
Abstract Neocortical state variables are defined and

evaluated at three levels: microscopic using multiple

spike activity (MSA), mesoscopic using local field

potentials (LFP) and electrocorticograms (ECoG), and

macroscopic using electroencephalograms (EEG) and

brain imaging. Transactions between levels occur in all

areas of cortex, upwardly by integration (abstraction,

generalization) and downwardly by differentiation

(speciation). The levels are joined by circular causality:

microscopic activity upwardly creates mesoscopic order

parameters, which downwardly constrain the micro-

scopic activity that creates them. Integration dominates

in sensory cortices. Microscopic activity evoked by

receptor input in sensation induces emergence of mes-

oscopic activity in perception, followed by integration of

perceptual activity into macroscopic activity in concept

formation. The reverse process dominates in motor

cortices, where the macroscopic activity embodying the

concepts supports predictions of future states as goals.

These macroscopic states are conceived to order mes-

oscopic activity in patterns that constitute plans for ac-

tions to achieve the goals. These planning patterns are

conceived to provide frames in which the microscopic

activity evolves in trajectories that adapted to the

immediate environmental conditions detected by new

stimuli. This circular sequence forms the action-per-

ception cycle. Its upward limb is understood through

correlation of sensory cortical activity with behavior.

Now brain-machine interfaces (BMI) offer a means to

understand the downward sequence through correlation

of behavior with motor cortical activity, beginning with

macroscopic goal states and concluding with recording

of microscopic MSA trajectories that operate neuro-

prostheses. Part 1 develops a hypothesis that describes

qualitatively the neurodynamics that supports the ac-

tion-perception cycle and derivative reflex arc. Part 2

describes episodic, ‘‘cinematographic’’ spatial pattern

formation and predicts some properties of the macro-

scopic and mesoscopic frames by which the embedded

trajectories of the microscopic activity of cortical sen-

sorimotor neurons might be organized and controlled.

Keywords Beta activityb � BCI � BMI �
Electrocorticogram ECoG � Epsilon activity e �
Gamma activity c � Intentional action � Local field

potential LFP � Multiple spike activity MSA �
Multiunit activity MUA � State variables � State

transitions

Introduction to BCI

The brain-computer interface (BCI) or brain-machine

interface (BMI) begins with attachment of electrodes

in or near the brain to measure and model its electrical

activity. Direct control by means of brain electrical

activity of an instrument for communication by a vic-

tim of paralysis or a remote platform by a scientist

wanting to explore an inhospitable environment

requires BCI. The first BCI using the scalp EEG

(electroencephalogram) for device control was devel-

oped by student engineers in Berkeley California in the
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1960s soon after the invention of the transistor enabled

construction of lightweight, low-power amplifiers,

filters, and electronic switches. Users demonstrated

remote on-off control of a light, an electric train, or a

cursor on a monitor by inducing and blocking alpha

waves. Engineers learned to control alpha by means of

biofeedback, in which the sub-audible alpha waves

(8–12 Hz) were used to modulate a 1 kHz carrier wave

in a so-called ‘alphaphone’, so that one could imme-

diately sense the audible FM or AM tone as an indi-

cator of his or her alpha waves (Millay 1999). The

techniques then were too primitive to achieve more

than on-off switching in BCI, but they have flourished

in biofeedback (Othmer et al. 1999), especially with

evoked potential techniques (Cheng et al. 2002) for

single-trial EEG as well (Blankertz et al. 2004). Gao

et al. (2003) used steady-state visual evoked potentials

giving an information transfer rate up to 68 bits/min.

Even so the baffling complexity of EEG, the smoothing

by the impedance barriers of the skull and scalp, and

the contamination by noise from muscle and eye

movements still severely limit its utility for BCI.

An alternative approach for BCI research is based on

the technology for reliable recording of the spike trains

of single neurons with arrays of multiple micro-

electrodes inserted directly into the neocortex of an

experimental animal (Georgopoulos et al. 1986;

Chapin et al. 1999; Wessburg et al. 2000; Nicolelis 2001;

Serruya et al. 2002; Donoghue 2002; Taylor et al. 2002;

Kipke et al. 2003; Sanchez et al. 2004; Musallam et al.

2004; Andersen et al. 2004). Bundles of very fine wires

(25–100 micron diameter) are inserted into the deeper

layers of the frontal and parietal cortices that include

the sensorimotor cortex of a monkey or a rat. The

locations of the tips of the wires are adjusted to isolate

the spike trains of multiple neurons from each tip

(Nicolelis 2003). Alternatively spikes are recorded from

a silicon probe inserted vertically through a single

cortical hypercolumn spanning 2 mm with spikes

recorded at 50 micron intervals (Blanche et al. 2005;

Hochberg et al. 2006). The spikes from single neurons

are identified by pattern recognition algorithms of the

spike waveforms sampled at rates 10–40 kHz (spike

durations are typically ~1 ms) and digitized as 1’s for

spikes in sequences of 0’s for each identified neural

spike train. The animal is trained to use a forelimb to

move a lever in order to get a reward (typically juice

to slake thirst). The spike trains are binned into sets

of spatiotemporal feature vectors of multiple spike

activity (MSA) in steps typically of 50–250 ms. After

the animal has learned the task, the feature vectors are

used instead of the limb movement to control an elec-

tronic switch that delivers the reward. For a while the

animal continues to use the lever despite the disconnect.

Eventually the lever is removed, and the animal receives

the reward solely by generating the spike trains.

