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Abstract. SEC15 encodes a ll6-kD protein that is es- 
sential for vesicular traffic from the Golgi apparatus to 
the cell surface in yeast. Although the sequence 
predicts a largely hydrophilic protein, a portion (23 %) 
of Secl5p is found in association with the plasma 
membrane. The remainder is not associated with a 
membrane but is found in a 19.5S particle which is 
not dissociated by 0.5 M NaC1. Sec15p may attach 
directly to the plasma membrane since it is not found 
on the Golgi apparatus nor on the secretory vesicle 
precursors to the plasma membrane. Loss of function 
of most of the late-acting sec gene products does not 

alter the distribution of Secl5p. However, the sec8-9 
mutation and to a lesser extent the sect0-2 mutation 
result in a shift of Secl5p to the plasma membrane, 
suggesting a role for these gene products in the regula- 
tion of the Secl5p membrane attachment/detachment 
processes. Depletion of Secl5p by repression of syn- 
thesis indicates that the plasma membrane bound pool 
is the most stable. During the course of these studies 
we have found that two activities associated with the 
yeast Golgi apparatus, Kex2 endopeptidase and GDP- 
ase, are in separable subcompartments. 

UKARYOTIC cells possess a number of vesicle medi- 
ated transport pathways: These include initial endo- 
cytic events, transport from the endoplasmic reticu- 

lum to the Golgi apparatus, intra-Golgi traffic, and transport 
to both the cell surface and the lysosome/vacuole. Each 
transport event must be properly regulated to maintain the 
specificity of the system. Several proteins have been iden- 
tiffed that function at specific steps of the vesicular transport 
pathway (Block et al., 1988; Clary et al., 1990; Newman and 
Ferro-Novick, 1987; Novick and Schekman, 1979; Payne 
and Schekman, 1989; Pfanner et al., 1990; Segev et al., 
1988; Wattenberg et al., 1990; Weidman et al., 1989). One 
of these proteins, NEM sensitive factor (NSF),t has been 
found to function in multiple vesicular fusion events, includ- 
ing ER to Golgi transport in mammalian cells (Beckers et 
al., 1989) and early endocytic events (Diaz et al., 1989), and 
has been shown to have strong homology to the yeast gene 
SECI& a gene whose product was known to be involved in 
ER to Golgi transport. These results suggest that some com- 
ponents of the fusion apparatus may be common to different 
transport pathways. 

In the yeast Saccharomyces cerevisiae 10 SEC genes have 
been identified whose products regulate vesicular traffic 
from the Golgi apparatus to the plasma membrane (Novick 
and Sehekman, 1979). One of these late-acting SEC genes 
encodes the GTP-binding protein Sec4p, that associates with 
both the cytoplasmic surface of the plasma membrane and 
secretory vesicles (Goud et al., 1988; Salminen and Novick, 

1. Abbreviation used in this paper: NSE NEM sensitive factor. 

1987). Sec4p appears to cycle between the plasma mem- 
brane and secretory vesicles, and this cycle of localization 
is coupled to a cycle of GTP binding and hydrolysis. Sec4p 
serves to regulate secretory vesicle traffic between the Golgi 
apparatus and the cell surface (Walworth et al., 1989). Other 
GTP-binding proteins, such as Yptl (Segev et al., 1988) and 
members of the ras superfamily of proteins (Gallwitz et al., 
1989; Steams et al., 1990), regulate vesicular traffic within 
different pathways. Such findings suggest that while the 
general mechanisms controlling vesicular traffic and fusion 
may be applicable to many or all such transport events, each 
class of vesicles may be regulated by distinct sets of GTP- 
binding proteins. In its GTP-bound state, each GTP-binding 
protein may interact with its effector to specifically regulate 
fusion with the proper acceptor membrane. 

Candidates for components of an effector pathway have 
been identified by studies which demonstrated very strong 
genetic interactions between SEC4 and several other SEC 
genes that function at the final stage of the secretory path- 
way (Salminen and Novick, 1987). Increased expression of 
Sec4p by a simple duplication of the SEC4 gene was found 
to partially suppress both the growth and secretion defects 
resulting from mutations in sec2 and secl5 (Nair et al., 
1990; Salminen and Novick, 1989). However, increased ex- 
pression of SEC4 could not suppress deletions of either SEC2 
or SEC15. Furthermore, any combination of temperature- 
sensitive mutations in sec2, sec4, sec& or secl5 were found 
to result in lethality even at temperatures that are permissive 
for any of the single mutants. These results support a model 
portraying Sec4p as a regulator of a molecular apparatus that 
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includes the See2, SeeS, and Secl5 proteins. Increased ex- 
pression of Sec4p can compensate for a partial defect in one 
of the components of the apparatus, while defects in any two 
components is synergistically deleterious. NY3 

The SEC15 gene was cloned and sequenced and found to NYI 1 
encode a ll6-kD protein that associates with a microsomal NY17 
fraction in a pH-dependent manner (Salminen and Novick, NY57 
1989). Immunolocalization was not possible due to the low NY61 

NY67 
signal strength. However overproduction of Secl5p by ex- NY130 
pression from the GA/_J promoter gave a very striking im- NY400 
munofluorescence signal (Salminen and Novick, 1989). A NY405 
bright patch of fluorescence was seen in overproducing cells. NY410 
The formation of this patch of fluorescence was found to be NY440 
dependent on the function of the See2 and Sec4 proteins. 
Furthermore, it was found that overproduction of Secl5p led NY648 

NY724 to an impairment of vesicular traffic and the formation of a 
cluster of secretory vesicles in the cytoplasm. One explana- NY799 
tion for these results, and for the genetic interactions de- 
scribed above, is that Secl5p has the ability to dock vesicles, 
but only if those vesicles carry functional Sec4p and only if NY821 
Sec2p, which appears to be cytoplasmic (Nair et al., 1990), 
is available. Given this hypothesis, it is essential to know the 
normal localization of Secl5p. 

In this article we show by sucrose gradient fractionation 
and gel filtration that Secl5p is associated with both the 
plasma membrane and a soluble, high molecular weight spe- 
cies, but is not on isolated secretory vesicles. The associa- 
tion of Secl5p with the plasma membrane was found to be 
influenced by the SEC8 gene product, suggesting that Sec8p 
may interact with Secl5p and regulate its level on the plasma 
membrane. 

Materials and Methods  

Yeast Strains, Media, and Reagents 

The Saccharomyces cerevisiae strains used in this study are listed in Table 
I. The cells were grown in YP medium containing 1% Bacto-yeast extract 
and 2% Bacto-peptone (Difco Laboratories Inc., Detroit, MI), sup- 
plemented with either 2% glucose (rich medium, YPD) or 0.2% glucose 
(low glucose media). To induce overproduction of Secl5p from the GAL 
promoter cells were grown in YP medium containing 2 % lactose until early 
log phase (As99 = 1). Galactose was then added to 1% and the cells in- 
cubated for 6 h. To deplete cellular levels of Secl5p, NY799 cells were first 
grown 16 h in the presence of 0.5 % gaiactose in YP medium containing 2% 
raffinose. The cells were washed free of galactose using YP, and 
resuspended in YPD medium and incubated for various lengths of time. 

