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Abstract. The lymphocyte glycoprotein CD4 is con-
stitutively internalized and recycled in nonlymphoid
cells, but is excluded from the endocytic pathway in
lymphocytic cells (Pelchen-Matthews, A., J. E . Armes,
G. Griffiths, and M. Marsh. 1991 . J. Exp. Med. 173 :
575-587) . Inhibition of CD4 endocytosis is dependent
on CD4 expressing an intact cytoplasmic domain and
is only observed in cells where CD4 can interact with
the protein tyrosine kinase p56'ck, a member of the src
gene family. We have expressed p56'ck, p60-s-, or
chimeras of the two proteins in CD4-transfected NIH-
3T3 or HeLa cells . Immunoprecipitation of CD4 and
in vitro kinase assays showed that p56'ck and the lck/
src chimera, which contains the NH2 terminus of
p56kk, can associate with CD4. In contrast, p60--
and the src/lck chimera, which has the NH2 terminus

T HE cell surface glycoprotein CD4, which is expressed
primarily on helper T lymphocytes, recognizes non-
polymorphic regions of the class II major histocom-

patibility complex ((MHC)', for review see references 34,
41) . CD4 is believed to participate in T cell activation by an-
tigen in two ways . First, it can act as an accessory molecule
to the T cell receptor/CD3 complex, facilitating adhesion
between T cells andantigen-presenting cells (9, 42) . Second,
it can be directly involved in signal transduction via the pro-
tein tyrosine kinase p56k* (for review see reference 43) . In
humans, CD4 is also expressed on cells of the macrophage/
monocyte lineage, dendritic cells, and eosinophils, where
it may act as the receptor for lymphocyte chemoattractant
factor (7) . In addition, CD4 acts as a cellular receptor for
the human immunodeficiency viruses (HIV-1 and -2 ; for re-
views see references 41, 47) . The structure ofthe CD4 mole-
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of p60-rc, do not associate with CD4 . Endocytosis as-
says using radioiodinated anti-CD4 monoclonal anti-
bodies demonstrated that coexpression of CD4 with
p56'ck, but not with p60-s-, inhibited CD4 endocytosis,
and that the extent of the inhibition depended directly
on the relative levels of CD4 and p56'ck expressed .
The uptake of mutant CD4 molecules which cannot
interact with p56k* was not affected . Measurement of
the fluid-phase endocytosis of HRP or the internaliza-
tion of transferrin indicated that the effect of p56'ck was
specific for CD4, and did not extend to other receptor-
mediated or fluid-phase endocytic processes . Immuno-
gold labeling of CD4 at the cell surface and observa-
tion by electron microscopy demonstrated directly that
p56'ck inhibits CD4 endocytosis by preventing its entry
into coated pits .

cule, a member of the immunoglobulin superfamily, is be-
coming increasingly well defined . The three-dimensional
framework of the first two NH2-terminal extracellular do-
mains ofthe molecule has been solved by x-ray crystallogra-
phy, and the epitopes involved in binding to both MHC class
II and to the HIV surface glycoprotein gp120 have been
mapped in detail (45, 56, and references therein) . We have
been investigating the endocytic trafficking of CD4 in order
to gain a clearer understanding ofthe functions ofCD4 inter-
nalization both in T cell activation and in the processes by
which HIV infects CD4-bearing cells .
CD4 is a type I transmembrane protein containing a cyto-

plasmic domain of 38 amino acids (27) . Our studies have
shown that in C134-transfected nonlymphoid HeLa or NIH-
3T3 cells CD4 is constitutively internalized at rates of 2-3
of the cell surface pool per minute (28, 36, 37) . CD4 mole-
cules from which the cytoplasmic domain has been deleted
(CD4cyl-) are taken up two- to threefold less efficiently than
intact CD4 (36, 37), being internalized at rates correspond-
ing to the constitutive plasma membrane turnover (12, 37) .
Immunolabeling electron microscopy was used to demon-
strate directly that CD4 is enriched in coated pits relative to
its concentration in the plasma membrane, while CD4°y'-
molecules are neither concentrated into, nor excluded from,
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coated pits (37) . These observations suggest that the cyto-
plasmic domain of CD4 may contain a signal that facilitates
its endocytosis. We have also demonstrated that CD4 en-
docytosis is constitutive, is not induced by the presence of
mono- or divalent antibody ligands, and is balanced by the
recycling ofthe internalized molecules to the cell surface; at
steady state -40-50% oftheCD4pool is located in an intra-
cellular compartment (28, 36) .
As in the C134-transfected HeLa and NIH-3T3 cells, CD4

molecules which are naturally expressed in cells of the
monocyte/macrophage lineage (e.g ., HL-60 cells) are inter-
nalized and recycled to the cell surface (37) . In contrast,
lymphocytic cell lines show very low levels of CD4endocy-
tosis (0.2-0.4% perminute) and steady-state levels of inter-
nal CD4 equivalent to only 5-7% ofthe cell surface pool (37,
38) . These low levels of internalization are not due to a
general defect in the endocytic properties of the lymphocytic
cell lines, since the rates of uptake of fluid-phase markers,
coated pit densities at the cell surface, and size of the endo-
cytic compartment of these cells are comparable to those of
nonlymphoid cells (37) . Significantly, CD4,y- molecules
are internalized faster in lymphoid cells than the full-length
CD4 molecule, at rates very similar to the CD4°y'- mole-
cules in nonlymphoid cells (-I% per minute, with 20% of
the CD4°y'- internal at steady state; references 37, 38) .
Theseobservations suggest that in T cells, CD4 must be ac-
tively excluded from the endocytic pathway, presumably via
an interaction of the cytoplasmic domain with another
lymphoid-specific molecule(s) .

