
Heterogeneity of Microvascular Pericytes 
for Smooth Muscle Type Alpha-Actin 
Volker Nehls and Detlev Drenckhahn 
Department of Anatomy, Julius-Maximilians-University, D-8700 Wiirzburg, Germany 

Abstract. Microvascular pericytes are believed to be 
involved in various functions such as regulation of 
capillary blood flow and endothelial proliferation. 
Since pericytes represent a morphologically heteroge- 
neous cell population ranging from circular smooth 
musclelike to elongated fibroblast-like morphology it 
is possible that regulation of blood flow (via contrac- 
tility) and control of endothelial proliferation (as well 
as other metabolic functions) may be accomplished by 
different subsets of pericytes. In the present study we 
provide evidence for heterogeneity of pericytes at the 
molecular level by using two novel technical ap- 

proaches. These are (a) immunostaining of whole 
mounts of the microvascular beds of the rat mesentery 
and bovine retina and (b) immunoblotting studies of 
microdissected retinal microvessels. We show that 
pericytes of true capillaries (midcapiUaries) apparently 
lack the smooth muscle isoform of tx-actin whereas 
transitional pericytes of pre- and postcapillary micro- 
vascular segments do express this isoform. Thus, regu- 
lation of capillary blood flow may be accomplished by 
the smooth muscle-related pre- and postcapillary peri- 
cytes whereas the nonmuscle pericytes of true capil- 
laries may play a role in other functions. 

T 
HE capillary wall consists basically of two different 
cell types, i.e., endothelial cells which form the capil- 
lary tube and pericytes which are located on the ablu- 

minal surface of the endothelial tube. Pericytes are branched 
ceils that are wrapped by the capillary basal lamina. Accord- 
ing to their location and morphology three types of pericytes 
have been distinguished (Zimmermann, 1923). These are (a) 
precapillary, (b) midcapillary, and (c) postcapillary peri- 
cytes. Pericytes of the pre- and postcapillary segments dis- 
play gradual transitions to smooth muscle. Therefore, these 
pericytes have been classified as transitional pericytes (Zim- 
mermann, 1923) to distinguish them from the pericytes of 
true capillaries. Precapillary pericytes have several circular 
branches which tend to wrap themselves around the vessel. 
Midcapillary pericytes are spindle-shaped, highly elongated 
cells (up to 300/~m in length) that extend mainly in the long 
axis of the vessels and have many short secondary processes 
(centipede-like appearance in silver stain). Postcapillary 
pericytes are shorter stellate-shaped cells that cover the ablu- 
minal surface of postcapillaries and postcapillary venules (for 
orientation, see summarizing drawing in the Discussion). 

Generally, pericytes are believed to be involved in two 
functions (a) controlling endothelial proliferation and there- 
by the growth of new capillaries (Antonelli-Orlidge et al., 
1989; Kuwabara and Cogan, 1963; Orlidge and Dgtmore, 
1987) and (b) regulating capillary blood flow via a contrac- 
tile mechanism (Tilton et al., 1979; Vimtrup, 1922). Sup- 
port for contractility of pericytes has been provided by the 
observation that pericytes in tissue culture are capable to 
contract collagen lattices (Kelley et al., 1987). Further in- 

direct support for contractile features was provided by the 
demonstration, that certain pericytes react with antibodies to 
smooth muscle myosin, tropomyosin, and cyclic GMP-de- 
pendent protein kinase (Joyce et al., 1985a,b, 1986), the 
smooth muscleisoform ofalpha-actin (Herman and D?unore, 
1985; Skalli et al., 1989) and desmin (Fujimoto and Singer, 
1987). 

In contrast to antibodies to smooth muscle myosin and 
tropomyosin which also react with a variety of nonmuscle 
cell types (Grtschel-Stewart and Drenckhahn, 1982), anti- 
bodies to smooth muscle tx-actin (SM-~ actin) are specific 
for smooth muscle and smooth muscle-related cells (Gabbi- 
ani et al., 1984; Skalli et al., 1986, 1987). Therefore, anti- 
bodies to SM-u actin have been proposed as a tool to distin- 
guish pericytes from endothelial cells and fibroblasts in 
microvascular cell cultures (Herman and D~nore, 1985). 