The amount of information in the MSA integrated

over many trials suffices to replicate 80% of the vari-

ance in the trajectory of limb movement needed to

press the lever, and to decompose the feature vectors

that capture the contributions of different spike trains

to each stage of movement (Carmena et al. 2003). The

high variability of the spike trains is dealt with by

spatiotemporal averaging through a linear regressor

(FIR adaptive filter), indicating that the information

used by the brain for lever control is distributed over

many neurons (Lee et al. 1998; Cohen and Nicolelis

2004; DiGiovanna et al. 2006). On the one hand

investigators can demonstrate control of simple

movements by as few as 7–16 neurons (Seruya et al.

2002), and on the other hand the reliability and com-

plexity of control can be enhanced by using as many

spikes in MSA as can be extracted, already exceeding

100 sampled neural spike trains (Nicolelis 2001;

Carmena et al. 2005; Blanche et al. 2005) but with

diminishing returns for with increasing numbers by

standard adaptive filtering techniques (Sanchez et al.

2004). With further improvements in the engineering

techniques this form of BCI may achieve use of cortical

action potentials for control of more complex actions.

However, use of this technique for BCI in human

subjects is restricted to hospitalized victims of global

paralysis such as the ‘locked-in syndrome’ (Hinter-

berger et al. 2003), for whom communication and

environmental engagement by this method requires

surgical invasion for BCI, with poor prospects for long

term stability in a clinical setting (Hochberg et al.

2006). Moreover, sampling with microelectrodes is

constrained to recording spike trains from at most 103

neurons, which are embedded in cortex containing 105

neurons/mm3, and which are distributed over areas

exceeding 103 mm3, suggesting sample rates less than 1

neuron in 105 by use of microelectrodes. In effect,

greater information transfer rates are needed to con-

struct a variety of limb trajectories for flexible BCI.

Scalp EEG may meet that need when its mechanisms

are adequately understood.

Definitions of state variables and state space at three

hierarchical levels

The control of limb movement depends on sequential

patterns of brain activity that are indirectly observed

by recording the extracellular potential differences

created by loop currents of neurons. The loop currents
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are the basis for observing the electric potentials of

both the spikes of axons and the dendritic currents by

which spikes are controlled, all of which sum in the

volume conductor of the whole brain. The voltage of

each sequential pattern oscillates at a characteristic

frequency that carries a spatial pattern by amplitude

and phase modulation. A pattern that lasts at least

three to five cycles at the characteristic frequency is

called a frame. The frame defines a brain state that

emerges by a state transition and collapses by another

state transition to a new pattern. Such conditionally

stable patterns were described by Ilya Prigogine (1980)

in terms of the emergence of order from disorder by

formation of ‘‘dissipative structures’’ [patterns in

frames], and by Hermann Haken (1983) in terms of

‘‘order parameters’’ [patterns in frames] of ensembles

that constrain the particles creating them. During the

state transitions the brain is referred to as metastable

(Bressler and Kelso 2001; Fingelkurts and Fingelkurts

2004). The full description of a sequence of brain states

includes not only the patterns but also the behavior,

the brain modules (Houk 2005) that control behavior,

and the context in which the brain is planning, pre-

dicting and evaluating the behavior (Houk and Wise

1995; Andersen et al. 2004).

A set of signals from an array of n electrodes

determines a set of n state variables and the dimen-

sions of their n-space (Freeman 1975/2004, 2005a;

Basar 1998; Sanchez et al. 2006). The n-space is a finite

subspace projected from the essentially infinite state

space of the brain; each channel defines an indepen-

dent axis in the state space. The ranges of values taken

by the measurements of the electric potentials define

the boundaries of the accessible state space. The

measurement of the n state variables at one point in

time gives a point in n-space. Multiple recurrences by

repeated measurement giving nearly the same pattern

define a state by a cluster of points. A sequence of

points through state space defines a trajectory. The

shift by a trajectory from one cluster to another cluster

defines a state transition. Each cluster of points mani-

fests a self-organized brain state that is governed by an

attractor. Each attractor is surrounded by a basin of

attraction, so that when a trajectory crosses into the

basin, the brain converges to that pattern. A collection

of basins and attractors forms an attractor landscape. A

habitual sequence of patterns is connected by a path-

way that is called an itinerant trajectory (Tsuda 2001),

in analogy to migrant workers following the seasons.

This state-space approach to dynamics gives great

flexibility in describing the neural correlates of

behaviors, because the clusters of points can be defined

at different scales of time and space, and the measured

state variables can be processed and combined in many

different ways that flexibly reflect the underlying

dynamics.

These state variables then may also serve as vari-

ables in analytic equations that express the dynamics

revealed by data-driven models in nonlinear differen-

tial equations (Freeman 1975/2004) forming K-sets

(Kozma and Freeman 2001; Principe et al. 2001;

Kozma et al. 2003; Li et al. 2006) and neuropercolation

theory (Kozma et al. 2004). These modeling aspects

will not be elaborated here. Instead emphasis is given

to the choice of state variables representing brain

activity at different scales of time and space. There is

increasing evidence that brain dynamics is scale-free

(Barabási 2002), thus accounting for the similarity in

temporal dynamics among mammalian species of

neocortex (reviewed by Freeman 2005b) despite its

vast range of variation in area (Bok 1959). Recent

ECoG findings have shown the utility of discretizing

the continuum into three levels: microscopic (MSA),

mesoscopic (LFP and local ECoG) and macroscopic

(large-scale ECoG, EEG, and whole brain imaging).