In the present study, we demonstrate that a member of
the src gene family, the lymphocyte-specific protein tyro-
sine kinase p56'ck, which has previously been shown to in-
teract with the cytoplasmic domain of CD4 (44, 48, 51,
52), is responsible for these effects on CD4 endocytosis.
By expressing the products of the lck or c-src genes, or
chimeras of the two proteins, in C134-transfected nonlym-
phocytic cell lines, we show that a direct physical interac-
tion between CD4 and p561,k is required, and that p56'ck

prevents CD4 entering coated pits, thus inhibiting its endocy-
tosis. This interaction between p56'ck and CD4 represents a
novel mechanism for regulating the endocytosis of a cell
surface molecule .

Materials and Methods

Cells and Cell Culture
Cells were cultured as described (37) . Cí34-transfected NIH-3T3 or HeLa
cells were used 3 d after subculture, when the cell surface expression of
CD4 was maximal, while CEM (11) and A2.01/CD4-cyt399 cells (4) were
used while growing exponentially.

Antibody Reagents
The anti-CD4 monoclonal antibodies used were Q4120 (reference 13 ;
provided by Professor Peter Beverley, Imperial Cancer Research Fund, Hu-
man Tumour Immunology Group, University College, London, UK) and
L120.3 (reference 13 ; provided by the Medical Research Council AIDS
Directed Programme Reagents Programme). A rabbit polyclonal anti-CD4
serum, raised against recombinant soluble CD4from CHO cells (37), was
affinity purified using baculovirus-expressed soluble CD4 (reference 33 ;
supplied through the AIDS Directed Programme Reagents Programme) im-
mobilized on Reactigel (Pierce and Warriner, Chester, UK). Q4120 was
radioiodinated as described (37) .
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A rabbit antiserum against a peptide covering residues 38-62 of p561"
(starting with the sequence IRNG ; see Fig. 7) has been described (10) ; this
is referred to as anti-p5611 [IRNG] . In addition, a peptide corresponding
to amino acids 478-509 (KERP . .) of p56'ß` (prepared by Dr. Torben
Saermark, University ofCopenhagen, Denmark, fortheEuropeanCommu-
nity Concerted Action program) was used to raise a second rabbit antise-
rum, anti-p561k[KERP], which was affinity purified using the peptide im-
mobilized on Reactigel (Pierce and Warriner). The anti-src mAb, 327,
raised against v-src (24), was purchased from Oncogene Science, Inc.,
Manhasset, NY Peroxidase-conjugated goat anti-rabbit and anti-mouse
antibodies, aswellas anti-mouse rhodamine andanti-rabbitFITC reagents,
were purchased from Pierce and Warriner.

Ransfections and Selection ofStable Cell Lines
Human CD4 cDNA in which the codon for cysteine 420 was mutated to
a serine codon, provided by Dr. Andre Shaw (49), was cloned into the eu-
karyotic expression vector pSG5 (Stratagene Ltd., Cambridge, UK) . pSV2
Neo was supplied by Dr. Alan Hall (Institute of Cancer Research, London) .
cDNAs encoding p56'`k, avian p60", and srcllck and lck/src chimeras in
the expression vector pSMwere as described (51) . The pBabe/hygro vector
(32) encoding the gene forhygromycin resistance was provided by Dr. Mary
Collins (Institute of Cancer Research, London).

Transfections were carried out using calcium phosphate precipitates es-
sentially as described (46) . The plasmid encoding the mutant CD4 was
transfected together with pSV2 Neo, while plasmids encoding kinase con-
structs were transfected together with pBabe/hygro at ratios of kinase plas-
mid to pBabe/hygro plasmid of 10-15 to 1 . Resistantcolonies were selected
in the presence of 1 mg/ml Geneticin sulphate (G418, GIBCO Limited,
Paisley, Scotland, UK) or 0.2 mg/nil hygromycinB(Sigma Chemical Com-
pany Ltd., Poole, Dorset, UK) as appropriate.

Cells expressing CD4 were identified by labeling with "l-Q4120. Ex-
pression ofp561`k or other kinase constructs was detected either by measur-
ing CD4 endocytosis, or by immunofluorescence staining. Cells were cul-
tured on 13-mm glass coverslips, or on glass microscope slides using
Flexiperm-Micro 12 silicone mould tissue culture chambers (Heraeus-
Biotech, Brentwood, Essex, UK), fixed in 3% paraformaldehyde in PBS,
quenched with 50 mM NH4C1, permeabilized with 0.1% Triton X-100, and
preincubated in 0.2% gelatin in PBS. Cells were stained with either anti-
p56'ck [IRNG] serum at 1:2,000, anti-p561k [KERP] at 1:500, or mAb 327
at 1:500 (0.2 fig/ml) . Thebound antibodies weredetected using rhodamine-
labeled goat anti-mouse or fluoresceinated goat anti-rabbit reagents.

MeasurementofCD4Endocytosis
Endocytosis of CD4was measured using 1251-Q4120 as described (36, 37).
Briefly, cells were grown in 16-mm tissue culture wells and labeled with
0.5 nM 1251-Q4120 for 2 h at 4°C. Cells were washed and held on ice, or
warmed to 37°C for various times. Subsequently, the cells were cooled on
ice and either harvested directly using 0.2 M NaOH (to give the total cell-
associated level of 125I-Q4120), or treated with medium adjusted to pH 2.0
to remove the cell surface 1251-Q4120 before harvesting (to reveal the intra-
cellular 1251-Q4120 activity) . All samples were counted using ay-counter
(Gamma 5500B; Beckman Instrs ., Inc., Fullerton, CA). The proportion of
acid-resistant to total cell counts was calculated for each time point (36),
and the background value of acid-resistant material on cells held on ice
throughout the experiment was subtracted . Endocytosis rates were usually
calculated by linear regression of the percentages of l25í-Q4120 internal-
ized during the first 10min at 37°C, whilethe steady-state levels of internal-
ized CD4 were measured after 1 h of endocytosis and recycling (36, 37).