Chemicals for SDS gel electrophoresis were obtained from Bio-Rad 
Laboratories (Richmond, CA). Zymolyase 100T was obtained from ICN 
ImmunoBiologicals (Costa Mesa, CA). Sephacryl S-500 and S-1000 was 
obtained from Pharmacia Fine Chemicals (Piscataway, NJ). Nucleotide 
phosphates were purchased from Boehringer Mannheim Diagnostics, Inc. 
(Indianapolis, IN). Cytochrome c type m,  NADPH, o-dianisidine, peroxi- 
dase, PMSF, sorbitol, EDTA, 4-aminediphenylamine hydrochloride, and 
Triton X-100 were obtained from Sigma Chemical Co. (St. Louis, MO). 
Boc-Gln-3-Arg-MCA (Kex2 substrate) was purchased from Peninsula 
Laboratories Inc. (Belmont, CA). Production of rabbit anti-Secl5p anti- 
bodies was previously described (Salminen and Novick, 1989). 

Electrophoresis 

For SDS-PAGE, samples were heated for 5 min at 100°C in sample buffer 
containing 2% SDS and run on 8% slab gels according to Laemmli (1970). 
After transfer to nitrocellulose overnight at 4°C, Secl5p was probed with 
polycional o~Sec151-241 antisera at 1:1,000 dilution as previously described 
(Salminen and Novick, 1989). 

Table L Yeast Strains 

Strain Genotype 

MATt 
MATt 
MATt 
MATt 
MATt 
MATt 
MAT 
MATt 
MATt 
MATt 

ura3-52, secl-1 
his4-619 
ura3-52, sec6-4 
ura3-52, sec9-4 
ura3-52, seclO-2 
his4-619, sec15-1 
ura3-52, sec2-41 
his4-619, sec5-24 
ura3-52, sec4-8 
ura3-52, sec8-9 

MATt ura3-52, his4-619, pNB148 (2/~m, 
SEC15, URA3) 
MATa/t~ leu2-3, 112/leu2-3, 112, ura3-52/ura3-52 
MATa ura3-52, Gal +, SEC15 ::pNB304 
( GAL1-SEC15 , URA3 ) 
MATa leu2-3, 112, secl5::LEU2, ura3-52::pNB304 
(URA3, GAL-SEC15) 
( GAL1-SEC15 , URA3 ) 
MATa NY410 transformed with pNB330 
(ura3-52 :: URA3, SEC8) 

Sucrose Gradient Fractionation 

Cells (200-250 A599 U) grown at 25°C in YP medium containing 2% glu- 
dose, were pelleted and transferred to YP supplemented with 0.2 % glucose 
and incubated with shaking for 1 h at 37°C. After washing once with 10 
mM NAN3, the cells were resuspended in spheroplast media (50 mM Tris 
pH 7.5, 10 mM NAN3, 1.4 M sorbitol, 40 mM ~-mercaptoethanol, 0.125 
mg/ml Zymolyase-10OT), and incubated at 37°C for 45 rain. Spheroplasts 
were pelleted, cooled on ice, and resuspended in 20 ml ice cold lysis buffer 
(0.8 M sorbitol in 20 mM triethanolamine, 1 mM EDTA pH 7.2) containing 
1 mM PMSF and 10 /~l/10 mi protease inhibitor cocktail: leupeptin, 
chymostatin, pepstatin, aprotinin, and antiparin (all at 1 mg/ml). The fol- 
lowing steps were performed at 4°C. The suspension was homogenized 20 
times in a 40-ml Wheaton tissue grinder (Wheaton Scientific, Millville, 
NJ), pestle A, and centrifuged at 450 g for 3 rain. The pellet (P1) was re- 
suspended in the same volume lysis buffer, homogenized and centrifuged 
as above, and the supernatants (S1) pooled. 2 ml of I M MES, 2-(N-morpho- 
lino) ethane sulfonic acid, pH 6.5 was added to $1 and the supernatant was 
spun at 10,000 g for 10 rain. The supernatant ($2) was spun at 100,000 g 
for 1 h to produce a P3 pellet and $3 supernatant. The P2 and P3 pellets 
were resuspended in 2 ml of 55% sucrose (wt/wt) containing 10 mM MES 
pH 6.5 and homogenized by four strokes in a 2-ml Wheaton tissue grinder 
(Wheaton Scientific). The P2 or P3 homogenate was placed.at the bottom 
of a SW41 (Beckman Instruments, Inc., Palo Alto, CA) tube and overlaid 
with the following sucrose solutions: 1 ml 50%, 1 ml 47.5%, 1.5 ml 45%, 
1.5 m142%, 1.5 mi 40%, 1 ml 37.5%, 1 m135%, 1 m130%, all containing 
10 mM MES pH 6.5. The gradients were spun at 170,000 g in a SW41 rotor 
(Beckman Instruments, Inc.) for 16 h. Fractions were collected from the 
bottom and any pellet resuspended in an identical volume (as other frac- 
tions) of 55% sucrose and labeled as fraction 1. 

For velocity gradient analysis an $2 from NYll cells was isolated as 
above, except that the cells were lysed in 8 ml total volume of lysis buffer. 
The protein concentration was determined and 3.4 mg of protein (in '~450 
/zl) was layered on top of a 10-30% (wt/wt) continuous sucrose gradient 
containing 10 mM MES, pH 6.5, and + / -  0.1% Triton X-100. The gradient 
was centrifuged at 49,000 rpm for 2-8 h in a SW50.1 rotor (Beckman Instru- 
ments, Inc.). Fractions were collected from the bottom of the tube and any 
pellet was resuspended in an identical volume and labelled as fraction 1. 
BSA (4.5S), catalase (11.5S), horse spleen ferritin (16.5S), and thyroglobu- 
lin (19.3S) were used as standards. 

Gel Filtration 
Cells (usually 200-300 A599 U for S-500 columns or 500-800 A~99 U for 
S-1000 columns) grown at 25°C in YP medium containing 2% glucose, 
were pelleted, resuspended in YP medium containing 0.2% glucose at 
37°C, and incubated at 37°C with shaking for l h. After washing once in 
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10 ~ NaN3 the cells were resuspended in 20 ml of spheroplast medium 
and incubated at 37"C for 45 min. The spheroplasts were pelleted, cooled 
on ice, and resuspended in 4 ml (or 20 ml for S-1000 columns) of ice cold 
lysis buffer (see above). The cell suspension was homogenized by 20 strokes 
in a 7-mi (or 20 ml) Wheaton tissue grinder using pestle A (Wheaton Sci- 
entific). After a 3-rain spin at 750 g (4"C), the pellet was resuspended in 
4-ml lysis buffer and the homogenization repeated. The 750 g supernatants 
were combined to form the S1. For S-500 gel filtration the pH of the lysate 
was maintained at pH 7.5. For S-1000 gel filtration 1 M MES pH 6.5 was 
added to 10 raM. The SI was centrifuged at 10,000 g for 10 rain to form 
the S2 and P2. The protein concentration of the $2 was determined by Brad- 
ford analysis (Bio-Rad Laboratories). 20-25 nag of protein, in 1-1.5 mi of 
lysis buffer, was layered on the top of the S-500 column and fractionation 
performed at 4°C using 20 mM Hepes, 50 mM NaCI, 1 mM MgCI2, 
1 mM DTT, pH 7.5 as column buffer. 1.1 mi fractions were collected, ana- 
lyzed by SDS gel electropboresis, and the elution profile compared to that 
of molecular mass standards. 

For Sephacryl S-1000 column fractionation for secretory vesicle isola- 
tion, the P3 was resuspended into 1 ml lysis buffer, pH 6.5 and layered on 
the top of the S-1000 column. 0.8 M sorbitol, 10 mM triethanolamine, 
1 mM EDTA, 10 mM MES, pH 6.5 was used as the column buffer. 4.1 rnl 
fractions were collected and analyzed by SDS gel electrophoresis and West- 
era blot analysis. 