Transitions between levels are described in terms of

circular causality (Haken 1983); ensembles of neurons

create mesoscopic order parameters that regulate the

microscopic neurons in the ensembles. In sensory cor-

tices the microscopic input is followed within a few

milliseconds by emergence of a sequence of meso-

scopic patterns reflecting integration within each pri-

mary sensory receiving area (Barrie et al. 1996).

Roughly half a second later, multicortical patterns

emerge that span much of the cerebral hemisphere

(Freeman and Burke 2003; Freeman and Rogers 2003)

and that reflect macroscopic integration of mesoscopic

patterns into a macroscopic pattern that includes both

limbic and the primary motor areas (Freeman 2005a).

Hypothetically in premotor and motor cortices this

macroscopic goal-state orders and embeds the emer-

gence of mesoscopic states that regulate spike trains of

microscopic neurons carrying motor cortical output.

Interrelation of state variables; dendritic field
potentials and axonal spikes

Brain activity coexists at the three levels, and the

observed loop currents from all levels contribute

potential differences simultaneously in all of the n

channels used for observation. The task of analysis is to

decompose them in order to define and measure useful

state variables at each level. It is essential to average

the data. Two types of averaging are used that extract

data structures at different levels. Time averaging
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across trials removes the background activity as noise

and emphasizes the stimulus- or event-related compo-

nents of the data: macroscopic event-related potentials

(ERP) from field potentials and microscopic post

stimulus time histograms (PSTH) from MSA. Spatial

averaging in single trials over signals from high-density

electrode arrays enhances the background activity,

making it possible to study its reorganization by state

transitions under the impact of stimuli (Freeman,

2004). Spatial averaging gives reference values for

phase and amplitude patterns and their rates of change

in the spatial and temporal dimensions for every signal

that is used to get the spatial average in single trials.

The averaged waveforms from field potentials can be

decomposed by linear techniques (Freeman 1975/2004;

Nunez et al. 1997; Basar 1998).

A multi-dimensional approach to BCI is based not

only on levels but also on the fact that neurons have

two main functional branches. Dendrites receive spikes

and sum them by converting the MSA into waves of

dendritic current density. Axons transmit spike trains

that express magnitudes of dendritic activity by pulse

rates and intervals. Dendritic currents regulate spike

output at trigger zones and in turn are regulated by

spike input at synapses. For single neurons the spike

rate has repeatedly been demonstrated to be linearly

additive and proportional to transmembrane current

density imposed with an intracellular electrode

between the limits of threshold and doublet firing over

a broad range (e.g., Granit and Renkin 1961; Granit

et al. 1963). At synapses the postsynaptic potential

amplitude is nonlinear, because the amplitude of the

impulse response decreases as the evoked amplitude

level approaches the equilibrium potential of the syn-

aptic generator. To the contrary, for a population of

neurons the relation of pulse density (MSA amplitude)

to mean transmembrane current density (ECoG) is

nonlinear but monotonic at trigger zones. Typically the

relation is sigmoid (Fig. 1), owing to the distributions

of thresholds. The relation of pulse density to dendritic

wave amplitude at synapses is kept within a narrow

near-linear range at synapses (Freeman 1975/2004).

Synaptic current always flows in closed loops, with

the electromotive force located in the high-resistance

current source in the synapse, and the maximum

energy dissipation at the matching resistance in the

axonal trigger zone. Both axonal and synaptic loop

currents cause weak fields of electric potential in the

extracellular low-resistance volume conductor. They

differ from the transmembrane potential differences in

two respects. First, they are lower in magnitude by 103

owing to the low extraneuronal specific resistance.

Second, they result from the sum of extracellular

current densities of all participating neurons in the

neighborhood, estimated to be conservatively on the

order of 104 (Sholl 1956; Bok 1959; Freeman 1975/2004;

Braitenberg and Schüz 1998). Therefore axonal pulses

are microscopic, and dendritic waves are mesoscopic.

The pervasive background activity observed in BCI

is caused by mutual excitation among cortical neurons,

predominantly local. About 85% of cortical neurons

are pyramidal neurons (Sholl 1956; Braitenberg and

Schüz 1998). Each excitatory neuron transmits to ~104

other neurons and receives from ~104 other neurons

but not the same neurons to which they transmit. The

likelihood of any two neurons having a reciprocal

connection is about 10–6 (Braitenberg and Schüz 1998;

Liley and Wright 1994). The mutual excitation results

in self-sustained ‘spontaneous’ background activity.

That activity is locally stabilized everywhere by the

thresholds and refractory periods of axons (Freeman

1975/2004; 2006). The dynamics is modeled with a 4th

order nonlinear differential equation (a KIe set,

Freeman 1975/2004). In the language of linear

dynamics, linearization of the equations at the oper-

ating point gives a zero eigenvalue that specifies a

closed loop pole at the origin of the complex plane. In

the language of nonlinear dynamics, the population

maintains a stable, non-zero point attractor. In the

language of physics the population maintains a stable

ground state. In the language of neurophysiology the

population sustains steady-state background activity.