However, the existence of SM-et actin in pericytes has so 
far only been demonstrated by examination of pericytes 
grown in cell culture and by immunostaining of tissue sec- 
tions (Herman and D~tmore, 1985; Skalli et al., 1989). 
Since it is difficult to distinguish pre- and postcapillaries 
from midcapillaries in tissue sections, even at the electron 
microscope level, it is presently still unknown whether 
SM-t~ actin occurs only in a subpopulation of pericytes, for 
example in the above mentioned transitional pericytes ofpre- 
and postcapillaries, or whether this isoform of actin is com- 
mon to all types of pericytes including pericytes of true capil- 
laries. 

I. Abbreviations used in this paper: SM, smooth muscle ct. 
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To address this problem we have pursued two approaches. 
In a first series of experiments we have examined serial sec- 
tions and whole-mount preparations of the rat mesentery 
and bovine retina microvasculature by immunofluorescence 
using different actin antibodies and antibodies specific for 
nonmuscle myosin and double-labeling techniques. In a sec- 
ond approach we have analyzed actin isoforms of microdis- 
sected capillaries of the bovine retina by immunoblotting. 
These studies have provided evidence for a switch of actin 
isoforms between pericytes of midcapillaries, which are 
negative for SM-o~ actin, and transitional pericytes of pre- 
and postcapillaries, which are positive for this isoform of 
actin. 

Materials and Methods 

Antibodies, Immunofluorescence 
The following antibodies were used in this study: monoclonal mouse IgG 
antibody against the NH2-terminal decapeptide of smooth SM-c~ actin (Pro- 
gen, Heidelberg, FRG; Skaili et al., 1986), monoclonal mouse IgM anti- 
body that reacts with all actin isoforms (Amersham International, Amer- 
sham, UK) and a polyclonal rabbit antibody against human platelet myosin 
(Drenckhahn and Wagner, 1986). A polyclonal rabbit antibody raised against 
chicken gizzard actin has been shown to cross-react with actin of muscle 
and nonmuscle sources (Drenckhahn and Gr6scbel-Stewart, 1980; Drenck- 
hahn and Dermietzel, 1988). 

For immunostaining of whole mounts of rat mesenteries 6-18-wk old 
Wistar rats of both sexes were anaesthetized with ether and killed by cervi- 
cal dislocation. Mesenteries were stretched over Teflon rings, fixed in 2% 
formaldehyde for 5 min, and digested in 5 mg/ml Dispase (Boehringor 
Mannheim GmbH, Mannheim, FRG) in PBS (10 mM Na phosphate, 140 

mM NaC1, pH 7.4) at 37°C for 30 min. Subsequently, mesenteries were 
fixed and permcabilized with 100% acetone at -20°C and processed for 
immunofiuorescence using the above listed antibodies and FITC-labeled 
goat anti-mouse IgG (Miles, St. Louis, MO) or TRITC-labeled goat 
anti-rabbit IgG (Bayer Diagnostic, Munich, Germany), respectively (for 
detail see Drenckhahn and Wagner, 1986). Double staining was performed 
by incubation with a mixture of mouse IgG against SM-a actin and rabbit 
anti-platelet myosin. The bound primary antibodies were visualized using 
a mixture of the corresponding secondary antibodies tagged with TRITC 
or FITC, respectively. 

Microcirculatory vessels of the bovine retina were freed of adherent cell 
layers as described previously (Kuwabara and Cogan, 1959). Briefly, nau- 
roretinas were removed from eyeballs about 30 min after stunning, fixed 
with 2% formaldehyde for 5 rain and digested with trypsin (1/250; Serva, 
FRG; 1.8 U/m1 PBS) for 10-15 m/n. Subsequent incubation with distilled 
water (5-10 min) removed adhering remnants of nervous tissue. The remain- 
ing vascular tree was transferred on glass slides and allowed to dry. After 
permeabilization with 0.5% (vol/vol) Triton X-100 (Sigma Chemical Co., 
St. Louis, MO) in PBS for 1 h retinal microvessels were processed for im- 
munofluorescence. 