Preparation ofCell Lysates
Cells were washed once in Cal'/Mg"-free PBS, and adherent cells were
harvested by scraping into PBS and centrifuging at 1,500 rpm for 5 min at
4°C. Cell pellets were suspended for 10 min in 20 mM Tris-HCI lysis buffer,
pH 8.0, containing 3 % NP-40, 150 mM NaCl, 2 mM EDTA, and protease
inhibitors (1 mM PMSF, and 10 pg/ml each of chymostatin, leupeptin, an-
tipain, and pepstatin) . Detergent-insoluble material was removed by cen-
trifugation at 4°C for 30 min at full speed in an Eppendorf microfuge. The
supernatants were collected, aliquots were taken for protein determination
using bicinchoninic acid (Pierce and Warriner), while the remaining sam-
ples were frozen in liquid nitrogen and stored at -70°C.
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In Vitro Kinase Assays
CD4 was immunoprecipitated at 0-4°C from the NP-40 cell lysates pre-
pared as above. Lysates were precleared by incubation for 30 min with 50
pl of packed prewashed protein A-Sepharose (Sigma Chemical Company
Ltd.), andthen immunoprecipitated by adding 4.5 kg of L120.3 for 1 h, and
protein A-Sepharose (50 pl of a 50% slurry) for an additional 1.5 h. The
beads were collected by centrifugation (1 min at 1,000 rpm), and washed
threetimes with lysisbuffer andtwice with 25 mM Hepes (Sigma Chemical
Company Ltd.), pH 7.2, containing 0.1% NP-40. For the kinase reaction,
the beads were resuspended in 25 mM Hepes/0.1% NP-40, containing 10
MM MnC12 and 1 ACi of 32P-y-ATP, and incubated at 30°C for 25 min.
The beads were washed once in 25 mM Hepes/0.1% NP-40, resuspended
in 40 pl SDS-PAGE sample buffer containing 50 mM DTT, analyzed on
10% SDS-PAGE gels, and autoradiographed on Kodak X-Omat AR film for
10 min to 48 h. To quantitate the amount of kinase activity precipitated,
the 32p labeled bands were excised from some of the gels, and the levels
of 32P determined by Cerenkov counting.

Immunoblotting
For immunoblotting, aliquots of NP-40 cell lysates containing equal
amounts of protein were diluted with SDS-PAGE sample buffer. Alterna-
tively, cell pellets were washed in PBS and directly solubilized in SDS-
PAGE sample buffer; and thereleasedDNAwas sheared usinga microprobe
sonicator. Samples containing equal amounts of protein were separated on
10% SDS-polyacrylamide gels and transferred to nitrocellulose . Blots were
blocked using 5% dried skimmed milk powder (Marvel Div. Dayton-
Walther Corp., Richmond, IN) in PBS fur 1 h at 45°C and 1 h at room tem-
perature, and then incubated in primary antibody. The antisera anti-p56"k
[IRNG] and anti-p56'`k [KERP] were used at dilutions of 1:1,000 and
1:500, respectively, while the mouse mAb327 was used at 0.1 ug/ml . For
CD4 blotting, affinity-purified anti-CD4 antibodies were used at 200 ng/ml .
After incubation with antibody and washing, the blots were probed with
peroxidase-conjugated goat anti-rabbit antibodies (or goat anti-mouse for
mAb 327), anddeveloped usingthe ECL Western blotting detection system
(Amersham International plc, Amersham, UK) according to the manufac-
turer's instructions.

Electron Microscopic Localization ofCD4
For electron microscopy, cells were plated onto 22-mm2 glass coverslips
and grown to confluence for 3 d. Cells were cooled and incubated on ice
with 8 nM Leu3a for 2 h. Excess antibody was washed away, and cells were
labeled with 9-nm-diam protein A-gold particles (provided by Dr. Gareth
Griffiths, EMBL, Heidelberg, Germany; see reference 37) . After an addi-
tional 2 h, cells were washed extensively and fixed on ice with 2.5%
glutaraldehyde in 50 mM sodium cacodylate buffer, pH 7.4, containing 50
mM KCl and 2.5 MM MgC12 (14) . After postfixation in osmium tetroxide,
cells were stained in Kellenberger's uranyl acetate, dehydrated, scraped off
the coverslips, collected by centrifugation, and embedded in Epon . Thin
sections were examined with a Philips CM12 electron microscope. For
quantitative analysis, cell surfaces were examined systematically, noting the
location of every gold particle encountered .