Each local neighborhood (‘cortical column’) has two

measurable quantities with mean values that are gov-

erned by this attractor: the local mean field dendritic

current density and the local axonal pulse density. For

Fig. 1 (A) Triangles show normalized pulse probability density
conditional on wave amplitude from Eq. (7) in Appendix 1.
Squares show the numerical derivative. (B) The sigmoid
equation for the static nonlinear wave-pulse relation is derived
by a statistical mechanical generalization from the Hodgkin–
Huxley equations. The derivative, dq/dv, gives the forward
nonlinear gain. Qm designates the maximal asymptote, which
increases above rest (Qm = 2) with hunger, rage, etc. (Qm = 5).
From Freeman (1979)
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an estimate of the average background firing rate of

cortical neurons of ~1/s (Swadlow 1994), the average

pulse density of 104 would be ~10,000 spikes/s. Each

spike lasts about 1 ms, which allows treatment of spike

density as a continuous variable with its modulation

depth limited by thresholds and refractory periods

(Fig. 1). In the language of engineering a population

signal is formed by time-multiplexing across the 104

neurons participating in the mesoscopic pattern.

Wave density is recorded extracellularly as a con-

tinuous analog time series before digitizing. The pulse

density (at the mesoscopic level) must be computed

from an average over MSA. It is not possible to record

the spike trains of all 104 contributing neurons, so the

ergodic hypothesis is invoked. It must be assumed that

over a long enough time in the resting state the mes-

oscopic participation of an observed neuron will oc-

cupy the states of all the neurons at any one time, with

respect to its contributions to the LFP and ECoG. This

assumption holds only for brains at rest or under light

anesthesia and does not hold for neurons in brains of

animals engaged in intentional behavior or driven in

ERP and PSTH. Owing to the nonstationarity of brains

repeatedly departing from the rest state the wave-pulse

relation of neuron populations can be tested only with

individual neurons that have spike rates ‡10/s in order

to get the 104 spikes needed in 1,000 s (~17 min) of

recording. More commonly MSA with ~10 spike trains

giving an average rate of 10/s are used to interrelate

MSA and LFP or ECoG.

The statistical wave-pulse relation (Appendix 1) at

trigger zones of axons is expressed in a sigmoid curve

as the probability of pulse occurrence conditional on

wave amplitude (Fig. 1, triangles calculated with Eq.

(7)). The amplitude histograms of LFP and ECoG

typically are Gaussian. The distributions of interspike

intervals of the single spike trains typically conform to

a Poisson process with a dead time (the refractory

periods) and the correlations between spike trains are

very low (Abeles 1991). The spectrum of MSA (300–

6000 Hz) tends to be flat resembling white noise (1/f 0),

while the spectrum of field potentials tends to resemble

‘‘brown’’ noise (1/f 2) (Schroeder 1991). The impulse

response of a mutually excitatory population to single

shock stimuli shows a brief oscillation at high fre-

quency (80–250 Hz, the epsilon range) in the field

potential accompanied by chattering of single cells at

spike intervals ~4–5 ms followed by exponential decay

back to the baseline.

These properties are readily simulated with a ran-

dom number generator, provided that the flat spectrum

(1/f 0) is weighted by a 1/f 2 filter:

A2ðf Þ ¼ �2 antilog10ðaðf ÞÞ;

where f is frequency in Hz, a is the noise amplitude

before filtering, and A is noise power after filtering

(Freeman 2006), which reflects the way in which the

background activity is generated (Ch. 8 in Freeman

2000) by summation of innumerable random processes

(p. 125 in Schroeder 1991) in mutual excitation. Each

neuron is multitasking; it contributes specifically to its

local networks at the microscopic level, and simulta-

neously it interacts with its neighborhood and partici-

pates at the population level with a small fraction of

the variance of its pulse train by time-multiplexing

(rotating at random among neurons the duty of trans-

mitting a spike while maintaining a high transmission

pulse density with low spatial density). That small

fraction of the variance of its pulse train is not

detectable in an isolated single microscopic pulse train,

yet it contributes to the mesoscopic state variable of

the neighborhood. The transfer function for the feed-

back pathway of each neuron with its neighborhood

can be approximated by a one-dimensional diffusion

process with a lumped delay, T, for which the transfer

function in a piece-wise linear approximation is exp

(–(sT)0.5) (Freeman 1975/2004) that randomizes spike

occurrences and likewise the refractory periods on

each passage around the positive feedback loop

between each neuron and its local neighborhood.

Hence the nonlinear relation between microscopic

spikes and mesoscopic waves can be treated as static

rather than dynamic, in contrast to the time-varying

nonlinear dynamics of single neurons described by the

Hodgkin–Huxley equations, which relate lower level

kinetics of ions and ion channels to higher level

membrane currents.

The extraneuronal dendritic potential recorded

from the same depth electrode as the MSA is the LFP.

Each electrode samples the LFP over multiple neural

populations comprising multiple cortical hypercol-

umns, each on the order of 1.0 mm in diameter con-

taining ~105 neurons/mm3; though the radius of spike

detection is commonly asserted to be roughly 200 -

microns, the radius for detection of LFP components is

undefined and well exceeds 1 mm. An array of 102

electrodes sampling the mean fields of an area of

cortex 10 · 10 mm (Freeman et al. 2000) might in

theory give sampling averaging 1 neuron in 10, an

improvement over 1 in 105. Further, the dendritic

current of the LFP spreads by volume conduction

(Nunez et al. 1997) to the pial surface of the cortex,

where it gives the electrocorticogram (ECoG) without

need for penetration into the cortex (Fig. 2). The

Cogn Neurodyn (2007) 1:3–14 7

123



current also spreads to the overlying scalp giving the

EEG. These features indicate that wave recording

might surmount the sampling limitations on spike

recording, as suggested also by Mehring et al. (2003)

despite the complexities of the relations between MSA

and LFP Wang et al. (2006).

