im- 
munofluorescence pattern in proliferating cells. Autoanti- 

bodies in serum 455 (Fig. 1 A) recognize 7-21 single dots 
per nucleus in HEp2 ceils with an average value of 12.2 + 
3.2. These autoantibodies label the same structure as the 
mAb 1150 as shown by double labeling (Fig. 1, A-C). Au- 
toantibodies in serum 1157 (Fig. 1 E) recognize 6-28 dots 
per nucleus in HEp2 cells with an average value of 14.5 + 
3.5. Of these dots, 0-6 are present per cell as doublets (2 con- 
tiguous dots). Only one of these doublet dots is recognized 
by the mAbs (Fig. 1, E-G), indicating a defined subpopula- 
tion of nuclear dots without the major nuclear dot antigen. 
The doublet dots are often unequal in size. A schematic of 
these staining patterns is shown in Fig. 1, D and H, respec- 
tively. Nuclear dots were found in human, monkey, mouse, 
rat, Indian muntjac, frog, and chicken cells. Table I shows 
the number of nuclear dots recognized in several human cell 
lines differing in morphology, ploidy, origin (tumor-derived 
or primary explant) and hormone sensitivity. When com- 
pared with kinetochores (serum 79), a much lower number 
of nuclear dots was counted in cells stained with antibodies 
recognizing the nuclear dot pattern. The wide numerical dis- 
tribution of dots per cell in exponentially growing cells may 
be due to cell cycle variation. 

Serum-deprived WI38 cells, arrested in Go-phase and 
stained with serum 455 had the same large range of nuclear 
dots between individual cells. After refeeding (i.e., after the 
reinitiation of the cell cycle; Phillips and Cristofalo, 1981), 
no significant change in the number of dots at hours 0, 6, 18, 
or 24 after serum replenishment was observed. However, 
changes in the immunofluorescence pattern of cells stained 
with serum 1157 were noted. In serum deprived cells, only 
0-5 (1.2 + 1.2) double dots per cell were counted (Fig. 2 A), 
whereas after 18 h 0-9 double dots (3.2 + 1.8) were counted 
per nucleus (Fig. 2 B). The change in the appearance of cells 
stained with serum 1157 from mostly single dots in the 0-h 
control to single and double nuclear dot staining pattern 18 h 
after serum stimulation is significant (19 < 0.01) and seems 
to correspond with reinitiation of the cell cycle. 

By double-labeling cells with nuclear dot antibodies and 
antibodies to known NDs that have appearances somewhat 
similar to nuclear dots, we investigated the relative position 
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Figure 2. Histogram showing an apparent increase in the number of double dots present in populations of WI38 cells. Nuclear dots in 
WI38 cell cultures starved of serum for 8 d, and WI38 cell cultures refed serum, were counted in 100 cells. The ordinate shows the number 
of cells observed. The abscissa shows the number of double dots visible within the nucleus. In A, a histogram showing the distribution 
of dot doublets counted for the 0-h control is shown. In B, a histogram showing the distribution of dot doublets counted for cells 18 h 
after serum replenishment is shown. 
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Figure 3. Single and double exposures of interphase HEp2 cells after double label immunofluorescence staining with antibodies that recog- 
nize nuclear dots and antibodies that recognize known NDs. In A and C, staining patterns of FITC labeled autoantibodies against 
kinetochores and Texas Red labeled mAb 1150 are shown as single exposures, respectively. In B, a double exposure of these two staining 
patterns indicates that the staining of nuclear dots (arrowheads) does not superimpose with kinetocbore staining. In D and F, staining pat- 
terns of Texas Red-labeled mAb 90-20 (anti-RNP) and FITC-labeled autoantibodies in serum 455 are shown as single exposures, respec- 
tively. In E, a double exposure of these two staining patterns indicates that the immunofluorescence patterns of nuclear dots and the RNP 
domain do not superimpose, but often appear to juxtapose. In G and I, staining patterns of Texas Red-labeled mAb 364-5 (anti-nucleolar) 
and FITC labeled autoantibodies in serum 455 are shown as single exposures, respectively. In H, a double exposure of these two staining 
patterns indicates that the immunofluorescence pattern of nuclear dots and the nucleolar domain are distinct. Bar, 5 ttm. 