OtherMethods
Fluid-phase endocytosis was measured on cells cultured on 60-mm-diam
tissue culture plates using medium containing 3 mg/mlHRP (type II ; Sigma
Chemical Company Ltd.) essentially as described (12, 37) . To measure en-
docytosis of transferren (20), cells cultured on 60-mm tissue culture plates
were preincubated in RPMI 1640 medium lacking bicarbonate, sup-
plemented with 0.2 % BSA, 10 mM Hepes, and 100 pg/ml desferrioxamine
mesylate (Desferal ; Ciba-Geigy Pharmaceuticals, Horsham, West Sussex,
UK). Cells were labeled at 4°C in the same medium without Desferal, but
containing 10 nM iron-loaded 1251-labeled human transferrin (radioiodi-
nated using iodobeads [Pierce and Warriner] to a specific activity of 50 Ci/
mmol) for 2 h. Free 1251-transferren was washed away and the plates were
held on ice or incubated at 37°C for various times. Subsequently, the cells
were returned to ice and either harvested directly with 0.2 M NaOH, to
measure total cell-associated activity, or surface stripped to remove cell sur-
face 1 Z5í-transferren before harvesting. Surface stripping was performed by
incubating cells for 5 min at 4°C in pH 2.2 medium containing 100,ug/ml
Desferal, andthen for an additional 5 min in neutral pH medium containing
Desferal .
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Results

Inhibition of CD4Endocytosis in Lymphocytic Cells
To explain the differences in the rates of CD4 endocytosis
observed in nonlymphoid andlymphoid cells (37), we have
suggested that a protein or proteins, expressed specifically in
lymphoid cells, must interact with the cytoplasmic domain
of CD4 to prevent its internalization. In T cells, CD4 is
known to associate with a protein tyrosine kinase of the sic
gene family, p56'c* (44, 52). To investigate whether p56'ck

maymodulate CD4internalization, we analyzed the associa-
tion of CD4 and p56'ck in a number ofcell lines in which we
have previously characterized CD4 endocytosis (37) .

To detect CD4-associated p56'ck, we used an in vitro au-
tophosphorylation assay (44, 48, 51) . Cell lysates were pre-
pared in NP-40 buffer, CD4 was immunoprecipitated using
anti-CD4 antibodies and CD4-associated kinase activity was
detected after incubation with 32P-,y-ATP, analysis by SDS-
PAGE, and autoradiography. In lysates of T cell lines such
as CEM, anti-CD4 antibodies precipitated p56'ck as a 32P
labeled band which migrated with a mobility of 56-58 kD
(Fig. 1, top) . This band was only detected in inununoprecipi-
tates from Lmphocytic cell lines, and could be precipitated
with two different anti-CD4 antibodies (OKT4 and L120.3),
but not with control antibodies to the transferrin receptor
(not shown) . Western blotting of CEM cell lysates with the
anti-p56'ck [IRNG] serum again identified p56'ck as a band of
56-58 kD (Fig . 1, middle) .
CD4-associated "p]abeled p56',* was not observed in the

nonlymphoid HeLa-CD4 or NIH-CD4 cells (Fig . 1) . Direct
immunoblotting of cell lysates with anti-p56'c* antibodies
indicated that these nonlymphoid cells do not express detect-
able amounts of p561ck . In the A2.01/CD4-cyt399 cell line,
which expresses a CD4cy1- molecule (4) and which shows
CD4 internalization corresponding to bulk flow endocytosis
(37), p56'ck was detected by immunoblotting (Fig . 1) but
was not immunoprecipitated with anti-CD4 antibodies, indi-
cating that the kinase did not interact with the truncatedform
ofCD4expressed in these cells (see also reference 51). Thus,
CD4-associated p56',k was only detected in cells which ex-
hibited very low levels of CD4uptake . Cells which show rel-
atively efficient endocytosis of CD4 either do not express
p56'ck, or express a form of CD4 which cannot interact with
p56rck.

28 1

Figure 1. Association of CD4 and
p561ck in lymphoid and CD4-
transfected nonlymphoid cells.
p56'c* was detected after immu-
noprecipitation of CD4and in vi-
tro kinase assay (32P--ATP, top) or
by immunoblotting cell lysates
with anti-p56'ck[IRNG] serum
(antip56, middle) . CD4 was de-
tected by immunoblotting with
rabbit anti-CD4 antibodies (anti-
CD4, bonom) .



Figure 2. Analysis of p56"-transfected NIH-CD4 cells . (a) Time
course of internalization of CD4 (traced with the 125I-labeled anti-
C134 mAb Q4120) on NIH-CD4 cells, and on a series ofhygromy-
cin-resistant transfected clones (M22, M39, M3, M36, M18, and
M30) . The plot shows the ratio of acid-resistant (% internalized)
1251-Q4120 to the total cell-associated label at various time points .
(b) Analysis of the association of CD4 and p56'ck in NIH-CD4
cells and the hygromycin-resistant transfected clones . p56'ck was
detected after immunoprecipitation of CD4 and in vitro kinase as-
says (32P--ATP, top) or by immunoblotting of cell lysates with anti-
p56'ck[IRNG] serum (antip56, bottom).

The Protein Tyrosine Kinasep56kk
Inhibits CD4 Endocytosis When Transfected
into NIH-CD4 Cells
If p561ck is indeed responsible for inhibiting CD4 endocyto-
sis in T cells, then coexpression of p561ck and CD4 in non-
lymphoid cells may also inhibit CD4 endocytosis . To test this