However, there remains a long and arduous path

from single neuron recording through LFP and ECoG

to the EEG as a channel for BCI. The key point here is

that the farther one places the recording electrode from

the generating cortex, the greater is the loss of detail by

spatiotemporal smoothing. Yet the brain is doing

exactly that—spatial averaging—prior to constructing

its motor control patterns in self-organization of the

activity of billions of neurons. Likewise researchers are

averaging their MSA data, often to find oscillations in

firing probabilities. Reports of gamma scalp EEG cor-

relates of behavior are now commonplace (Müller et al.

1996; Tallon-Beaudry et al. 1996, 1998; Rodriguez et al.

1999; Miltner et al. 1999), as well as reports of epsilon

correlates (Gonzalez et al. 2006), which demonstrate

the enhancement of global ECoG signals by smoothing

that may enable researchers, metaphorically speaking,

to see the forest instead of the trees.

What, then, are the optimal space and time windows

in which to construct the space-time averages to extract

patterns of successive states as frames without loss of

crucial detail? Available evidence (Freeman 2005a,

2006) shows that frames are not and need not be syn-

chronized with each other, because emergent frames at

mesoscopic and macroscopic levels often overlap,

possibly by superposition, and possibly by nonlinear

interaction. Each mesoscopic frame can be conceived

to shape the continuous trajectories of microscopic

neural activity that control limb movement by evolving

in frames that within themselves appear to be linear

and stationary. That patterning of itinerant trajectories

(Tsuda 2001) is extracted and reconstructed using

multivariate linear techniques (e.g., Hochberg et al.

2006). The requirements for high-density recording

arrays, high-speed digitizing, and linear systems anal-

ysis are met; the need now is for comprehensive theory

by which to guide decomposition of signals to extract

optimized state variables in frames.

Size of spatial frames: two modes of description

of behavior in BCI

The motor control operations of brains are described

from two viewpoints of the simplest experiment: a

hungry rat pressing a switch for a pellet, which serves

as an animal model for a human subject performing a

more complex task. The first viewpoint is that of the

behaviorist and engineer, who treat the brain as a

deterministic signal generator that can be controlled by

reinforcement learning (Ferster and Skinner 1957). In

behaviorist terms a rat is conditioned to use its fore-

limb to press a lever (an ‘‘operant’’) and get a reward

or avoid punishment in reinforcement learning (Ohl

et al. 2001). The behavior of the animal is ‘‘shaped’’ to

perform a conditioned response (CR). Next the food is

given only when a conditioned stimulus (CS) such as a

tone or light flash is paired in a fixed schedule of

reinforcement. An array of implanted microelectrodes

is used to record the MSA, which samples the cortical

activity pattern that mediates the CS into the CR.

When the subject has learned the association and can

perform the task reliably, the lever is disconnected

from the switch controlling the reinforcement, and the

MSA is used to deliver it instead. After training is

completed, the lever is removed, and the rat performs

by using its brain activity through an electronic chan-

nel. Successful transfer of reinforcement delivery from

an operant to its neural correlate opens a BCI channel.

The second viewpoint is that of the psychologist and

pragmatist, who treat the brain as a self-organizing

system that predicts its own goals and plans its actions

to achieve them. In pragmatist terms the CR is per-

formed through an intentional process that is called the

‘‘action-perception cycle’’, which is aimed to achieve

‘‘maximum grip’’ (Merleau-Ponty 1945). The expecta-

tion of performing an action to receive a reward such

as juice emerges as an internally generated macro-

scopic intentional state involving thirst by which the rat

predicts its future of getting a reward. The initial

training (shaping) shapes in the brain the microscopic

synaptic connections that the rat must have in order

to predict, plan and construct the neural command

that executes the forthcoming intentional act of lever

Fig. 2 The locations are shown of typical placements by
neurosurgeons of arrays of 4 mm diameter electrodes 1 cm apart
on the pial surface of neocortex, here shown as the left side of the
cerebrum, to record ECoG. From Sanchez et al. (2006)
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pressing with the expectation that reward will follow.

This mesoscopic command has the form of oscillatory

patterns of dendritic waves and axonal pulses that are

embedded in and constrained by the macroscopic state.

Each command further constrains the trajectories of

spikes that descend into the brain stem and spinal cord.

They are accompanied by other patterns of spikes

called ‘‘corollary discharges’’ (Sperry 1950) and

‘‘efference copies’’ (von Holst and Mittelstädt 1950)

that propagate through the brain (not the through the

body in the proprioceptive ‘‘sixth sense’’, Abbott 2006)

to the primary sensory areas. Corollary discharges

modify the sensory cortices by conditioning (shaping)

their synaptic sensitivities to embody the predictions of

the changes in sensory input that will result from acts

to search for and consume juice. Then cortical neurons

can respond selectively to a CS that is expected, even

when it is obscured by noise and distorted by variations

in body position. This selective cortical sensitization

is called preafference (Kay and Freeman 1998); it

implements attention and expectancy.

The prediction of a range of possible outcomes of

each act in search of reward is mediated by the

dynamics of the sensory cortices. The selective sensi-

tivities of each sensory cortex form a landscape of

basins of attraction (Skarda and Freeman 1987). Each

class of discriminated input corresponds to a learned

attractor. The cortex in the expectant state of search

has wave and pulse state variables that trace a trajec-

tory through the high-dimensional state space of

cortical dynamics. At each time step the cortical state

advances by a measurable Euclidean distance through

state space. When an action such as a sniff or a fov-

eation is taken, the afferent spikes that are triggered by

a CS in sensory receptors are carried by relays to

sensory cortex. The impact of the background noise

that accompanies the CS destabilizes the cortex and

actualizes the attractor landscape. The CS in the

sensory noise selects a basin of attraction, which is one

among the sensitized patterns that are potentiated by

preafference in the sensory cortex to which the afferent

spikes are directed. The trajectory defined by the state

variables of the sensory cortex in the high-dimensional

hyperspace gives immediate access to any among all

basins of attraction, which individually are in low-

dimensional subspaces. Capture by a basin initiates the

construction of a spatially distributed signal that sig-

nifies the class to which the stimulus is assigned. The

mesoscopic output pattern transmits the knowledge

about the CS from past experience.