of  these structures to each other. Nuclear dots and kineto- 
chores do not coincide (Fig. 3, A-C). This was particularly 
apparent in color photographs and in areas of  low kineto- 
chore staining (arrowheads). The dissimilarity was even 
more apparent on Indian muntjac cells because of  the low 
chromosome number and nature of  kinetochores in this spe- 
cies (Brinldey et al., 1984). In Indian muntjac cells the nu- 

clear dot antigen appeared throughout the nucleoplasm, 
whereas kinetochores were clustered in one specific area in 
the nucleoplasm (not shown). Since the mitotic distribution 
and disappearance of  the nuclear dot pattern was reminiscent 
of those recorded for RNP, we double-labeled cells with anti- 
bodies recognizing the domains of  RNA polymerase I, II, 
and HI products. Double staining of  interphase HEp2 cells 
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clear dot antigens are often seen adjacent to areas without 
bis-benzimide staining. The number of nuclear dot struc- 
tures during prophase was four to eight per cell. No staining 
was observed on metaphase or anaphase cells, but by late 
telophase, the structures reappeared in the nucleus. 

To test whether protein or RNA synthesis inhibitors would 
affect the number of nuclear dots, cultures of HEp2 cells and 
WI38 cells were exposed from 0 to 24 h to varying concen- 
trations of cycloheximide, puromyein, or o~-amanitin. After 
exposure to 15 t~g/ml puromyein, no effects were noted. 
However, ,,o30% of cells treated with cycloheximide (con- 
centrations as low as 0.25 /~g/ml) showed an altered im- 
munofluorescence pattern, which appeared as a pattern of 
more and much finer dots (not shown). No effects were noted 
when WI38 cells were treated with 2-25/~g/ml concentra- 
tions of ot-amanitin for lengths of time varying from 0 to 
24 h. The antigenic nuclear structures seemed, therefore, to 
be extremely stable and not to turn over recognizably. 

Nuclear bodies recognized only ultrastructurally have a 
fine fibrillar component (Bouteille et al., 1974; Chaly et al., 

Figure 4. LoealiT~tion of nuclear dot structures in prophase HEp2 
cells by double ext~ure of antibodies conjugated to FrIC and bis- 
benzimide stained chromatin. Antigens reco~iTed by FITC la- 
beled autoantibodies in serum 455, are localized in (A) early 
prophase and (B) late prophase by a double exposure with bis- 
benzimide fluorescence. Bar, 5 t~m. 

with RNP antibodies (mAb 90--20) and the nuclear dot au- 
toantibodies in serum 455 showed that nuclear dots do not 
coincide with, although often are positioned directly adja- 
cent to, the strongly labeled RNP domain (Fig. 3, D-F). 
When cells were stained with mAb 364-5 reacting with 
fibrillarin and serum 455, we observed that the nuclear dot 
antigen and the nucleolar domain, especially the smaller 
sized nucleoli, do not coincide (Fig. 3, G--l). Also, the pat- 
tern of cells stained by an mAb against the La antigen and 
serum 455 did not coincide, suggesting that the nuclear dot 
antigen does not correlate with tRNA or 5S RNA synthesis 
(not shown). 

Because the nuclear dot structures frequently appeared as 
pairs or doublets (see Fig. 1 A and E),  we assumed a chro- 
mosomal location either as specialized kinetochores, centro- 
meres, or telomeres. However, the immunofluorescence pat- 
terns of mitotic cells stained with nuclear dot antibodies and 
kinetochore antibodies showed an obvious difference in lo- 
calization. Antigens recognized by serum 455 antibodies 
were present as discrete nuclear dots dispersed throughout 
the nucleoplasm in early prophase (double exposure with 
bis-benzimide-stained chromatin; Fig. 4 A), but by late 
prophase (Fig. 4 B) appeared close to the periphery of the 
chromosomes. We also noted on prophase cells that the nu- 