Table L Analysis ofNIH-CD4 Cell Lines Transfected with p561ck

r

* Endocytosis rates were measured over the first 10 min at 37°C .
$ The level of acid-resistant 'ZSI-Q4120 tracer in cells kept 60 min at 37°C . Background acid-resistant counts at t = 0 have been subtracted (see Materials and
Methods) . Data were averaged from the number of experiments shown in brackets .
§ The autophosphorylated p56'c* bands (precipitated with anti-CD4 mAb from cell lysates containing equal amounts of protein) were cut from the gel corre-
sponding to the autoradiograph in Fig. 2 b (top), and levels of "p present were estimated by counting the Cerenkov radiation.
II The CD4 levels expressed in the various cell lines were estimated from equilibrium binding measurements using I'll-Q4120 . Cells were labeled at 0-4*C with
IIII-Q4120 at 0.5 W, the Kd concentration which would saturate approximately half of the CD4 molecules exposed at the cell surface . Levels of total cellular
CD4 were estimated by doubling the results from these binding experiments and correcting for the intracellular CD4 pools.
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possibility, NIH-CD4 cells were transfected with the murine
lck gene . The amino acid sequences of the murine and hu-
man p56'ck proteins are highly homologous (39), especially
in the NH2-terminal region which is known to be involved
in the CD4/p56'ck association, and both proteins can inter-
act with human CD4 (49, 51) . NIH-CD4 cells were, there-
fore, cotransfected with two independent expression vectors,
pSM/p56'ck, which contains the gene for murine p56'ck (51),
and pBabe/hygro, a retroviral vector containing the gene en-
coding hygromycin resistance (32) . 59 stable clones were
selected with hygromycin B and screened by measuring CD4
internalization . Some clones exhibited CD4 endocytosis lev-
els similar to that of the parent NIH-CD4 cell line ; analysis
of a number of these indicated that, although hygromycin
resistant, they did not express p561ck . However, CD4 en-
docytosis was significantly reduced in 26 of the transfected
clones, and in some cases was almost completely inhibited .

Six of the hygromycin-resistant clones, representing groups
of clones in which CD4 endocytosis was either greatly re-
duced, partially reduced, or unaffected compared with the
parent NIH-CD4 cell line, were selected for detailed analy-
sis . Fig . 2 a shows the results ofa series ofendocytosis assays
in which cells were surface labeled at 0-4°C with I'll-anti-
C134 mAb, washed, and then warmed to 37°C for 0-60 min.
The parental NIH-CD4 cells internalized the labeled anti-
body at -3.6% per minute ; and at steady state, -43 % of the
initial cell surface pool of CD4 was in an intracellular com-
partment (Table I) . By contrast, two of the hygromycin-re-
sistant clones, M39 and M22, showed 10- and 26-fold slower
rates of CD4 endocytosis, respectively ; and at steady state,
only 11 and 6% ofthe label was intracellular ('fable I) . Other
clones (M3, M36, and M18) had intermediate rates of CD4
endocytosis and intermediate steady-state levels of intracel-
lular CD4, while CD4 uptake in clone M30 was similar to
the untransfected NIH-CD4 cells .
The interaction of CD4 and p5611k was analyzed in the six

selected clones by assaying for CD4-associated kinase activ-
ity (Fig . 2 b) . A "Nabeled band, comigrating with the
p56tck precipitated from CEM cells, was precipitated with
anti-CD4 antibodies from lysates of all the clones except
M30. In addition, the p56'ck protein was detectable on im-
munoblots in amounts which reflected the levels of CD4-

nal
taatt

CD4/p56'1
coprecipitation§

cpm

CD4 expressionll

fmol/mg protein
(8) 3,186 860 t 150
(2) 323,046 1,960 t 150
(4) 460,622 1,670 t 270
(2) 27,299 700 t 200
(2) 160,484 2,530 t 1,120
(2) 19,057 1,570 f 390
(2) 7,135 2,580 t 790

Cell line
Rate of CD4
endocytosis*

CD4 int
at steady

per min
NIH-CD4 3.6 43 t
M22 0.14 6 f 1
M39 0.37 11 t 4
M3 0.50 16 t 6
M36 1 .3 31 f 5
M18 1.2 34 t 2
M30 3.6 53 t 1



associated kinase activity (Fig . 2 b) . To obtain an approxi-
mate measure of the amount of p56'ck associated with CD4,
we excised the 32P-labeled bands from the gel of the au-
toradiograph shown in Fig . 2 b (top) and measured the incor-
porated radioactivity by Cerenkov counting (Table I) . This
analysis demonstrated an inverse correlation between the
amount of p5äck associated with CD4 and the efficiency of
CD4 endocytosis (Fig . 3) ; i .e ., the higher the level of p56"*
associated with CD4, the slower the rate ofCD4 endocytosis
(Fig . 3 a) and the smaller the pool of CD4 internalized at
steady state (Fig . 3 b) . Cells ofthe M3 clone, which did not
fit optimally with this correlation, express very low levels of
CD4 (Table 1), and as a consequence, low levels of p56'ck
are sufficient to inhibit CD4 endocytosis . By contrast, the
M36 cells express comparatively high levels of CD4, and
hence the amount of p56'ck in these cells only partially in-
hibited CD4 uptake .
The expression of p56'ck did not disrupt the overall endo-

cytic properties of the transfected cells, since we observed
identical rates of fluid-phase endocytosis on the NIH-CD4
cells and on clone M22, which expresses a large amount of
p56'ck and in which CD4 endocytosis was almost com-
pletely inhibited (data not shown) . Likewise, both the NIH-
CD4 and M22 cells internalized similar levels of radioiodi-
nated transferrin (Fig . 4), indicating that receptor-mediated
endocytosis was not affected by p56'ck . Thus, the endocytic
capacities of both sets of cells were equivalent . The effect of
p561ck was specific for CD4 endocytosis and did not extend
to other endocytic processes .
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Figure 3. Correlation of the inhibition of CD4 endocytosis with the
level of C134-associated p56"k in NIH-CD4 cells and the hygro-
mycin-resistant p56'ck-transfected clones . The rate of CD4 endo-
cytosis (a) and thelevel ofCD4 internalized at steady state (b) were
plotted against the level of 32p incorporated in vitro into p5611k
precipitated with CD4 (measured by counting the Cerenkov radia-
tion in excised bands ; cf. Table 1) .
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Figure 4. Receptor-mediated endocytosis of 125 1-transferrin on
NIH-CD4 (top) and M22 cells (bottom) . Open symbols show total
levels of cell-associated 1251-transferrin, while the closed symbols
indicate intracellular 125 1-transferrin .