Every sensory cortex simultaneously diverges

its mesoscopic output, and all outputs converge in

the superficial entorhinal cortex, which cycles the

combined activity through the hippocampal system

where spatial and temporal orientation are assigned to

the multisensory percept (Gestalt) in the cognitive map

and short term memory. The output from the deep

entorhinal cortex diverges to all sensory areas and the

pre-motor and motor cortex. A sequence of macro-

scopic patterns emerge that incorporate all of the areas

(Freeman and Burke 2003; Freeman and Rogers 2003).

By hypothesis the macroscopic pattern embeds an

appropriate neural command that evolves by succes-

sive mesoscopic frames under the guidance of the

surrounding areas in constant communication. That

command is accompanied by its observable neural

correlates in MSA, LFP and local ECoG. Minimally,

that motor correlate is observed in the sensorimotor

cortex, measured, and used by the experimentalist to

deliver the reward, after disabling the lever-reward

connection. Optimally, much of the configuration of

the anticipatory corollary discharge of preafference

and sensory testing by proprioceptive feedback may be

available in the prefrontal, parietal, temporal and

occipital cortices in the signals from areas that sur-

round the sensorimotor cortex. The distribution of

sampling of mesoscopic and macroscopic cortical

activity is profitably quite wide indeed, as shown by

Nicolelis (2003) with MSA and by Gao et al. (2003)

with EEG.

These two modes of description, the reflex arc

starting with a stimulus and the action-perception cycle

starting with intention, are not in conflict. Each has its

advantages and limitations; they are complementary.

They should both be used to define and measure the

properties of neural correlates of actions. The behav-

iorist approach focuses on the movement execution by

control in the motor and premotor cortices in the

posterior frontal lobe and the proprioceptive feedback

of limb movement in the somatosensory cortex in the

anterior parietal lobe. The pragmatist approach fo-

cuses on the neural context in which the act is per-

formed, including the predictions formulated by the

animal and the preparations required of the body in

order to perform reliably and robustly. Virtually all

structures in the brain are involved in this broad con-

text (Kozma et al. 2003; Freeman and Burke 2003;

Freeman and Rogers 2003; Houk 2005).

Sequential time frames of the neural processing

mediating CS into CR

In behaviorist terms the reflex stimulus-response

model is constructed with data from spike recording

at the microscopic level of analysis. Each trial after
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training begins with delivery by the investigators of a

discriminative CS to the eyes or ears, where the

stimulus energy is transduced to spikes and the

stimulus information is encoded in spike rates and

intervals for transmission to the primary sensory

cortex, with pre-processing at spinal and thalamic

relays in the ascending path. Cortical networks

extract the information by feature detector neurons,

bind its features (Singer and Gray 1995) and send

the new spike pattern to association areas for com-

parison with information already stored by training

in associational networks. After identification and

classification, the deciding information is sent as yet

another a pattern of spikes to the premotor and

motor cortices. A motor command is organized by

neural modules that include the basal ganglia and

cerebellum (Houk and Wise 1995; Houk 2005). The

command is sent as a spatiotemporal pattern of

spikes into the brain stem and spinal cord. The

activated limb sends proprioceptive signals to the

parietal somatosensory areas, which are selectively

activated and integrated into the activity of motor

areas. The command patterns are intercepted by

arrays of microelectrodes in BCI, and the trial is

completed after delivery of the reward. These

sequential patterns are inferred to have start and end

times giving their durations as well as their spatial

locations and sizes. They may well be overlapping

and interactive.

In pragmatist terms the nonlinear neurodynamics

paradigm is pursued with data from LFP and ECoG

at the mesoscopic level of analysis. Each trial after

training begins with an expectant state of a rat by

which the brain holds the sensory cortices in receiv-

ing mode by preafference. Its intentional stance

includes an appropriate posture of head, trunk and

limbs (Stuart 2005) for stabilization of its center of

gravity and orientation of its sense organs to the

expected types and locations of CS. Preparation for

action also includes optimization of the janitorial

functions of the autonomic and neuroendocrine back-

up systems. Attention is focused through preafference

by construction of relevant attractor landscapes in all

sensory cortices. The basins of attraction in each

landscape (Skarda and Freeman 1987; Kozma and

Freeman 2001) include selective sensitivities to the

background inputs that the rat continually checks to

detect all expected discriminative CS. Each attractor

landscape also includes the basin of an attractor for

novel or unexpected stimuli, which generates unpat-

terned ‘‘chaotic’’ activity that evokes an orienting

response to a salient unknown stimulus and enables

the formation of new attractors by Hebbian category

learning (Ohl et al. 2001). While the rat is attentive

and expectant, holding its cortices in open receptive

mode, it is ready to receive a CS.