Figure 5. Immunoblotting of residual nuclear proteins with nuclear 
dot positive human autoantibodies and mAbs. After separation in 
10 % SDS polyacrylamide gels residual nuclear proteins were trans- 
ferred to 0.22/~m nitrocellulose. Parallel strips were individually 
stained with (1) serum 455, (2) serum 1157, (3) mAb 1150, (4) 
mAb 138, (5) serum 516, and (6) serum 1753. Lanes 5 and 6 show 
the position of known proteins (B,B', lamins) used as an internal mol 
wt standard. The position of biotinylated molecular weight stan- 
dards are indicated at the left. An arrow marks the position of a 55- 
kD polypeptide common to the nuclear dot positive human antisera 
and murine mAbs. Control strips (not shown) were negative. The 
black ink mark near the top of the nitrocellulose is for realignment 
of strips after staining. 
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Figure 6. Immunofluorescence staining pattern of serum 1157 autoantibodies affinity purified from the 55-kD band. The method of Smith 
and Fisher (1984) was used to recover antibodies from the 55-kD band that were used to stain HEp2 cells. In A, single nuclear dots are 
detected using purified antibodies with no other nuclear staining visible. C shows staining using extractions from areas of nitrocellulose 
without bands. B and D show bis-benzimide staining to indicate nuclear position. Bar, 5 #m. 

1983a). To test whether the nuclear dots are equivalent to the 
nuclear bodies, we visualized the nuclear dots by immunocy- 
tochemistry at the electron microscope level. Their average 
diameter ranged from 0.2 to 0.3 #m and no fibrillar compo- 
nent could be seen (not shown). We also tested MCF-7 cells, 
which are responsive to hormonal stimuli resulting in a dra- 
matic increase in the number of nuclear bodies. No striking 
increase in the number of nuclear dots was found (Table I) 
upon hormone treatment. These findings indicate that nu- 
clear dots are not equivalents of nuclear bodies. 

The nuclear dot antigen is present in extremely low quanti- 
fies and is not detectable in immunoblots of whole cells. 
Therefore, we combined in situ biochemical fractionation 
with the immunofluorescence assay to determine any sensi- 
tivity of the antigens to extractions and enzymatic digestions 
and to determine a procedure for enrichment of the antigen. 
Once the effects of individual treatments were assessed by 
immunofluorescence, a series of sequential extractions and 
digestions was selected which resulted in a particularly clear 
image of the nucleardots (not shown). This series consisted 
of washes with low salt, low pH buffer, followed by extrac- 
tions with NP-40, digestions with RNase A, DNase I and mi- 
crococcal nuclease, and washes with 2.0 M NaC1. We deter- 
mined, using the immunofluorescence assay, that antigens 
recognized by mAb 364-5 (anti-nucleolar), mAb 90-20 
(anti-RNP), and mAb 1415 (anti-histone) were removed as 
a result of these treatments. Nuclear dot antigens and 
kinetochore antigens remained. Chaotropic concentrations 
of MgCI2, deoxycholate, SDS extraction, or protease re- 
moved the cells from the substrate, thereby abolishing the as- 
say system. Most of the nuclear dot antigen seems extremely 
hydrophobic and stably attached to a nuclear matrix com- 
ponent. 

Larger quantities of residual nuclear proteins were ob- 
tained from HEp2 cells sequentially treated as described 
above. When residual nuclear proteins were separated by 
10% SDS-PAGE and stained with Coomassie blue, only the 