p56kk Inhibits Endocytosis ofCD4, but NotofMutant
CD4(C420-S)
We have also transfected the pSM/p56'ck vector into two hu-
man cell lines : HeLa-CD4 (36, 37) and a HeLa cell line
transfected with a mutant CD4 molecule, CD4(C420-'S), in
which cysteine residue 420 was replaced by serine. This mu-
tation disrupts the epitope in the cytoplasmic domain ofCD4
(around amino acids 420-422) required for interaction with
p56'ck (49, 51) . In our hands it proved more difficult to ob-
tain stable transfectants from the HeLa-CD4 than from NIH-
CD4 cells, and when hygromycin B-resistant colonies were
screened for p56'ck expression by immunofluorescent stain-
ing, we only obtained one positive cell line from each trans-
fection . Immunoblotting with anti-p561ck antiserum revealed
that the level of expression of p561ck in the HeLa-CD4/p56'ck
cell line was very low compared to the M22 cells (above),
while intermediate amounts of p56'ck were found in the
HeLa-CD4(C420-"S)/p56'ck cells (Fig . 5 a) . Immunopre-
cipitation of CD4 and in vitro kinase assays demonstrated
that the p56'ck in HeLa-CD4/p56'ck cells could associate
with CD4An contrast, no detectable p56'ck activity was
precipitated with the CD4(C420-S) mutant (Fig . 5 a) .

Endocytosis experiments with these cell lines showed that
p56'ck significantly inhibited endocytosis of CD4 in the
HeLa-CD4/p56'ck cells compared with the parent HeLa-
CD4 cells (Fig. 5 b) . The CD4(C420-S) molecule was in-
ternalized with similar kinetics to the wild-type CD4 and
was not affected by coexpression of p56'ck (Fig . 5 c) . Thus,
the inhibition of CD4 endocytosis by p56'ck is not confined
to NIH-CD4 cells and is dependent on the ability of p56'ck
to interact directly with CD4 .



Figure 5. Transfection of p56'c* into HeLa-CD4 and HeLa-CD4-
(C420-S) cells . (a) Analysis of the association of CD4 and p56'ck
in M22 (lane 1), NIH-CD4 (lane 2), HeLa-CD4/p56'ck pane 3),
and HeLa-CD4(C420-S)/p56k* cells pane 4) . p56k* was detected
by immunoblotting of cell lysates with anti-p56k*[IRNG] serum
(anti-p56, top) or after immunoprecipitation of CD4 and in vitro
kinase assays e2P-ATP, bottom). (b and c) Time courses of inter-
nalisation of CD4 on HeLa-CD4 (o in b), HeLa-CD4/p56'ck (9
in b), HeLa-CD4(C420-"S) (4 in c), and HeLa-CD4(C420-S)/
p56k* (A in c) cells . The plots show ratios of acid-resistant (% in-
ternalized) 125I-Q4120 to the total cell-associated label at various
time points.

?lransfection ofNIH-CD4 Cells with p60- Has No
Effect on CD4 Endocytosis
To examine whether the inhibition of CD4 endocytosis was
a specific property ofp56'ck, or whether other kinases of the
src gene family could similarly affect CD4 internalization,
we transfected NIH-CD4 cells with the pSM vector contain-
ing the avian c-src gene, and again selected a number of
hygromycin-resistant colonies. Clones expressing high levels
of p60- were identified by immunofluorescent staining
with the anti-src mAb 327. NIH-3T3 cells express endoge-
nbus p60-s- at levels below the limit of detection by immu-
nofluorescence (8) . Thus, only cell lines expressing p60-s-
from the transfected gene would be identified in this assay.
Expression of p60-s- in selected clones positive by im-
munofluorescence was confirmed by immunoblotting . CD4
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endocytosis was measured in three clones : NIH-CD4/src-1,
NIH-CD4/src-20, and NIH-CD4/src-23, which expressed
the highest levels of p60-- . As shown in Fig . 6, the pres-
ence of the p60- protein had no effect on the rate or ex-
tent of CD4 endocytosis.

Tlransfection ofNIH-CD4 Cells with Chimeric
Kinase Molecules
Kinases ofthe srcgene family share three conserved regions :
namely, the kinase domain, which comprises the 000H-
terminal half of the molecule, and two src homology do-
mains, SH2 and SH3 (23, 35) . The NH2 terminus consists
of sequences unique to each member of the family, and in
the case of p561,* contains the residues required for interac-
tion with CD4 (51) . To examine in more detail which do-
mains of the p56'ck molecule are required for inhibition of
CD4 endocytosis, we generated NIH-CD4 cell lines stably
transfected with the srcllck and lck/src chimeric molecules
developed by Turner et al . (51) . The srcllck construct con-
tains the first 92 amino acids of the c-src gene, fused to the
conserved domains (amino acids 72-509) of lck, and thus
lacks the unique region of p56'ck required for CD4 binding.
lcklsrc is the complementary chimera, consisting of the
NH2 terminus (amino acids 1-71) of lck fused to the con-
served domains ofsrc (Fig. 7 a) . After transfection with vec-
tors encoding these chimeras, hygromycin B-resistant colo-
nies were screened for expression of the chimeric kinase
molecules using two antisera raised against peptides of the
p56'ck sequence. The anti-p56'ck[IRNG] serum (10) recog-
nizes a peptide corresponding to amino acids 38-62 of
p561ck, and reacts with both p561,k and the lck/src chimera,
while the anti-p56k*[KERP] serum, which was raised against
amino acids 478-509 of p56k*, binds the srcllck chimera as
well as p56'ck (Fig . 7 a) . In addition, the anti-v-src mAb
327, which binds to an epitope in the p60-- SH2 domain,
recognized the lck/src chimera . All antibody reagents were
active both by immunofluorescence and immunoblotting, al-
lowing us to select cell lines by immunofluorescence screen-
ing, and then confirm expression of the chimeric kinases by
immunoblotting . A number of cell lines were thus selected
for measuring CD4 endocytosis .
As expected, the srcllck chimera, which lacks the NH2 -