Enzyme Assays 

The enzyme assays for the plasma membrane ATPase, endoplasmic reticu- 
lure, and mitochondria were performed as previously described (Walworth 
et al., 1989). The protein concentration was determined by Bradford analy- 
sis. The GDPase assay was performed basically as described by Abeijon 
et al. (1989) and Bradan and Fleischer (1982). After incubation of each 
reaction tube containing 30 gl of the fraction for 30 rain at 37 °C the reaction 
was stopped by addition of 20 #1 of 5 % SDS. Liberated phosphate was mea- 
sured using the Fiske-Subbarow reducing kit (Sigma Chemical Co.) The ac- 
tivity was expressed as nmoles of phosphate released per fraction per min. 
Kex2 activity was measured using the method of Julius et al. (1984) and 
Cunningham and Wickner (1989). The reaction tubes containing 50 #1 of 
each fraction were incubated at 30°C for 1 h in the presence or absence of 
Triton X-100 and stopped by boiling for 5 min. The liberated product was 
determined by measuring the emission in a fluorometer at ex380~ and 
em460nm. Latent Kex2 activity was determined by subtracting the values of 
+ / -  Triton X-100 and the result expressed as the amount of latent Kex2 
activity per fraction. 

Nucleic Acid Techniques 

To generate SECS+ transformants of sec8-9 cells, the following was per- 
formed. The SEC8 gene was cloned in a 2-gin library (results of cloning 
and sequencing the SEC8 gene to be published elsewhere), and the Sma 
I-Sal I fragment inserted into a YIp5 vector. This integrating plasmid, 
pNB330, containing the entire SEC8 coding sequence, was linearized with 
StuI and integrated into NY410 ceils (a ura3-53, secS-9) by transformation 
(Ito et al., 1983). Transformants were selected for Ura+ on SD medium 
at 25°C. 

NY799 cells were produced as follow. Integrating plasmid pNB291 
(YIpS, sec15::LEU2 gene disruption; 3-kb Bgl II-Bgl II fragment from 
Ylpl3 (LEU2) replacing the Bgl II-Bgl II internal fragment of SECI5 in 
pNB192 [Salminen and Novick, 1989]) was used to transform NY648 cells 
to Leu+. These diploids were then transformed with pNB304 (Ylp5, GAL/- 
SEC15) and dissected. URA+, LEU+ spores were isolated that grow on 
YP + 1% galactose + 2 % rattinose but not YPD medium. These ceils con- 
tain their sole copy of the SEC15 gene under control of the GAL/promoter. 

Electron Microscopy 

Electron microscopy was performed on NY799 cells, after overnight incu- 
bation in YP + 0.2 % galactos¢ medium and subsequent incubation in YPD 
medium for 0-24 h, as previously described (Salminen and Novick, 1987). 

Results 

Localization of SeclSp to the Plasma Membrane 
In the preliminary fractionation study (Salminen and No- 

Table IL Percent of Secl 5p Localized in Subcellular 
Fractions of Late-acting SEC Mutants 

Percent Percent Percent Percent 
Cell type in $2 in P2 in $3 in P3 

Wild type 77 23 31 45 
secl-1 79 22 
sec2-41 75 26 
sec4-8 75 26 
sec5-24 71 28 
secS-9 52 45 27 38 
secg-4 74 21 
seclO-2 65 32 19 32 
NY821 78 19 
(secS-9: :SEC8 + ) 

Differential centrifugation analysis of Secl5p distribution in late-acting SEC 
mutants. 75 A~99 U of each strain were harvested, lysed in a 6-ml volume, and 
centrifuged to form $2 and P2 fractions. A $3 and P3 fraction was also isolated 
from secS-9and seclO-2 cells. Secl5p was quantitated by Western blot analysis 
in fractions from each strain. The results are expressed as the percent of Sec 15p 
located in P2 or P3, in relation to the total cellular Secl5p (levels of SeclSp 
in the initial total lysate). Each value represents the average of two to five 
experiments. 

vick, 1989), it was shown by differential centrifugation that 
the SEC15 gene product is in association with both the 
100,000-g supernatant and 100,000-g pellet of a wild-type 
(NY451) yeast lysate. Association with the pellet fraction 
was found to be both pH sensitive and ionic in nature. Secl5p 
was not detected in a low speed (10,000 g) pellet. However, 
in that study, detection was limited by the low level of protein 
used on Western blots. In this study we have done more ex- 
tensive cell fractionation and we consider in detail the vari- 
ous forms of Secl5p found in a yeast lysate. 

Analysis by differential centrifugation of a wild-type 
(NY11) cell lysate has revealed that ~23 % of the total cellu- 
lar Sec15p is located in the 10,000-g pellet, whereas 40-45 % 
resides in the 100,000-g pellet, and the remaining 31% is in 
the 100,000-g supernatant (Table II). To identify membrane 
components with which Secl5p associates, sucrose gradient 
fractionation was performed on both the 10,000-g and 
100,000-g pellets of wild-type yeast cells (see Materials and 
Methods). NYll cells were grown in rich media (YPD) at 
25°C, harvested, and converted to spheroplasts. After os- 
motic lysis, the lysate was centrifuged at 750 g to remove un- 
lysed ceils. This lysate ($1) was spun at 10,000 g to form a 
supernatant ($2) and pellet (P2). The $2 was further cen- 
trifuged for 1 h at 100,000 g to form a high speed supernatant 
($3) and pellet (P3). Both the P2 and P3 were resuspended 
in 55% sucrose, pH 6.5, and overlaid with various sucrose 
solutions. After centrifugation to equilibrium at 170,000 g, 
the gradient was fractionated and each fraction subjected to 
SDS gel electrophoresis and transferred to nitrocellulose. 
The Secl5p present in each fraction was determined using 
anti-Sec15p antibody and ~25I-protein A. Individual lanes 
were quantitated and the results expressed as the level of 
radiolabelled Sec15p per 50 gl of fraction. 

The results of subfractionation of the P2 pellet of wild-type 
cells are shown in Fig. 1. Secl5p cofractionates with the 
plasma membrane enzyme marker, vanadate sensitive 
MgE+-ATPase activity (Bowman and Slayman, 1979). The 
plasma membrane marker enzyme is 18-fold enriched rela- 
tive to the total lysate in the fractions containing the peak 
of Sec15p (Fig. 1, Fractions 6-9). Secl5p clearly does not 
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Figure 1. Localization of Sec15p and organelle en- 
zyme marker activities within sucrose gradient 
fractions of a 10,000-g pellet from NYll cells. A 
P2 was generated by differential centrifugation and 
resuspended in 2 ml 55 % sucrose, 10 mM MES 
pH 6.5 and loaded on the bottom of a 30-55% gra- 
dient. The gradient was spun until equilibrium, 
fractionated, and aliquots of each fraction were 
assayed for Secl5p, plasma membrane ATPase, 
cytochrome c reductase, cytochrome c oxidase, 
GDPase, Kex2, protein concentration, and su- 
crose density. (A) Secl5p and plasma membrane 
ATPase activity cofractionate within the gradient. 
Secl5p was quantitated from Western blots by 
quantitative determination of ~2SI-labeled protein 
A secondary antibody on cut out strips of nitrocel- 
lulose, and expressed as the number of ~25I counts 
per 50 #1 of each fraction (e). The recovery of 
Secl5p from the gradient was 75 % of the loaded 
P2 pellet fraction. Plasma membrane ATPase ac- 
tivity was determined by measuring the release of 
inorganic phosphate for 10 min at 37°C and the re- 
sult expressed as the umoles of liberated phosphate 
per fraction per min (t~). (B) The gradient profile 
for cytochrome c reductase (o) and cytochrome c 
oxidase (ll) activities. Both are expressed as the 
rate of increase in the A550~ of the reaction using 
20/xl of sample. (C) Localization of GDPase (zx) 
and Kex2 (A) activities within the gradient. The 
GDPase activity is expressed as the nmoles of lib- 
erated phosphate per fraction per minute using 
30 ~tl of each fraction in the reaction. The Kex2 
activity is expressed as the units of latent Kex2 ac- 
tivity per 50 #1 of each fraction. Fraction 1 is 
the gradient pellet and fraction 20 is the top of the 
gradient. 