most abundant polypeptide species were apparent, primarily 
polypeptides with molecular weights similar to lamins, kera- 
tins, vimentin, nuclear pore elements, actin, and desmin (not 
shown), as reported elsewhere (Staufenbiel and Deppert, 
1984; Zackroff et al., 1984; Goldman et al., 1986; He et al., 
1990). When transferred to nitrocellulose and reacted with 
antibodies, less abundant polypeptides were detected. Using 
antikinetochore antisera, we were able to detect the three 
polypeptides of the centromere (CENP-A, B, and C) (Earn- 
shaw and Rothfield, 1985) apparently intact, indicating that 
we had achieved a substantial enrichment and that any pro- 
teolysis was negligible (data not shown). Fig. 5 shows paral- 
lel strips of nitrocellulose after immunoblotting of residual 
nuclear proteins using nuclear dot positive human autoanti- 
bodies (sera 455 and 1157; lanes 1 and 2, respectively) and 
the two murine mAbs showing the nuclear dot staining pat- 
tern (lanes 3 and 4, respectively). Lanes 5 and 6 are stained 
with antisera recognizing several antigens including B,B', 
and lamins which serve as an internal mol wt standard. The 
black ink line at the top of the nitrocellulose is for realign- 
ment of strips. The position of a band common to nuclear 
dot positive antibodies is shown by an arrow. An apparent 
molecular mass of 55 kD was determined for the protein, 
which is independent of dithiothreitol in the sample buffer 
as judged from diagonal electrophoresis (not shown). 

Autoantibodies in serum 1157, a serum which also contains 
nuclear rim and centriolar and mitochondrial antibodies, 
were affinity purified from the 55-kD band. These affinity- 
purified antibodies stain only single nuclear dots with no nu- 
clear rim, centriolar, or mitochondrial staining evident (Fig. 
6 A; bis-benzimide staining, Fig. 6 B). Equivalent areas of 
nitrocellulose, where no specific band was present, were 
subjected to this extraction and show background levels of 
immunofluorescence only (Fig. 6 C; bis-benzimide staining, 
Fig. 6D) .  

Isoelectric focusing followed by size separation and immu- 
noblotting with the mAb 1150 shows that the 55-kD polypep- 
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Figure 7. Isoelectric focusing and size separation followed by im- 
munoblotting of NDP-55 polypeptide. After separation in pH 8.0 
to pH 2.0 ampholines using equilibrium buffer conditions, elec- 
trophoresis in 10% SDS polyaerylarnide was performed. Residual 
nuclear proteins were transferred to nitrocellulose. Immunoblotting 
with mAb 1150 detected charge isomers of NDP-55, with mol wts 
of •55 kD. Three equally separated spots are detected at pI 7.4-7.7. 

tide has an apparent pI value of 7.4-7.7 (Fig. 7). Three charge 
isomers were apparent as equally separated spots. The physi- 
cal properties of the other nuclear dot-associated proteins 
including the additional antigen of the dot doublet seen with 
serum 1157 have not yet been determined and may only be 
verified after the development of additional mAbs. 

All of our initial immunofluorescence studies utilized tis- 
sue culture cells. To test for the presence of nuclear dots in 
differentiated cell types, we stained cryosectioned rat liver 
tissue. Kinetochore staining was observed indicating nuclear 
antigens were accessible and recognizable under these con- 
ditions (Fig. 8 A). Nuclear dot antigens were not detected 
when control liver was stained (Fig. 8 B, arrowheads mark 
centrioles). Nuclear dots in parenchymai cells, however, 
reacted strongly in liver sections of rats 48 h after CCh was 
administered to induce liver regeneration (Fig. 8 C). These 
experimental conditions effectively induce the parenchymal 
cells to go through the cell cycle and divide. Mitotic cells 
were observed only in sections of liver from rats receiving 
CCl,. 

Discussion 

The multitude of functions taking place in the nucleus have 
not been reflected in its recognizable structural diversity. The 
apparent simplicity of the early ultrastructural images of the 
cross-sectioned nucleus did not afford assignment of func- 
tional domains with any detailed resolution. Recently devel- 
oped techniques show that individual chromosomes occupy 
precisely circumscribed spaces (Agard and Sedat, 1983; 
Mannuelides, 1985) indicating a functional partitioning of 
areas perceived to be homogeneous by ultrastructural analy- 
sis. Structural investigations had defined a few large extra- 