Dissection of Microvessels, Immunoblotting 
Freshly isolated bovine retinas were fixed by immersion with 2 % formalde- 
hyde in PBS for 5 rain and were then processed for isolation of the vascular 
system as described above. Next, microvessels were cut into small pieces 
with a scalpel using a dissection microscope at 30-fold magnification and 
dark-field illumination (Olympus SZH-ILLD, Frankfurt, FRG). Capillary 
fragments and fragments of larger vessels, respectively, were collected by 
selective aspiration using an Eppendorf pipette (100 #1 tip; Brinkman In- 
struments Inc., Westbury, NY). Dissected microvessels were directly trans- 
ferred to SDS electrophoresis sample buffer (80°C) and lysed by repeated 
sonication (3 x 5 s). The insoluble material was removed by centrifugation 
(12,000 g, 10 rain) and the supernatant subjected to SDS-PAGE (10% 
minigels). To obtain actin bands with approximately the same amount of 
actin in capillaries and the large vessel fraction (as judged by density of the 

Figure 1. Simultaneous visualization of SM-a  actin (a) and platelet myosin (b) in a 4-mm 2 area of the rat mesentery processed for double 
immunofluorescence. Arteriole A, metarteriole mA, midcapiUary mC, precapillary pC, postcapiUary poC, venule V. Areas shown in Figs. 
2 and 3 are indicated in (a). 
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Figure 2. Higher magnification of area indicated in Fig. 1, stained for SM-c~ aetin (a-c) and platelet myosin (a'-c'). Fig. 2, a-c is a slightly 
cropped montage of four consecutive micrographs that show continuity of an arteriole (A), that gives off two metarterioles (mA) one of 
which divides into two preeapillaries (pC). The left precapillary gives off two midcapillaries (mC). In a'-c' (not mounted as montage) 
the same areas stained for platelet myosin are shown. Note strong immunoreactivity of endothelial cells and capillary pericytes with anti- 
platelet myosin and the absence of immunoreactivity from smooth muscle and transitional pericytes of arterioles and metarterioles, respec- 
tively. Anti-SM-~ actin does not react with endothelial cells and with no cell type of midcapillaries. 
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Figure 3. Higher magnifica- 
tion of area indicated in Fig. 1. 
A midcapiUary (mC) is shown 
at its entire length extending 
between a precapiUary (pC) 
and a postcapillary (poC). a 
and b is stained for SM-c~- 
aetin, c andd for platelet myo- 
sin. The boxed areas in a and 
c are shown in b and d at lw, her 
magnification. Note absence 
of SM-a aetin reactivity from 
midcapiUary pericytes that are 
visualized in d by reactivity 
with anti-platelet myosin (small 
arrows). 

Coomassie blue-stained acfin bands) the protein amount loaded per lane 
was about 15-25 ttg for capillaries and 5-10 t~g for larger vessels. Elec- 
trophoretograrns were electroblotted onto nitrocellulose filters (Sehleicher 
& Sehu¢ll Inc., Darmstadt, FRG) which were then incubated with antibod- 
ies (primary antibodies were diluted 1/100 to 1/500 in PBS). The bound im- 
munoglobulins were visualized using peroxidase-labeled goat anti-mouse 
IgG (Sigma Chemical Co.) and chloronaphthul as substrate (Nakane, 1968). 
Relative molecular weight standards were provided by electrophoretograms 
of human erythrocyte membranes. 

Results 

Criteria for classification of the microvascular tree are based 
on the branching pattern as well as on morphological and im- 
munological features of the vascular tree (see Fig. 1 and 
summarizing diagram in the Discussion). Examples of im- 
munostained areas of the mesentery and a dark-field image 
of the retinal microvasculature are shown in Figs. 1--4. Typi- 
cally, metarterioles in the mesentery arise as lateral offshoots 
or terminal branches of arterioles and most frequently ex- 
tend over a distance of 100-300/~m until they branch to give 
rise to two precapillaries. Most midcapillaries arise as 
lateral branches of precapillaries. As a rule, precapillaries of 
the mesentery terminate via an interposed midcapillary or 
occasionally directly in a small venule, thereby fulfilling the 
definition of thoroughfare channels according to Chambers 
and Zweifach (1944). In the retina terminal portions of 
metarterioles give off several pre- and midcapillaries (brush- 
like terminations) which further branch and join to form a 
dense midcapillary network (Figs. 4-7). 