cofractionate either the NADPH-cytochrome c reductase or 
cytochrome c oxidase enzyme activities. These enzymes are 
markers for the endoplasmic reticulum (Kreibich et al., 
1973) and mitochondria (Mason et al., 1973), respectively. 
Secl5p also fails to localize with two marker enzymes for the 
yeast Golgi apparatus, Kex2 and GDPase. Kex2 is an en- 
doprotease involved in prohormone maturation and believed 
to localize to a very late Golgi compartment (Cunningham 
and Wickner, 1989; Julius et al., 1984). GDPase converts 
the GDP that is liberated after transfer of mannose from 
GDP-mannose to glycoprotein acceptors to GMP + P~ and 
cofractionates with a presumed Golgi enzyme, or-l,2 man- 
nosyltransferase (Abeijon et al., 1989). It is interesting to 
note that in wild-type ceils the Kex2 and GDPase containing 
compartments pelletable at 10,000 g are separable from one 
another and from other organelles (see below). From these 

results we conclude that Secl5p associates with the plasma 
membrane in a P2 from wild-type yeast cells. 

Soluble Sec15p Is Found in a High Molecular 
Mass Particle 

We next determined if Secl5p localizes to other membrane 
components. Differential centrifugation analysis revealed 
that ,x,40-45 % of the total Secl 5p of  a NY11 lysate will pellet 
at 100;000 g, while the remainder either sediments at 10,000 
g or is soluble, Table II. Secl5p could be in association with 
secretory vesicles, or other membrane components, local- 
ized to this high speed pellet. Alternatively, Secl5p could be 
in a nonmembraneous, particulate form. 

To address these possibilities we performed sucrose gra- 
dient fractionation of a P3 from NY11 cells. Since the secre- 
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Figure 2. Localization of Sec15p and organelle en- 
zyme marker activities within sucrose gradient 
fractions of a 100,000-g pellet from NY11 cells. 
A P3 was generated by differential centrifugation 
and resuspended in 2 ml of 55% sucrose, 10 mM 
MES pH 6.5, and placed at the bottom of a 30- 
55 % gradient. After centrifugation until equilib- 
rium, aliquots of each fraction were assayed for 
Secl5p by Western blot analysis and for each of the 
marker enzyme activities as in Fig. 1. The recov- 
ery of Secl5p was 108 % of the loaded P3 fraction 
(average of three independent gradients). (A) Sec- 
15p (e) and protein concentrations of each frac- 
tion 02). (B) GDPase (o) and Kex2 (m) activities• 
(C) Plasma membrane ATPase activity (zx) and 
percent sucrose (A). 

tory pathway of wild-type yeast cells is extremely rapid (No- 
vick et al., 1981), few secretory vesicles are localized in the 
high speed pellet• However sucrose gradient analysis of 
wild-type cells will indicate if Secl5p associates with other 
membrane components contained in P3 that enter the gra- 
dient. Upon fractionation, however, we find that Secl5p re- 
mains where it was loaded, at the bottom of the gradient, 
cofractionating with a peak of protein (Fig. 2). Secl5p does 
not localize with a peak of plasma membrane ATPase that 
enters the gradient. It also fails to localize with either of the 
two Golgi markers, Kex2 or GDPase. These results suggest 
that Secl5p is not associated with any membrane component 
of the high speed pellet, but may rather be in a nonmem- 
braneous protein complex or aggregate. 

The Kex2 and GDPase activities pelletable at 100,000 g 
are easily resolved by sucrose gradient fractionation (Fig. 2). 
Kex2 activity fractionates near the bottom of the gradient, 
whereas GDPase activity remains near the top of the gra- 
dient. This data provides evidence that Kex2 and GDPase 
containing compartments are distinct from one another (see 
below). 

To further characterize Secl5p that is contained in both the 
high speed pellet and supernatant fractions, we performed 
Sephacryl S-500 gel filtration of a 10,000-g supernatant 
from NY11 cells. We chose to analyze a 10,000-g superna- 
tant ($2) since it contains all Secl5p not associated with the 
plasma membrane• By Western blot analysis of the resulting 
fractions we observe that Secl5p elutes in a single peak with 
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Figure 3. Soluble Secl5p is associated in a high 
molecular mass particle of 19.5S, identified by (A) 
Sephacryl S-500 gel filtration and (B) sucrose 
velocity gradients. (A) 1.5 ml of a $2 (20 mg of 
protein) from NYI1 cells was layered on a S-500 
column and the elution profile of Secl5p was deter- 
mined by quantitative Western blot analysis ([]). 
The column elution profile of markers was also de- 
termined by Western blot analysis. Markers used 
were thyroglobulin (669 kD), apoferritin (443 kD), 
0-amylase (200 kD), alcohol dehydrogenase (150 
kD), and ovalburnin (45 kD). (B) Identification of 
a 19.5S particle containing Secl5p by velocity su- 
crose gradient centrifugation of a $2 from NY11 
cells. Secl5p was localized in each fraction by 
Western blot analysis and the peak of Secl5p was 
found to correspond to a value of 19S. The recov- 
ery of Secl5p was 91% of the loaded $2 fraction• 
Vertical arrows, from left to right, mark the posi- 
tions of thyroglobulin (19.5S), catalase (11.3S), 
and BSA (4.5S). (C) Dissociation of Secl5p from 
the plasma membrane of NY11 ceils by high salt 
(500 mM NaCI) and pH treatment (pH 8.0) for 
30 min on ice, and subsequent analysis of the re- 
leased Secl5p by Sephacryl S-500 gel filtration• 

a molecular mass of 1,000-2,000 kD (Fig. 3 A). No soluble, 
monomer form of Secl5p (115 kD) is present. Gel filtration 
of a 100,000-g supernatant ($3) gave identical results (not 
shown). Therefore soluble Secl5p localizes to a large partic- 
ulate aggregate or complex of 1,000-2,000-kD apparent mo- 
lecular mass. Only a single elution peak was observed, sug- 
gesting that the $3 and P3 pools of Seel5p are identical. 
Centrifugation of $2 for 1 h at 100,000-g results in partial 
clearance of this high molecular mass species of  Secl5p. We 
were unable to dissociate Secl5p from the high molecular 
mass species by high salt treatment. An $2 from NY11 cells 
was column fractionated in the presence of 500 mM NaCI. 
We observed that Secl5p remains in the high molecular mass 
species, with no detectable monomer form (data not shown). 
Thus the high molecular mass species of Secl5p is stable in 
500 mM NaCI and behaves as a tightly associated aggregate 
or complex. 

Analysis of soluble Secl5p by sucrose velocity gradients 
revealed that Secl5p has a sedimentation coefficient of 19.5S 

(Fig. 3 B) similar to that of thyroglobulin. However by gel 
filtration Secl5p has an apparent molecular mass two to three 
times greater than that of thyroglobulin. The standards used, 
including thyroglobulin, are essentially globular proteins. 
Proteins with a more elongated shape will sediment more 
slowly than expected from their molecular weight (Doms, 
1991). Therefore a sedimentation coefficient of 19.5S for the 
1,000-2,000-kD species of Secl5p suggests that the shape of 
this high molecular mass form may be an extended or elon- 
gated oligomer. 