chromosomal spaces or domains like the nucleolus and the 
nuclear envelope besides the dense heterochromatin and the 
dispersed euchromatin. Histochemically, that is through the 
regressive staining methods (Granboulan and Granboulan, 
1965), a network of densely staining RNP could be visual- 
ized ultrastructurally. This extrachromosomai space was 
later separated into functional domains corresponding to 
products of RNA polymerase II or RNA polymerase lII. In 
both cases the functional elucidation and structural localiza- 
tion was strongly aided by antibodies to proteinaceous com- 
ponents of these domains (Lerner and Steitz, 1979; Habets 
et al., 1985; Ringertz et al., 1986; Montzka and Steitz, 
1988; Spector, 1990). Other NDs, visualized only indirectly 
through antibodies, have no known function in the interphase 
nucleus. For example, the functional kinetochore is recog- 
nizable only at the electron microscopic level as a specific 
structure on chromosomes (Brinkley and Stubblefield, 
1970), but antibodies to three major proteins label this other- 
wise unrecognizable structure in interphase as precise enti- 
ties (Moroi et al., 1980) and allowed a timing of its duplica- 
tion towards the end of the cell cycle (Brenner et al., 1981). 

We can segregate additional NDs as we find new and 
specific probes. Through the recognition of a new nuclear 
dot staining pattern using human autoantibodies of a patient 
with lupoid carcinoma (Freundlich et al., 1988), we selected 
other sera with similar patterns. We also generated mAbs 
showing the same nuclear dot pattern. These antibody 
probes allowed us to differentiate between other similar nu- 
.clear structures, to quantitate the new nuclear structure, to 
observe changes when quiescent cells are stimulated to 
proliferate, and to detect and characterize one polypeptide 
of these domains. 

We observed this distinct punctate nuclear dot immuno- 
fluorescence pattern in human as well as monkey, mouse, 
rat, Indian muntjac, frog, and chicken cell lines, indicating 
that the labeled structure is present at least in all vertebrates. 
The size varies considerably but an average of 0.3 #m was 
established from measurements of immunoelectron micro- 
graphs. We recognized that an apparent pairing of equal- 
sized structures existed that implied a chromosomal location. 
However, the numerical analysis showed a wide distribution 
not consistent with a permanent chromosomal site, ploidy, 
species, or cell morphology. The possibility that numerical 
variation is due to cell cycle changes was excluded leaving 
the possibility of high turnover. Blocking RNA and protein 
synthesis eliminated this possibility. In fact, we were struck 
with the temporal as well as physical stability of the antigen. 
We saw double dots where one was often smaller than the 
other. Such images are suggestive of budding or replication, 
ifa chromosomal site was only temporarily expressed during 
the cell cycle. Quantitative data support the idea of budding 
in that the number of single dots did not increase during se- 
rum stimulation of WI38 ceils, but the double dots increased 
from a very infrequent presence to approximately three. 
Both chromosomal location or activation of a newly repli- 
cated chromatid could accommodate such an interpretation. 

Initially, we considered the nuclear dot structures to be 
individual or specific centromeres or kinetochores with 
specific antigens showing differential staining patterns simi- 
lar to the one shown with the mAb against the CENP-B anti- 
gen (Earnshaw et al., 1987), but more extreme. However, 
double labeling showed no correlation with the centromere 
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Figure & Immunofluoreseence staining patterns of rat liver sections stained with autoantibodies. Photographs (A-F) of stained rat liver 
sections from control animals show that although (A) kinetoehore antigens are accessible and recognizable, nuclear dots are not detected 
in differentiated tissue (B). When rat liver sections were obtained from rats 48 h after receiving CCk to regenerate liver tissue nuclear 
dots were detected (C). D--F show corresponding bis-benzimide staining. Arrowheads mark eentrioles stained by additional autoantibodies 
in serum 455. Bar, 5 gm. 

effectively eliminating the possibility that these dots repre- 
sent a subset of kinetochores or centromeres. Double dots 
as well as paired dots could also have resulted from selective 
telomere staining. We could not exclude this possibility; 
however, telomeres are present mostly on the nuclear enve- 
lope (Blackburn and Szostak, 1984), and we are therefore 
not pursuing this line of reasoning any further. 

During mitosis the nuclear dots behave like the nucleolus, 
the mRNA processing sites, or sites of tRNA and 5S RNA 
synthesis; that is, they disappear or redistribute with the 
advancing mitotic sequence. However, none of the sera rec- 
ognizing these nuclear dots precipitated a consistent RNA 
species. 