Imraunof luorescence  

Mesentery. Antibodies against SM-a actin reacted strongly 

with the smooth muscle layer of arteries, terminal arterioles, 
postcapiUary venules, and veins. In the capillary bed immu- 
nostaining specific for SM-ot actin was observed in pericytes 
of metarterioles (smooth musclelike ceils), preeapiUaries, 
and many postcapillaries (Figs. 2 and 3). The SM-ot aetin 
immtmofluorescence was rather weak in the bulging peri- 
nuclear portions of perieytes but was strong in the ramifying 
processes of pre- and postcapillary pericytes. All midcapil- 
laries remained unstained by this antibody. As a rule, inten- 
sity of immunofluorescenee decreased gradually from arteri- 
oles via metarterioles towards terminal preeapillaries (Figs. 
1 and 2). In the mesenteric microvasculature the junctions 
between preeapillaries and midcapillaries were character- 
ized by an abrupt loss of the SM-ot actin fluorescence (Figs. 
2 and 3). The junctions between terminal portions of mid- 
capillaries and beginning postcapillaries were less readily 
visible by the SM-o~ actin immunofluorescence. Fig. 3 pro- 
vides an example of a mesenteric midcapillary that shows 
abrupt loss of immuuoreactivity with anti-SM-a actin at the 
junctions with both pre- and postcapillary vessels. When 
polyclonal antibodies against gizzard actin were used (cross- 
reacting with muscle and nonmuscle aetin isoforms) instead 
of the monoclonal SM-o~ aetin antibody, all cellular compo- 
nents of the microvessels were brightly stained including en- 
dothelial cells, smooth muscle, and pericytes at all locations 
(documented for retinal capillaries; see below). 

In contrast to the act.in antibodies, antibodies to platelet 
myosin did not react at all with either vascular smooth mus- 
cle (see also Larson et al., 1984) or perieytes of metarteri- 
oles (Fig. 2). However, anti-platelet myosin stained the en- 
dothehal layer of the entire vascular tree and, in addition, 
reacted with pericytes of precapiUaries, midcapillaries, and 
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Figure 6. Retinal capillary network stained with a polyclonal anti- 
body to gizzard actin. Arrow points to a bulging perinuclear por- 
tion of a pcricyte. 

Figure 4. Dark-field illumination of an isolated piece of the bovine 
retinal microvasculature. For explanation of abbreviations see leg- 
end to Fig. 1. 

postcapillary venules (Figs. 1 and 3). Thus, the staining pat- 
tern of anti-platelet myosin was almost complementary to 
that of SM-o~ actin in that the intensity of immunofluores- 
cence increased towards the smaller vessels and was weakest 
in arterioles (Fig. 1). Only in precapiUaries, postcapiUaries, 
and postcapillary venules both antibodies overlapped in that 
they stained the transitional smooth musclelike pericytes that 
cover these particular pre- and postcapillary segments (shown 
for precapillades in Figs. 2 and 3). 

Figure 5. Giemsa-stained retinal capillary network of a sample 
similar to that shown in Fig. 4. Arrows point to stained nuclei of 
pericytes. 

Retina. Basically, similar results were obtained with whole 
mount preparations of the microvasculature of the bovine ret- 
ina (Figs. 4-7). The most intense fluorescence specific for 
SM-a actin was observed in association with the smooth 
muscle layer of small arteries, arterioles, and venules. Met- 
arterioles were still moderately labeled whereas the wall of 
precapillades (Fig. 7) was virtually not stained with the 
SM-ot actin antibody. Capillaries and even early postcapil- 
lades remained completely unstained (Fig. 8 b). On the 
other hand, the polyclonal antibody against gizzard actin 
which has been shown to cross-react with virtually all actin 
isoforms (Grtschel-Stewart and Drenckhahn, 1982) stained 
the entire vascular wall of the retinal microcirculation in- 
cluding endothelial cells and midcapillary pericytes (Fig. 6). 
The same was true for anti-platelet myosin (Fig. 7 a) which, 
however, did not react with the smooth muscle layer of arter- 
ies, arterioles, and veins. 

That pericytes are abundant in retinal capillaries was in- 
dependently shown by a simple Giemsa stain of whole 
mounts, demonstrating that the procedure applied for isola- 
tion of the retinal microvasculature by trypsin digestion did 
not cause any loss of pericytes (Fig. 5). 