In an attempt to determine if this high molecular mass spe- 
cies is a homoaggregate or a complex with other proteins, 
Secl5p was overexpressed from a 2# high copy number plas- 
mid or from a plasmid containing the inducible GAL/pro- 
moter. If Secl5p normally forms a complex with other pro- 
teins which are limiting in abundance it may be possible, by 
overproducing Secl5p, to induce monomer formation. If, 
however, Secl5p forms a homoaggregate, overexpression 
may result in increased levels of the high molecular mass 
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Figure 4. Sec15p is not associated with secretory 
vesicles isolated from a 100,000-g pellet of NY17 
cells. A P3 from NY17 cells was resuspended in 
1 ml of lysis buffer containing 10 mM MES at pH 
6.5 and analyzed by Sephacryl S-1000 column 
fractionation. (A) Secl5p was localized by quan- 
titative Western blot analysis (o). The recovery of 
Secl5p was 93% of the loaded P3 fraction. The 
protein concentration of each fraction was deter- 
mined by Bradford analysis (n). (B) Markers for 
secretory vesicles (o) and Kex2 protease (m). (C) 
Elution profiles of plasma membrane ATPase (A) 
and GDPase (A) activities. 

form with no production of the monomer form. Upon over- 
expression we find that the level of Secl5p in the high molec- 
ular mass form increases, with no detectable peak of mono- 
mer form (data not shown). In principle, this is consistent 
with the idea that Secl5p associates in a large, soluble 
homoaggregate. However even by galactose induced overex- 
pression the amount of Secl5p found in the peak of the high 
molecular mass soluble species increases only threefold. 
This level of overproduction is not high enough to assure 
saturation of other components of a complex, therefore this 
experiment is inconclusive. 

We next determined if Secl5p dissociation from the plasma 
membrane results in release of monomer forms or if larger 
forms dissociate from the membrane. A P2 from NY11 cells 
was resuspended in 0.8 M sorbitol/TEA buffer, pH 8.0, con- 
taining 500 mM NaC1 and incubated on ice for 30 min. 
These conditions result in solubilization of Secl5p from the 
membrane (Salminen and Novick, 1989). After this treat- 
ment, the membranes are pelleted and the supernatant ana- 
lyzed by Sephacryl S-500 gel filtration. The results, Fig. 3 
C, demonstrate that released Secl5p elutes with a molecular 
mass of •600-700 kD. While this apparent molecular mass 
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Figure 5. Secl5p localizes to the plasma mem- 
brane in the 10,000-g pellet of late acting SECmu- 
tants. A P2 from NY17 cells was isolated and ana- 
lyzed by sucrose gradient fractionation. Secl5p 
and marker enzyme activities were quantitated in 
each fraction as in Fig. 1. (A) Secl5p (e) and the 
plasma membrane ATPase activity (n) co-frac- 
tionate within the gradient. The recovery of 
Secl5p was 130% of the loaded I>2 fraction. (B) 
Localization of NADPH cytochrome c reductase 
activity (o) and protein concentration (,,) of each 
fraction. (C) GDPase (z,) and Kex2 protease (&) 
activities are located within distinct fractions of 
the gradient. 

is somewhat lower than the 1,000-2,000-kD form seen upon 
gel filtration of the $2 fraction (Fig. 3 A), no monomer form 
of Secl5p is detectable upon dissociation from the plasma 
membrane. Therefore, Secl5p may be released from the 
plasma membrane in a large aggregate or complex, although 
it is possible that monomer Secl5p dissociates from the 
plasma membrane and quickly associates with itself or other 
proteins. From the above data it appears that Secl5p forms 
a high molecular mass particle when soluble. It is possible 
that Secl5p associates directly with the plasma membrane in 
this high molecular mass species, or indirectly through an- 
other protein(s). Further experiments are required to address 
these possibilities. 

Sec15p Remains Associated with the Plasma 
Membrane in Vesicle-accumulating Mutants 

Secl5p could reach the plasma membrane by direct associa- 

tion from a soluble pool or by prior association with the 
vesicular precursors to the plasma membrane. To determine 
if Secl5p is associated with secretory vesicles, vesicles were 
purified from sec6-4 ceils by Sephacryl S-1000 gel filtration 
(Walworth and Novick, 1987). NY17 cells were incubated 
for 1 h at restrictive temperature (37°C) to impose a block 
in the secretory pathway, allowing the accumulation of secre- 
tory vesicles, and simultaneously shifted to low glucose con- 
taining media to derepress invertase biosynthesis. Thus in- 
vertase can be used as a lumenal marker of the accumulated 
secretory vesicles (Walworth and Novick, 1987). Secretory 
vesicles were pelleted at 100,000-g from osmotically lysed 
cells, resuspended, and chromatographed on a S-1000 col- 
umn (see Materials and Methods). Each fraction eluted from 
the column was assayed for marker enzymes and for the 
abundance of Secl5p by Western blot analysis. The results 
demonstrate that Secl5p coelutes with-the leading edge of a 
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Figure 6. Localization of Secl5p on the plasma 
membrane of a 10,000-g pellet from NY410 (sec8- 
9) cells. A P2 from NY410 was resuspended in 
2 ml of 55 % sucrose, 10 mM MES pH6.5 and ana- 
lyzed by sucrose gradient fractionation as in Fig. 
1. (A) Secl5p (o) and the plasma membrane ATP- 
ase activity ([3) cofractionate within the gradient. 
The recovery of Secl5p was 110% of the loaded P2 
fraction. (B) Secl5p is not located on either the 
ER (m) or the GDPase containing compartment 
(o) in this mutant. 

major protein peak (Fig. 4). The peak of protein is not as- 
sociated with any identified organelle. Secl5p fails to elute 
with the secretory marker enzyme invertase, or with the 
Kex2 containing compartment (Fig. 4). Therefore Secl5p 
does not associate with secretory vesicles en route to the 
plasma membrane. Note that by this purification scheme the 
Kex2 containing compartment is at least partially separable 
from secretory vesicles. The plasma membrane ATPase ac- 
tivity pelletable at 100,000 g and the GDPase containing 
compartment also elute from the column before Secl5p. 
From this data we conclude that Secl5p contained in a high 
speed pellet from sec6-4 vesicle accumulating cells fails to 
localize to any identified membrane component, but is found 
in a nonmembraneous complex or aggregate. 

We next determined if the plasma membrane association 
of Secl5p was effected by the loss of function of any of the 
late acting SEC gene products. It is possible, for example, 
that vesicle accumulation may result in reduced levels of 
Secl5p on the plasma membrane and a corresponding in- 
crease in the high molecular mass soluble form. We there- 
fore analyzed Secl5p localization in the P2 fraction of vari- 
ous vesicle accumulating mutants. After a 1-h incubation at 
the restrictive temperature, a 10,000-g pellet was isolated 
from each mutant and analyzed by sucrose gradient fraction- 
ation. The results for sec6-4 mutant cells are shown in Fig. 
5. Secl5p remains associated with the plasma membrane. 
Accumulation of secretory vesicles does not lead to Sec15p 
association with other membrane compartments localized in 
P2 or decrease the level of Secl5p found on the plasma mem- 

brane (Fig. 5). Therefore Secl5p localization to the plasma 
membrane is not dependent upon vesicular traffic or Sec6p 
function. 