terminal sequence of p56'ck required for interaction with
CD4 (51), did not affect CD4 endocytosis (Fig . 7 b) . In con-
trast, four independent cell lines expressing the lck/src chi-
mera, which is able to interact with CD4, showed reduced
CD4 endocytosis (Fig . 7 c) .
The levels of expression of the chimeras and p60c-s- were

measured by immunoblotting of equal amounts of cell pro-
tein with the antisera to p56'ck or p60-s- . Densitometric
scanning of blots probed with the anti-p56'ck[KERP] antise-
rum indicated that the srcllck-14 cell line contained at least
fivefold more of the COOH-terminal p56'ck epitope than the
p561ck-transfected M22 cell line (Fig . 8 a) . When blots were
probed with the anti-p56'ck[IRNG] antiserum, all four lckl
src-expressing cell lines contained levels of the NH2-ter-
minal p56'c* epitope comparable to the level of p56'ck in the
M22 cells . mAb 327 reacted with both p60-s- and the
lck/src chimera on immunoblots, and revealed that the src-
transfected cell lines contained significantly higher levels of
the src epitope than the lck/src-transfected cells (Fig . 8 c) .
Thus, all of the cell lines expressed the transfected kinases
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at levels comparable to, or higher than, p56'ck in the M22
cells .
The association of the various transfected kinase con-

structs with CD4 was studied by immunoprecipitating CD4
from cell lysates and then measuring the C134-associated ki-
nase activity in vitro. Only the lck/src chimera and p56'ck
were able to associate with CD4 (Fig. 9) . No kinase activity
could be precipitated from the NIH-CD4 cell line, or from
the cell lines transfected with p60-,- or the srcllck chi-
mera . This agrees with a previous study (51) which demon-
strated by immunoprecipitation followed by immunoblotting
that p60-s- and the srcllck chimera cannot associate with
CD4 . Cerenkov counting of the labeled bands showed that
the lck/src molecules incorporated >100-fold more 32P than
p56',k, even though M22 and the lck/src-12 cell line con-
tained similar levels of the respective proteins by immuno-
blotting (cf. Fig . 8 b), and suggested that the kinase activity
of this chimeric molecule is elevated .
These studies demonstrate that the lck/src chimera can in-

teract with CD4 and does decrease the rate of CD4 internal-
ization, although it does not inhibit CD4 endocytosis to the
extent of p56'ck . The srcllck chimera, which contains all of
p56rck except the NH2-terminal unique region, is unable to
bind CD4 and has no effect on CD4 endocytosis .

p56kk Prevents CD4 Entry into Coated Pits
To investigate the mechanism by which p56'ck inhibits CD4
endocytosis, we studied the distribution of CD4 at the cell
surface by immunogold labeling electron microscopy. NIH-
CD4 cells, the p5&,*-transfected M22 cells, as well as the
NIH-CD4/src-23 and NIH-CD4llck/src-l2 cell lines were
labeled on ice with Leu3a, and protein A-gold . Previous ex-
periments using iodinated antibody together with protein
A-gold indicated that the gold reagent does not affect the ki-
netics or extent ofCD4 endocytosis (37) . Thus, the distribu-
tion of CD4 at the cell surface is not influenced by the label-
ing method . Quantitative analysis of the distribution of CD4
showed that in the parent NIH-CD4 cells, 6.6% of all gold
particles was located over coated areas of the plasma mem-
brane (Table II) . Similarly, 5.6% of the CD4 molecules on
NIH-CD4/src-23 was found in coated pits . In contrast, only
3 gold particles out of 1,039 were located against coated
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----*--- NIH-CD41src-1

----A--- NIH-CD41src-20

----á-- - NIH-CD41src-23

NIH-CD4

--0- M22

membrane in the M22 cell line (Table II) . As coated pits ac-
count for 1.5-2% of the cell surface area (3, 12, 37), these
data confirm our previous observation that CD4 alone can
be enriched three- to fourfold in coated pits . However, in the
presence of p56'ck CD4 is effectively prevented from enter-
ing coated pits . The NIH-CD4/lck/src-l2 cells showed re-
duced levels (3.9%) of gold particles in coated pits (Table II),
in agreement with the biochemical data which showed par-
tial inhibition of CD4 endocytosis .