Semithin (0.5 #m) tissue sections of the rat heart (Fig. 
8) and retina (not shown) that were double labeled with 
anti-SM-ot actin and anti-platelet myosin confirmed the 
above described observations obtained with whole-mount 
preparations. 

Immunoblot t ing Studies 

To further confirm that SM-ot actin is not present in detect- 
able amounts in capillaries a different experimental approach 
was undertaken in which we microdissected the retinal 
microvasculature and separated the microvessel fragments in 
a capillary fraction and a fraction containing larger vessels 
such as arterioles and venules (Fig. 9). These fractions were 
subjected to SDS-PAGE and immunoblotting. Since the rela- 
tive amount of actin in capillaries was about three- to four- 
fold lower than in the fraction of larger vessels (as judged by 
the density of the 42-kD band) we adjusted the protein con- 
centration of both fractions to give actin bands of similar 
density in SDS-PAGE and immunoblots. This is shown in 
Fig. 10 in which both fractions of retinal microvessels show 
a similar density of the 42-kD band in immunoblots incu- 
bated with the monoclonal IgM-antibody of Amersham 
Corp. reacts with all actin isoforms. In addition to the pre- 
dominating 42-kD actin band breakdown products of actin 
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Figure 7. Double immunofluorescence of the bovine retinal microvasculature stained with antibodies to platelet myosin (a) and SM-c~ actin 
(b). Arrow in a indicates perinuclear portions of pericytes. Note restriction of the SM-c~ actin stain to the wall of a dividing terminal metar- 
teriole (mA). Mideapillaries (mC) and even precapillaries (pC) do not react with anti-SM-c~ actin, but react strongly with anti-platelet 
myosin. The postcapillary (poC) in the lower left comer was identified by following it towards its junction with a venule which was located 
outside the area shown on this micrograph. 

of lower molecular weight (40 and 35 kD) were detected in 
the fraction of larger vessels. In contrast, the antibody spe- 
cific for SM-o~ actin did virtually not react with actin in the 
capillary fraction but displayed strong immunoreactivity 
with actin in the fraction of larger retinal vessels, clearly 
showing that capillaries do not contain any detectable amount 
of SM-a actin. 

Discuss ion  

In the present study we provide biochemical and immuno- 
cytochemical evidence for molecular heterogeneity of mi- 
crovascular pericytes. In both the bovine retina and rat 
mesentery pericytes of true capillaries (midcapillaries) did 
not contain the smooth muscle isoform of ot-actin (SM-c¢ ac- 
tin). Transitional pericytes of pre- and postcapillary seg- 
ments of the mesentery displayed weak to strong reactions 
with antibodies to SM-o~ actin. In the retina even postcapil- 
laries and the majority of precapillaries were negative for 
SM-c~ actin. Zimmermann (1923) defined pre- and postcapil- 
lary pericytes as transitional elements sharing characteristics 
of both vascular smooth muscle and pericytes of true capil- 
laries. Support for this classification of pre- and postcapil- 

Figure 8. Section of a rat heart stained simultaneously with anti- 
bodies to SM-c~ actin (a) and anti-platelet myosin (b). SM-c~ actin 
is present in smooth muscle of a branching terminal venule (V) but 

absent from pericytes of capillaries that are brightly stained with 
anti-platelet myosin (small arrows). P, platelets stained with anti- 
platelet myosin. 
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Figure I0. Immunoblot analysis of microdissected capillaries (cap; 
b, d, and f )  and larger arterial and venous microvessels, (AV; c, e, 
and g) using mAbs specific for SM-tx actin (f and g) and a mAb 
that reacts with all actin isoforms (d and e). Corresponding lanes 
of capiUaries (b) and larger microvessels (c) stained for proteins 
with Coomassie blue are also shown. Lane a was loaded with hu- 
man erythrocyte membranes that served as molecular weight stan- 
dard. Note negligible cross-reactivity of the actin band in capil- 
laries with anti-SM-c~ actin. The hardly visible immunoreactive 
band in f is probably because of contamination of the capillary 
fraction with terminal metarterioles (see Fig. 9). 

our timings. Firsdy, it is difficult to distinguish midcapil- 
laries from pre- and postcapillaries in tissue sections, even 
at the ultrastructural level. Therefore it is well conceivable 
that the positive sectional profiles of pericytes observed by 