Vesicle accumulation does result in a density shift of both 
the Kex2 and GDPase containing compartments (Fig. 5), as 
the GDPase containing compartment now localizes with 
fraction 1 (containing the membrane pellet of the gradient) 
and the Kex2 containing compartment equilibrates near the 
middle of the gradient. This result is also apparent in sec4-8 
vesicle accumulating mutant ceils. 

From previous immunofluorescence studies in ceils over- 
expressing Secl5p it was proposed that Secl5p functions 
downstream from Sec4p (Salminen and Novick, 1989). 
Therefore the localization of Secl5p may require proper 
Sec4p function. We performed sucrose gradient fraction- 
ation of a P2 isolated from sec4-8 cells incubated at the re- 
strictive temperature for 1 h to determine if Sec4-8 mutant 
protein effects the localization of Secl5p. The results demon- 
strate that Secl5p remains associated with the plasma mem- 
brane upon Sec4-8p inactivation, consistent with the results 
in sec6-4 cells (data not shown). Therefore loss of Sec4p 
function does not result in a mislocalization of Secl5p or a 
decrease in the amount of Secl5p on the surface, as differen- 
tial centrifugation of both wild-type and sec4-8 mutant cells 
result in similar levels of Secl5p localized in P2. 

We also performed sucrose gradient fractionation of a P2 
from sec15-1 mutant cells. The mutant Secl5-1p still local- 
izes to the plasma membrane (data not shown). Therefore 
the mutant phenotype of these cells is not the result of a mis- 
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Figure 7. Secl5p association with the plasma 
membrane is stable over time after repression of 
Secl5p synthesis. Secl5p gene expression was 
controlled in NY799 cells (containing a GALp- 
SEC15 plasmid) by growth in either galactose or 
glucose containing medium. After inhibition of 
expression by incubation in YPD medium for 
0-10 h, cells were harvested and Secl5p localized 
by quantitative Western blot analysis of differential 
centrifugation fractions. (.4) Differential centrifu- 
gation analysis of Secl5p localization in NY799 
cells incubated in YPD medium for 6, 8, or 10 h 
and NY451 cells (GAL+) after 10 h growth in 
YPD medium. P2, $3, and P3 were isolated from 
equal numbers of cells of each sample. (B) The 
amount of Secl5p in each subcellular fraction (P2, 
$3, or P3) expressed as the percent of Secl5p in 
the corresponding subceUular fraction from 
NY451 ceils. After a 6-h incubation in YPD, the 
percent of Secl5p in each fraction from NY799 
cells, relative to NY451 cells, is reduced 45-70%. 
After a 10-h incubation in YPD, the level of 
Secl5p found in both the $3 and P3 fractions has 
greatly decreased while the amount of Secl5p 
within P2 has only diminished 16%, as compared 
to the level in NY451 cells, and now containing the 
majority of the cellular Secl5p. 

localization of the protein. Further analysis is required to de- 
termine the biochemical defect of the Secl5-1 mutant 
protein. 

Analysis of Secl5p localization in other late-acting sec 
mutants displayed similar results, in that Secl5p remains 
localized in the 10,000-g pellet by differential centrifugation 
(Table II). However growth of sec8-9 cells under either per- 
missive or nonpermissive conditions results in an increase in 
the level of Secl5p in P2, and a corresponding decrease in 
$3 and P3 levels (Table II). We find that P2 of secS-9 cells 
contains between 43 and 46% of the total cellular Secl5p, 
under both permissive (23°C) and nonpermissive (37°C) 
temperatures. In all other strains, except seclO-2, the amount 
of Secl5p localized in P2 is between 22 and 28%. This data 
indicates that Sec8p may be involved in regulating the 
amount of Secl5p on the inner surface of the plasma mem- 
brane. To verify that this shift in distribution is dependent 
upon the function of the Sec8 protein, we transformed the 
sec8-9 cell to Sec8+ with the integrating plasmid pNB330 
(Materials and Methods). Upon fractionation of this trans- 
formant we find that Secl5p localization appears wild type, 
with only 19% of Secl5p located in P2 (Table 11). Therefore 
the increased level of Secl5p in P2 of secS-9 cells is due to 
the loss of Sec8p function. 

Sucrose gradient fractionation of sec8-9 cells was per- 
formed to determine if the additional Secl5p accumulated in 
P2 resides on the plasma membrane. After a 1-h incubation 
of sec8-9 cells at 37°C, Secl5p localizes exclusively to the 
plasma membrane upon subfractionation of the P2 pellet 
(Fig. 6). Therefore loss of SecSp function results in an in- 
creased amount of Secl5p on the plasma membrane. Sucrose 
gradient fractionation of a P3 pellet demonstrates that 
Secl5p fails to associate with any membrane component of 
the high speed pellet, and cofractionates with a protein peak 
that does not enter the gradient (data not shown). Therefore 
loss of Sec8p function does not result in altered localization 
of Secl5p in the P3 pellet. 

Previous evidence indicated that the SEC15 and SEC8 
genes interact genetically (Salminen and Novick, 1987). The 
data described above indicates that the amount of Secl5p 
found in P2, on the plasma membrane, is dependent on 
Sec8p function. A temperature-sensitive mutation in Sec8p 
dramatically increases the lmel of Secl5p in P2. Further bio- 
chemical studies are required to determine if Secl5p directly 
interacts with SecSp, and if this interaction occurs on the 
plasma membrane or possibly in the soluble pool. 

We also observed an increase in the amount of Secl5p as- 
sociated with P2 in the seclO-2 mutant (Table ID. This in- 

The Journal of Cell Biology, Volume 112, 1991 1126 



crease was intermediate between wild-type and sec8-9 mu- 
tant ceils, and was consistently observed. The SEC15 gene 
also interacts with the SECIO gene (Salminen and Novick, 
1987). Therefore the SECIO gene product may also interact 
directly with Secl5p, though further experiments are re- 
quired to characterize this putative interaction. 

The Most Stable Pool of SeclSp Is Associated with the 
Plasma Membrane 

The different pools of Secl5p could have differing stabilities. 
To address this point, we constructed a strain that contains 
the only copy of the SEC15 gene under control of the GAL/ 
promoter. Growth of this strain, NY799, in galactose con- 
taining media is required for SEC15 gene expression. By 
removal of the galactose and subsequent incubation in glu- 
cose containing media, repression of transcription from the 
SEC15 gene occurs. Secl5p is an essential gene product, thus 
growth and division of these cells will continue in glucose 
containing media until Secl5p becomes the limited factor 
due to dilution by cell division and proteolysis. Depletion of 
Secl5p in NY799 cells should allow identification of the 
most stable pool of Secl5p. 

NY799 cells were incubated in the presence of 0.5% 
galactose overnight to induce synthesis of Secl5p. Upon shift 
into glucose containing media (YPD), growth curves were 
first performed to determine the rate of division after repres- 
sion of SEC15 gene expression. We found that cell division 
in YPD occurs in a linear manner for 10-12 h, after which 
time division ceases (data not shown). We therefore local- 
ized Secl5p by differential centrifugation of NY799 cells af- 
ter 0-10-h incubation in YPD media (see Materials and 
Methods). 

After overnight incubation in 0.5% galactose containing 
media, 50 A~o0 U of NY799 cells were harvested after 0-, 
6-, 8-, and 10-h incubation in YPD media. Differential cen- 
trifugation was performed on all samples and the level of 
Secl5p in equal aliquots of each supernatant and pellet deter- 
mined by Western blot analysis. The total cellular level of 
Secl5p drops substantially between 0 and 6 h incubation in 
YPD medium, since the cells are still rapidly dividing but 
not synthesizing Secl5p and thus diluting the total amount 
of Secl5p contained within each cell. Only 25-30% of the 
total cellular Secl5p present in cells grown in galactose con- 
taining medium remains after a 6 hour incubation in YPD 
medium (data not shown). 