Nuclear bodies, present in very low numbers in uninduced 
ceils, can be induced by hormonal stimuli in responsive cells 
resulting in a striking increase in frequency (Padykula et al., 
1981; Fitzgerald and Padykula, 1983; Jensen and Brasch, 
1985; Brasch et al., 1989; Yu and Ho, 1989) or by induction 
of T cell proliferation with lectins (Chaly et al., 1983a,b). 
Single nuclear bodies as well as complex ones have been de- 
scribed with diameters similar to the nuclear dots we report 
here. MCF-7 cells provide a model system to study the effects 
of estrogenic stimulation (Greene et al., 1984; Geier et al., 
1985; Heggeler-Bordier et al., 1988). No striking change in 

the immunofluorescence pattern was noted when unstim- 
ulated and 17-fl-hydroxyestradiol-stimulated MCF-7 cells 
were stained with nuclear dot antibodies. No increase of nu- 
clear dots was noted when isolated human lymphocytes were 
stimulated with phytohemagglutinin (1 #g/ml) for various 
times from 0 to 48 h. If the structures we describe through 
binding of specific antibodies recognize the same entity 
which has become known as nuclear bodies, then we see sub- 
stantially more or additional ones difficult to visualize by 
electron microscopy. No specific antibody probes for nu- 
clear bodies exist to allow direct comparison by double label 
studies. Judged from these ultrastrnctural findings and in- 
duction experiments, nuclear dots and nuclear bodies are not 
the same. 

The interaction of nuclear dots as recognized by the anti- 
bodies can be partially deduced from double-label im- 
munofluorescence studies (Fig. 1) and from the immunoblot- 
ting data which shows that sera 455 and 1157 and the two 
mAbs all recognize a 55-kD polypeptide (NDP-55). Since 
mAb 138 raised against a fusion protein reactive with au- 
toantibodies (Maul, G. G., P. E. Gregory, D. Ziemnicka- 
Kotula, manuscript submitted for publication) recognize nu- 
clear dots, and affinity purified autoantibodies recovered 
from Western blots also stain nuclear dots, we conclude that 
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the 55-kD antigen is part of the nuclear dot structure. We 
propose that all single nuclear dots contain the NDP-55 poly- 
peptide. When screening the literature concerned with au- 
toantibody localization we found nuclear dot-like images 
present in sera of a variety of autoimmune diseases (Maki- 
nen et al., 1983; Bernstein et al., 1984; Kurki et al., 1984; 
Cassani et al., 1985; Penner et al., 1986; Szostecki et al., 
1987). The prevalence and disease specificity is presently 
being investigated. 

We detected the NDP-55 polypeptide under a variety of 
one-dimensional and two-dimensional electrophoretic con- 
ditions. At least three charge isomers are apparent, which 
may indicate posttranslational modification. A phosphoryla- 
tion-dephosphorylation event may provide for solubilization 
differences like the lamins in mitosis (Gerace and Blobel, 
1980). The relatively basic isoelectric point of the NDP-55 
polypeptide (pI 7.4-7.7) provides a means of separation from 
relatively acidic desmin and vimentin with approximately 
the same molecular mass (54 and 56 kD, pI 5.6 and 5.7, 
respectively), which are present in this preparation (Dagenais 
et al., 1984). Since NDP-55 is not polymerized by disulfide 
bonds as is lamin A and C with similar isoelectric points, 
NDP-55 can be separated from these residual nuclear pro- 
teins by precipitation of lamins under nonreducing conditions. 

No correlation with any known nuclear structure has been 
found and no direct suggestion has emerged for the function 
of the antigens present in the nuclear dot structure. We ob- 
serve, however, that all cycling cells (or those recently gone 
through a cell cycle) contain the nuclear structure, and that 
noncycling rat liver parenchymal cells do not, except upon 
induction to replicate. We suggest, therefore, that the anti- 
gens may have importance in aspects of the proliferative 
state. 
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