Figure 9. Phase-contrast micrographs of vascular fractions ana- 
lyzed by immunoblotting. (a) Capillary fraction still containing few 
pieces of metarterioles and precapillaries; (b and c) fraction of 
larger vessels. 

lary pericytes as transitional cell types was obtained in the 
present study by combined staining of these particular peri- 
cytes with antibodies to SM-ot actin and nonmuscle myosin 
(platelet myosin), thus confirming the intermediate nature of 
pre- and postcapillary pericytes between vascular smooth 
muscle and nonmuscle cells. Indirect support for molecular 
heterogeneity of pericytes has also been provided by Joyce 
et al. (1985a, b) who used polyclonal antibodies to myosin 
and tropomyosin and found that smooth musclelike im- 
munoreactivity of microvessels in sections of various tissues 
of the rat was positively correlated with the vascular di- 
m e t e r  but did not completely disappear in capillaries. Our 
observation of an abrupt disappearance of SM-tx actin in 
midcapillaries of the mesentery and its absence from the en- 
tire capillary network (pre-, mid-, and postcapiUaries) of the 
retina suggests that smooth musclelike differentiation ofperi- 
cytes may be regulated by an on and off mechanism, the mo- 
lecular basis of which remains to be elucidated. 

By immunohistochemistry at the electron microscopic 
level, Skalli et al. (1989) have demonstrated pericytes of 
microvessels in a variety of tissues to be positive for SM-c~ 
actin. Two aspects may help to explain the apparent dis- 
crepancies between the observation of Skalli et al. (1989) and 
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Figure 11. Heterogeneity of smooth muscle and pericytes in microcir- 
culation. Schematic drawing of the main segments of the micro- 
vascular bed of the rat mesentery illustrating morphological and 
immunological (SM-c~ actin, nonmuscle [platelet] myosin) heteroge- 
neity of pericytes and smooth muscle. In the retina even precapil- 
lades and postcapillaries are negative for SM-c~ actin. 
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Skalli et al. (1989) may represent pericytes of pre- and post- 
capillary segments which we found to be positive for SM-a 
actin in the rat mesentery. As a matter of fact, three of the 
four electron mierographs shown by Skalli et al. (1989) 
speak in favor of this possibility: figures 4 a and b of that 
study were interpreted as sections of"capillaries or venules" 
and Fig. 5 is a sectional profile of a typical venule. Secondly, 
the anatomy and hemodynamics of the capillary system of 
different tissues may differ profoundly from each other as 
shown in the present study for the differences between the 
capillary system of the mesentery and the retina. It is well 
conceivable that expression of SM-ot actin and the morphol- 
ogy of pericytes may be significantly modified by hemody- 
namic factors such as the transcapillary hydrostatic pressure 
gradient which is well known to vary in different tissues 
(Michel, 1984). This view is supported by studies on lung 
capillaries which have shown that pericytes proliferate dur- 
ing pulmonary hypertension and develop a morphologic phe- 
notype similar to that of smooth muscle cells (Meyrick and 
Reid, 1983). 

Our finding that all capillary pericytes of the bovine retina 
are devoid of SM-u actin is in obvious contradiction to the 
study of Herman and D~anore (1985), who, using polyclonal 
muscle-specific actin antibodies, described musclelike actin 
as a diagnostic marker for bovine retinal pericytes both in 
situ (only mentioned but not shown) and in tissue culture. 
The expression of muscular actin in cultured pericytes may 
be explained in two ways: firstly, the cultured pericytes may 
be derived from vascular smooth muscle cells or smooth 
musclelike cells of metarterioles and venules rather than 
from pericytes of true capillaries. Secondly, the nonphysio- 
logical conditions of tissue culture may cause dedifferentia- 
tion of pericytes towards a primitive smooth musclelike phe- 
notype. In favor of the latter possibility Tontsch and Bauer 
(1989) found expression of SM-a actin even in cultured ce- 
rebral microvascular endothelial cells when the cells were 
grown in the absence of growth factors and heparin. This 
effect was fully reversible when the cell cultures were again 
incubated with complete growth medium. In this perspective 
it would be important to develop in vitro conditions that sup- 
press expression of SM-a actin in perieytes and/or avoid 
proliferation of contaminating microvascular smooth muscle 
ceils. This would be an important step forward in studying 
the cell biology and biochemistry of capillary pericytes in 
vitro. 
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