The results for the 6-10-h YPD samples are shown in Fig. 
7. We first compared the amount of Secl5p localized in each 
subcellular fraction to the corresponding fraction from 
NY451 (Gal+) cells grown in YPD medium for 10 h. The 
results show that the amount of Secl5p localized in P2 
decreases from 45 % of NY451 in the 6-h YPD sample to 
29% in the 10-h sample. However the amount of Secl5p 
localized in either $3 of P3 decreases more considerably. 
The level of Secl5p found in $3 drops from 55 % of NY451 
in the 6-h sample to only 15% in the 10-h sample. In P3 the 
level of Secl5p decreases from 30% of NY451 in the 6-h 
sample to only 5 % after 10-h incubation in YPD medium. 
Though no pool is completely stable over time we find that 
Secl5p localized in P2, residing on the plasma membrane, 
remains more constant after repression of SEC15 gene ex- 
pression. 

NY799 cells incubated in YPD for 0, 6, 10, or 24 h were 

also analyzed by electron microscopy. If the level of Sec15p 
on the plasma membrane becomes limiting for continued ex- 
pansion of the membrane surface, then secretory vesicles 
should accumulate in the cytoplasm. In wild-type yeast cells 
few secretory vesicles are apparent in the cells by electron 
microscopy (Novick et al., 1981). NY799 cells grown over- 
night in 0.5% galactose appear as wild-type (Fig. 8 A), as 
few secretory vesicles are observed. Very few vesicles are 
also apparent after 6-h incubation in YPD medium (Fig. 8 
B). Since the level of Secl5p in NY799 cells incubated in 
YPD for 6 h is greatly diminished (Fig. 7) and further syn- 
thesis is inhibited by glucose repression, this indicates that 
a small pool of Secl5p is sufficient for proper function and 
that this pool may be reused in multiple rounds of vesicle fu- 
sion. Incubation in YPD medium for 10 h results in the ac- 
cumulation of secretory vesicles in 25-30% of the cells. As 
the level of Secl5p continues to decrease in these cells we 
observe an asynchronous, but polarized, accumulation of 
vesicles (Fig. 8 C). In budded cells vesicles first accumulate 
specifically in the bud. Therefore vesicles are being deliv- 
ered to the proper location but fail to fuse with the plasma 
membrane. This is consistent with Secl5p function occur- 
ring on the plasma membrane or at another very late stage 
of the secretory pathway, not in the delivery of secretory 
vesicles to the bud. Incubation of NY799 cells in YPD for 
24 h results in vesicle accumulation throughout all ceils (data 
not shown). 

Kex2 and GDPase Activities Reside in 
Distinct Compartments 

Previous studies have shown that yeast GDPase and c~4,2man- 
nosyltransferase activities cofractionate in a sucrose velocity 
gradient using a 100,000-g pellet of wild-type cells (Abeijon 
et al., 1989). Cunnlngham and Wickner (1989) provided 
evidence that the Kex2 endoprotease and ot4,2mannosyl- 
transferase activities localize in separate compartments. We 
demonstrate here that Kex2 and GDPase activities reside in 
distinct compartments (Fig. 1, 2, and 4). 

Differential centrifugation of wild-type cells result in par- 
tial separation of the two yeast Golgi markers, Kex2 and 
GDPase (Table III). The majority of the Kex2 activity is lo- 
cated in P3, whereas the GDPase activity partitions much 
more equally between P2 and P3. GDPase activity found in 
$3 may be associated with membrane fragments or as solu- 
ble activity due to lysis of compartments. Sucrose gradient 
fractionation of both P2 and P3 further purify the Kex2 and 
GDPase compartments (Figs. 1 and 2). These Golgi markers 
are separable not only from other organdies but also from 
each other. Sucrose gradient fractionation of a P2 from wild- 
type cells results in equilibration of both Kex2 and GDPase 
containing compartments near the top of the gradient (Fig. 
1). However the markers appear to be separable by one frac- 
tion, though in some gradients the sharp peak of Kex2 activ- 
ity is more broad. The GDPase containing compartment in 
fractions 1%18 of Fig. 1 is 10-fold enriched over total lysate. 
The Kex2 containing compartment in fraction 19 of P2 is 
nine-fold enriched relative to the cell lysate. But only 'M0 % 
of the total Kex2 activity of the cell is located in this light 
compartment that pellets at 10,000 g. 

Sucrose gradient fractionation of P3 from wild-type cells 
results in more extensive Kex2 and GDPase separation (Fig. 
2). Kex2 activity localized in P3 is much more dense than 
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Figure 8. Electron microscopic analysis 
of NY799 cells after depletion of Secl5p 
by repression of synthesis. Cells were 
grown overnight in YP + 0.5% galac- 
tose to induce synthesis of Secl5p. The 
next day cells were harvested and in- 
cubated in YPD medium for 0, 6, or 
10 h and processed for microscopy. (A) 
Cells were grown in 0.5% galactose 
overnight. Few secretory vesicles are 
apparent, as in wild-type cells. Cells 
grown in YPD medium for (B) 6 or (C) 
10 h. After a 6-h incubation in YPD, 
cells accumulate few secretory vesicles 
and appear wild type. By 10 (C) secre- 
tory vesicles are apparent in 25-30% of 
the ceils. The micrograph depicts a bud- 
ded cell to demonstrate a bud-specific 
accumulation of secretory vesicles. Bar, 
1 gin. 



Table IlL 

Total Specific Fold 
Fraction Protein activity activity purification 

mg U 

KEX2 distribution during differential centrifugation of  NY11 cells 
Total lysate 196.8 7 .6  0.039 - 
P1 11.4 0.2 0.018 - 
S1 176 5.3 0.030 - 
P2 25.0 1.0 0.040 - 
$3 134 0.0  0.0 - 
P3 17.9 7.1 0.40 10.2 

GDPase  distribution during differential centrifugation o f  NY11 cells 
Total lysate 196.8 2,151 10.9 - 
P1 11.4 711 62 5.6 
SI 176.0 1,400 8.0 - 
P2 25.0 1,031 41.6 3.8 
$3 134.0 893 7.3 - 
P3 17.9 1,073 48 4.4 

Kex2 and GDPase activities are located in separate subcompartments. The sub- 
cellular distribution of Kex2- and GDPase-containing compartments was deter- 
mined by differential ccntrifugation of NYll  cells. The Kex2 and GDPase 
activities were assayed as in Fig. 1 and the distribution and fold purification 
in each subcellular fraction shown. 

GDPase activity, and also more dense than Kex2 activity 
found in P2. This dense peak of Kex2 activity may cor- 
respond to a dense peak of Kex2 previously identified in a 
1000-g supernatant of wild-type ceils (Cunningham and 
Wickner, 1989). We further characterize this peak of activity 
as residing in P3 and accounting for a majority of the cellular 
Kex2 activity (Table III). By Sephacryl S-1000 column frac- 
tionation partial separation of this dense Kex2-containing 
compartment from secretory vesicles occurs (Fig. 4). The 
peak of Kex2 activity located within the P3 sucrose gradient 
is highly enriched over Kex2 activity in the total lysate (Table 
HI). Other membrane components, however, fractionate in 
this region of the gradient and further purification steps 
would be required to completely purify the Kex2 containing 
compartment located in P3. The GDPase activity in P3 frac- 
tionates near the top of the gradient, as in P2, and is 18-fold 
enriched over the total cell lysate. The density of GDPase 
containing compartments in both P2 and P3 is very simi- 
lar, fractionating in 35-38% sucrose, indicating that both 
GDPase pools may be similar or identical, though further ex- 
periments are required to demonstrate this. 