Sensory receptors respond to whatever they

receive; habituation is cortical. Each CS is embedded

in background noise. The impact on each sensory

cortex of the afferent spikes evoked by background

greatly exceeds that of the CS and destabilizes the

cortex. The state transition is a spontaneous sym-

metry breaking (Freeman and Vitiello 2006) that

activates the latent attractor landscape in each pri-

mary sensory cortex. The ECoG reflects an intra-

cortical search trajectory in n-space by which the

sensory information in the spikes selects an appro-

priate basin of attraction. Each attractor is based in a

Hebbian cell assembly of mutually excitatory pyra-

midal cells. The spikes specifically evoked by the CS

excite the cells in one assembly, which amplify the

impact and result in the selection of that assembly

and attractor. On convergence of the intracortical

search trajectory to the selected low-dimensional

attractor, each sensory cortex in its transmitting mode

broadcasts a spike pattern that designates the class to

which the cortex has assigned the CS, and it incre-

mentally modifies and updates the selected attractor

in the continuing process of learning. Convergence to

the attractor implements the process of generalization

(Lashley 1942). The cortex deletes the raw sensory

information during transmission. Smoothing imposed

by a spatiotemporal integral transform in the output

pathway implements the process of abstraction

(Freeman 2004a, b, 2005, 2006).

The description in terms of sparse networks of

neurons in Hebbian assemblies that communicate by

spike trains is microscopic. The description in terms

of neural populations, spike densities in MSA, den-

dritic current densities in LFP from microwires, and

local ECoG from a pial surface array is mesoscopic.

The behavioral description and use of the electro-

encephalogram (EEG) from the scalp as well as

other tools for imaging (MEG, fMRI, etc.) is mac-

roscopic. Again, these descriptions are complemen-

tary, because they address different hierarchical

levels of brain function. The state variables at the

microscopic level are measured in the pulse trains,

which must be averaged in one way or another for

correlation with the state variables at the mesoscopic

level. The field potentials measured at that level

must be combined and expressed as high dimensional

feature vectors for correlations with the behavior

that is measured at the macroscopic level. Multidi-

mensional scaling and statistics project high dimen-

sional clusters into 2-D for visualization and
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classification (Freeman and Grajski 1987; Barrie

et al. 1999).

There are two salient aspects of MSA feature

vectors in the pulse mode that help predict the rel-

evant LFP and ECoG feature vectors in the wave

mode. One is the success of empirical temporal

coarse-graining of spike activity into 50–250 ms bins.

This produces a time-to-amplitude conversion that is

critical for adaptive filters that correlate modulations

in amplitude. The other is the spatial patterning of

mean pulse densities of the multichannel MSA fea-

ture vector in each time step (Carmena et al. 2005).

The counterparts in the accompanying LFP and

ECoG in the wave mode are revealed by decom-

posing the LFP and ECoG signals respectively into

the gain and phase at each frequency by means of

the Fourier transform (Barrie et al. 1996; Freeman

and Barrie, 2000) at each digitizing step. Each signal

has multiple rates of change seen in the power law

(1/fa) distribution of energy density in power spectral

densities (PSD) of brain field potentials (Freeman

et al. 2003; Freeman 2006). The highest power is in

the empirical theta (3–7 Hz) and alpha (8–12 Hz)

ranges, followed by the beta (12–30 Hz) and gamma

(30–80 Hz) ranges. Beta and gamma rates reflect the

carrier frequencies of spatial patterns of amplitude

modulation in frames; theta and alpha rates reflect

the frame repetition rates. Higher frequencies form

the epsilon range of 80–300 Hz. Beta b and gamma c
oscillations (Bressler and Freeman 1980) result from

negative feedback with time constants near 5 ms

giving center frequencies near 40 Hz (Freeman 1975/

2000), whereas epsilon e oscillations reflect positive

feedback (pp. 181 ff. in Freeman 2000) again with

time constants near 5 ms but with maximal center

frequencies near 200–250 Hz. The highest range,

>300 Hz in ECoG from surface electrodes (Fig. 2) as

well as LFP from depth electrodes, manifests massed

multiunit activity (MUA) from innumerable action

potentials that merge into fluctuations that resemble

thermal noise, which can contribute a behavioral

correlate by variations in its root mean square (rms)

amplitude. The fluctuations would be indistinguish-

able from thermal noise were it not for low-fre-

quency variations in mean amplitude correlated with

behavior as seen in spatial displays. MUA activity

resembles muscle potentials (electromyogram, EMG)

in having a flat spectrum with low frequencies in the

envelope, and in being measurable only at high

temporal frequencies. This is because the 1/f a

amplitude spectrum enables ECoG and LFP to

dominate at low temporal frequencies and EMG and

MUA to appear at high temporal frequencies.

A hypothesis: Five steps in the central dynamics

mediating CS into CR

John von Neumann (1958) wrote: ‘‘Whatever the

language of the brain is, it cannot fail to differ con-

siderably what we consciously and explicitly consider

as mathematics ... . Brains lack the arithmetic and

logical depth that characterize our computations. ... We

require exquisite numerical precision over many logi-

cal steps to achieve what brains accomplish in very few

short steps’’ (pp. 80–81). We are now in a position to

describe in non-mathematical terms five central ‘‘short

steps’’ in a sequence major state transitions that give a

kind of scaffold for analysis of the action-perception

cycle: downwardly from macrostates to microstates and

upwardly in the reverse direction. According to this

hypothesis training establishes a macroscopic state at

the beginning of a trial, which is expressed in a global

pattern of forebrain activity constituting a state of

understanding, attention, and preparedness. 1. That

pattern supports formation by state transition of a

prediction of some future state by extrapolation based

in experience. The mechanism is unknown. 2. The new

macroscopic pattern embeds and constrains multiple

mesoscopic patterns that appear as locally coherent

domains of neural activity implementing planning and

preafference. 3. Each local pattern constrains the

neurons in the domains, inducing them to form

microscopic patterns of spike activity and transmit

them into the brain stem, spinal cord, and other cor-

tices. Outside the brain the body executes an act

including observation. The occurrence of an expected

event triggers transmission of a barrage of spikes to the

sensory cortices. 4. In each cortex a state transition

enables the emergence of a mesoscopic pattern that

constrains the transmitting neurons into a spike pattern

that is broadcast to other parts of the brain including

the limbic system. 5. According to this hypothesis the

integration of activity from multiple areas through the

limbic system precipitates a macroscopic state transi-

tion to a new spatial pattern that replaces and updates

the preexisting pattern, closing the cycle.

Classical and operant conditioning studies of sen-

sory cortical activity have yielded the data needed to

construct this hypothesis by extrapolation from the

sensory-perceptual limb. BCI offers an opportunity to

test the five-step hypothesis by revealing the way in

which macroscopic patterns of brain activity precede

and guide the formation first of mesoscopic patterns

and then of spatial patterns of MSA and trajectories of

limb movements. The strategy that is proposed in Part

2 is linear decomposition of ECoG, identification of the

spatial and temporal locations (start and end times) of
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individual frames, and application of linear analysis

and multivariate statistics for classification of frames

with respect to behavior, so that within each frame the

time-dependent trajectory of MSA that relates to limb

movement might be described. An analogy from the

field of engineering is flight control of an aircraft. An

operator selects the end point of a flight plan. An outer

loop controller expresses the plan in a series of set

points. A set of inner loop controllers adjusts the

control surfaces of the aircraft to maintain the inputs of

flight sensors within designated ranges. The thrust of

the analogy is that using MSA tends to focus on the

details of limb control, whereas using ECoG and LFP

may give access to higher order expressions of goal

states and their derivatives, by which the brain selects

among its modules the interactive patterns needed

construct limb trajectories and adapt them to local

adventitious conditions.
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Appendix 1. Wave-pulse statistical relations

A continuous record is digitized at 1 KHz simulta-

neously of a spike train of a single neurons and the

ECoG at the cortical site of penetration (Freeman

1975/2004). The ECoG is filtered in the pass band of

the desired oscillatory frequency, e.g., 20–80 Hz. The

spike train is accumulated to give np ~10,000 pulses

expressed as a series of 0’s and 1’s. The N values of

ECoG values are normalized to zero mean and unit

SD; an amplitude histogram is divided into 61 bins

centered at 0 and ranging between ± 3 SD in steps of

0.1 SD. At each time step the question is asked, is there

a pulse in any bin between T = 0 and T = ±Tr time

steps (e.g., Tr = ±25 ms preceding and following

T = 0 ms). A 1-D table of the pulse occurrences at

each amplitude is accumulated at T = 0, p(v). The

nv(v) values in each bin, nv, are divided by the total

number of pairs to get the probability density for

amplitude at T = 0:

PðVÞ ¼ nvðvÞ=N: ð1Þ

The number of pulses in each bin, np (p,v) is divided

by the total number of pairs to give the joint pulse-

amplitude probability density at T = 0:

Pðp \ vÞ ¼ npðp; vÞ=N: ð2Þ

The pulse probability density is divided by the

amplitude probability density to give the pulse proba-

bility conditional on amplitude at T = 0:

PðpjvÞ ¼ Pðp \ vÞ=pðvÞ: ð3Þ

The algorithm is repeated at each time lag between

–Tr and +Tr to get the pulse probability conditional on

time and amplitude in 2-D, which is then normalized

by dividing the function by the grand mean pulse

probability, Po:

PðpjT \ vÞ ¼ Pðp \ T \ vÞ pðvÞ: ð4Þ

The function is normalized by dividing all values by

the grand mean pulse probability, Po to get the nor-

malized conditional pulse probability (NCPD):

PnðpjT \ vÞ ¼ PðpjT \ vÞ=Po: ð5Þ

The time dependence of the NCPD is found by

averaging across the upper third of the range for

v > 0, giving the pulse probability wave that is com-

parable to the autocorrelation of the filtered ECoG

or LFP:

Pn;vðTÞ ¼ 1=k
X

PnðpjT \ vÞ; SD � vk � 3SD:

ð6Þ

The sigmoid curve is the NCPD on amplitude is

estimated by averaging over lag times at k values

where the deviation of Pv(T) above zero is maximal:

Pn;tðTÞ ¼ 1=k
X

PnðpjT \ vÞ; PðTkÞ[[ Po: ð7Þ

The sigmoid curve is fitted to the data (Fig. 1A) in

order to evaluate the upper asymptote, Qm, as given

in the equation inset with the data. The asymptote

varies in proportion to the degree of arousal, and it

has differing mean values for differing populations in

the olfactory and limbic systems. The forward gain of

the population is given by the derivative of the sig-

moid curve, dq/dv. Two examples are shown for

Qm = 2 in behavioral rest and Qm = 5 in arousal

(Freeman 2000) for comparison with the numerical

derivative in Fig. 1A. The maximal gain, vmax = ln

Qm from the second derivative set to 0, is displaced

to the excitatory side. This asymmetry underlies the

input-dependent nonlinearity of cortical dynamics,

which is required for the destabilization in sponta-

neous breaking of symmetry by state transitions

(Freeman and Vitiello 2006). From Freeman (1979;

reprinted Ch. 10, 2000)
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