Discuss ion 

We have presented evidence that the SEC15 gene product re- 
sides and may function on the plasma membrane of the yeast 
Saccharomyces cerevisiae to regulate vesicle fusion with the 
plasma membrane. Secl5p is also found in a soluble 19.5S 
particle that may be cytoplasmic in origin. Secl5p is not 
found on the Golgi apparatus or on the accumulated secre- 
tory vesicles isolated from see6-4 cells. Therefore delivery 
of Secl5p to the plasma membrane is not dependent on prior 
association with elements of the secretory pathway, but may 
be the result of direct attachment from the soluble pool. The 
Sec15-1 mutation permits plasma membrane attachment of 
the mutant Secl5-1p under both permissive and nonpermis- 
sive temperatures. Further biochemical analyses are re- 
quired to determine the temperature sensitive characteristics 

of the Secl5-1 mutant protein. The association of Secl5p 
with the plasma membrane could be mediated by additional 
proteins, such as those encoded by the SEC genes. However, 
defects in the known sec gene products required for vesicular 
transport from the Golgi apparatus do not lead to a failure 
in Secl5p membrane attachment. Rather, in the case ofsec8- 
9 and possibly seclO-2, significant enhancement of plasma 
membrane association is seen. Therefore Sec8p may nor- 
mally function to regulate the release of Secl5p from the 
plasma membrane after the completion of Secl5p function. 
Alternatively, loss of Sec8p function could lead to a build-up 
of Secl5p on the surface by a feedback mechanism. These 
results are in general support of the previous findings (Salmi- 
nen and Novick, 1987) that demonstrated strong genetic in- 
teraction between a set of genes including SEC8, SECIO, and 
SEC15. Further experiments are in progress to determine if 
Sec8p directly associates with Secl5p. 

Preliminary studies (Salminen and Novick, 1989) had 
shown that a large fraction of Secl5p is found in a fraction 
that does not pellet at 10,000 g but does pellet at 100,000 g. 
It is now clear that this pool of Secl5p, like that found in the 
100,000-g supernatant, is not membrane bound, but is as- 
sociated with a 19.5S particle. The large size of this particle 
leads to its partial clearance at 100,000 g. The subunit com- 
position of this particle is presently unclear. Overexpression 
of Secl5p fails to induce monomer formation, consistent 
with the formation of a Secl5p homopolymer, but also fails 
to induce a large increase in the level of the high molecular 
mass species of Secl5p. Immunoprecipitation studies aimed 
at identifying any interacting proteins have been unsuccess- 
ful to date. It is possible that this 19.5S particle associates 
with the plasma membrane unchanged or there may be a gain 
or loss of some components upon attachment. However, re- 
lease of Secl5p from the plasma membrane by high salt 
yields a particle of comparable size. 

At least two other proteins involved in the fusion process, 
NSF and Sec23p, are known to form oligomers. Block et al. 
(1988) proposed a homo-tetrameric structure for NSF, which 
is attached to Golgi membranes by a family of NSF attach- 
ment proteins referred to as SNAPs (Clary et al., 1990). 
Hicke and Schekman (1990) have characterized the SEC23 
gene product, which functions in ER to Golgi transport, and 
have demonstrated that Sec23p associates with both the cyto- 
plasmic surface of a membrane structure and a soluble 
oligomer or complex of 400 kD. The solubility properties of 
Sec23p are similar to Secl5p, and it is possible that the two 
proteins perform similar functions in different parts of the 
secretory pathway, yet the two proteins share no significant 
sequence similarity. Recently an abundant 97-kD polypep- 
tide has been identified in a wide range of cells that forms 
a high molecular mass homo-oligomeric ring-shaped AT- 
Pase particle (Peters et al., 1990). This particle localizes to 
a 100,000-g supernatant and the sequence of the 97 kD poly- 
peptide is related to both the NSF and SEC18 genes. How- 
ever p97 has not been shown to function in a fusion event. 

What is the function of Secl5p on the plasma membrane? 
In a previous study it was proposed that the SEC15 gene 
product may interact with and aggregate vesicles to one an- 
other or to the plasma membrane (Salminen and Novick, 
1989). A number of mammalian proteins are known to bind 
to secretory vesicles and cause aggregation in vitro (Bur- 
goyne, 1990), including members of the annexin family of 
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calcium binding proteins (Burgoyne and Geisow, 1989). 
Synexin was initially characterized as a protein that causes 
chromaftin granules to aggregate (Creutz et al., 1978). Cal- 
pactin causes aggregation of chromaffin granules at a cal- 
cium concentration closer to physiological levels than the 
other annexins (Drust and Creutz, 1988), and has been 
shown to reside on the plasma membrane (Drust, D. S., and 
C. E. Creutz. 1988. J. Cell Biol. 107[No. 5, Pt. 2]:339a 
[Abstr.]). While the sequence of Secl5p is not homologous 
to the members of the annexin family, it does cause vesicle 
aggregation upon overexpression and is located, at normal 
levels of expression, on the plasma membrane. Overexpres- 
sion of Secl5p may lead to an altered localization of Secl5p 
onto other membrane components, such as secretory vesi- 
cles, and cause an aggregation of vesicles to one another. In 
support of this hypothesis, sucrose gradient fractionation of 
cells overexpressing Secl 5p leads to a majority of membrane 
components aggregating and cofractionating near the middle 
of the gradient along with the Secl5p (data not shown). 
Therefore Secl5p may normally function on the plasma 
membrane to dock secretory vesicles bearing Sec4p to the 
surface before fusion. Cytoplasmic Sec2p may be recruited 
to this site to assist in the docking reaction. After fusion of 
the secretory vesicle to the plasma membrane, the docking 
and fusion machinery would disassociate, possibly releasing 
Secl5p from the surface in a large soluble particle that is un- 
able to associate with secretory vesicles. The release of 
Secl5p from the surface may require proper Sec8p function. 
Subsequent exocytic fusion events may require the recycling 
of Secl5p back to the surface. However it is possible that the 
large particulate form of Secl5p is not in a functional cycle 
but in a state of equilibrium between the cytoplasm and the 
plasma membrane, and this equilibrium is under control of 
Sec8p function. 

We have also presented evidence that the GDPase and 
Kex2 containing compartments are distinct and separable 
(Table III). This data supports the notion of Golgi subcom- 
partmentalization in Saccharomyces cerevisiae (Cunning- 
ham and Wickner, 1989). Payne and Schekman (1989) 
postulated that Kex2 recycles to the Golgi apparatus from 
post-Golgi secretory vesicles in a clathrin dependent man- 
ner. We have performed column fractionation of sec6-4 cells 
after the accumulation of secretory vesicles and find that 
Kex2 is at least partially separable from secretory vesicles. 
This result supports the idea that a large portion of the cellu- 
lar Kex2 activity localizes to a compartment distinct from 
both secretory vesicles and GDPase containing compart- 
ments and one can speculate that it represents a recycling 
vesicle intermediate. 

Genetic studies have led to the identification of a number 
of genes that are required for the final stage of the secretory 
pathway in yeast and have demonstrated strong genetic inter- 
actions among a subset of these genes. Through our studies 
of these genes and their protein products an understanding 
of the physical basis for the genetic requirements and interac- 
tions is beginning to emerge. Further biochemical and 
genetic studies will allow us to better define the role of 
Secl5p in vesicle fusion and should help elucidate the 
general mechanisms of membrane fusion events. 
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