Discussion
The cell surface glycoprotein CD4 functions in T cell on-
togeny and T cell activation, and as a receptor for both lym-
phocyte chemoattractant factor and HIV. The cell surface ex-
pression of CD4 is known to undergo modulation in both T
lymphocytes and monocytic cells in response to a variety of
stimuli (1, 6, 16, 40, 57) . However, little is known of how
these properties influence the diverse functions of the CD4
molecule . We have previously demonstrated that CD4 mole-
cules expressed in nonlymphocytic cells, including cells of
the macrophage/monocyte lineage, exhibit very different pat-
terns of endocytosis than CD4 molecules expressed in T
cells ; i .e ., CD4 in nonlymphoid cells is efficiently endocy-
tosed, while that expressed in T cells is not (37, 38) . Here
we have shown that the protein tyrosine kinase p56'c* is
responsible for these differences in CD4 endocytosis . These
results establish several important points . First, they indicate
a novel mechanism through which the endocytosis of cell
surface molecules may be regulated . As such they further
refine current models of the molecular basis for coated
pit-mediated endocytosis . Second, they indicate how the
properties of CD4 may differ in the various cell types in
which it is normally expressed, and show how the cell sur-
face expression of CD4 may be rapidly and reversibly modu-
lated in T cells .

Regulation ofCD4Endocytosis by p56kk
In the present study we have demonstrated that the protein
tyrosine kinase p56',k regulates CD4 endocytosis. In non-
lymphoid cell lines which do not express p56"k, such as
cells of the myeloid lineage (e.g ., HL-60), or in CD4-
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Figure 6. Endocytosis of CD4 in three p60--_
transfected NIH-CD4 cell lines . CD4 endocytosis
was quantitated as described inFig. 2 a. NIH-CD4
cells (9) and the p56'ck-transfected M22 cell line
(o) are shown for comparison .
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transfected HeLa or NIH-3T3 cells, C134 is endocytosed
through coated pits . The rates and extents of CD4endocyto-
sis vary in different cell lines, ranging from -2-2 .5% per
minute in HeLa-CD4 cells to 3-4% per minute in NIH-CD4
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Figure 7. Effects ofsrcllck and
Icklsrc chimeric kinases on
CD4 endocytosis . (a) Struc-
ture of p56'ck (shaded),
p60-, and two chimeras of
these proteins, srcllck and
lcklsrc. The position of the
cysteine residues at position
20 and 23 of p56'ck, which
are required for interaction
with CD4, are indicated. The
locations of the sequences of
the peptides used to generate
the anti-p56 antisera, anti-
p56'ck[IRNG] and anti-p56'ck-
[KERP], are also shown. SH2
andSH3identifythe src-homol-
ogy regions. (b and c) Endo-
cytosis of CD4 in a srcllck-
transfected NIH-CD4 cell line
(b) and in four Ick/src-trans-
fected NIH-CD4 cell lines (c) .
Endocytosis ofCD4was quan-
titatedasdescribed in Fig. 2 a.
NIH-CD4 cells (o) and
p56'ck-transfected M22 cells
(o) are shown for comparison .

or HL-60 cells (38) . In agreement with these differences, the
level of CD4 found in coated pits in the NIH-CD4 cell line
(6.6%, Table II) is higher than that in HeLa-CD4 cells
(4.5 %, reference 37). While the rates of CD4internalization



Figure 8. Detection of p56",
p60-rc, and the lcklsrc and
srcllck chimeras by immu-
noblotting. (a) Detection of
kinases in lysates of the NIH-
CD4/srcllck-14 and the p56'ck-
transfected M22 cells by im-
munoblotting with the anti-
p56'ck[KERP] antiserum (cf.
Fig . 7 a) . (b) Detection of ki-
nases in lysates of the NIH-
CD4/lcklsrc cell lines and the
p56'ck-transfected M22 cells
by immunoblotting with the
anti-p56'ck[IRNG] antiserum .
(c) Detection of kinases in ly-
sates of the p6(Y--transfected
NIH-CD4 cells, and insrc/lck-
or lck/src-transfected NIH-
CD4celllinesby immunoblot-
ting with the anti-v-src mAb
327. Notethat the chimeras lck/
src and srcllck migrate with
an apparent molecular mass

2-3 kD higher than p56'ek, while p60- migrates with a molec-
ular mass ti2 kD higher than the lcklsrc chimera, as predicted by
the amino acid sequences of the proteins (see Fig . 7 a) .

may not be as rapid as those reported for other receptors,
such as the low density lipoprotein or transferrin receptors,
it is nevertheless significant that the density of CD4 in coated
pits in the NIH-CD4 cells is similar to the density at which

Figure 9. Association of various kinase constructs with CD4 . CD4
was immunoprecipitated from lysates of NIH-CD4 or M22 cells,
or from NIH-CD4 cells transfected with p6(Y-src or the lcklsrc or
srcllck chimeras, and associated kinase activity was detected by au-
tophosphorylation with 32P-7-ATP in vitro. After SDS-PAGE, la-
beled kinase molecules were detected by autoradiography for 10
min (lcklsrc-12) or 48 h (all other lanes) . The molecular masses of
marker proteins (in kD) are indicated .
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the transferrin receptor is seen in coated pits on certain cell
lines (31) . Indeed, in the NIH-CD4 cells, CD4 was endocy-
tosed at a similar rate to the transferrin receptor (cf . Fig . 4) .
This suggests that CD4 contains an endocytosis signal in its
cytoplasmic domain, although the specific amino acid motifs
involved have not yet been identified .
In contrast to the efficient endocytosis of CD4 in nonlym-

phoid cells, CD4 endocytosis is inhibited in cell lines ex-
pressing p56'ck, either naturally (e .g ., lymphoid cell lines)
or after transfection . We have observed p56'ck expression in
all cell lines which showed an inhibition of CD4 endocytosis .
Furthermore, all cell lines in which p56'ck was expressed,
and could interact with CD4, had reduced CD4 internaliza-
tion . The physical interaction of CD4 and p56'ck is a pre-
requisite for the regulation of CD4 endocytosis by p56'ck .
Thus, endocytosis of tailless CD4 molecules (in the A2.01/
CD4-cyt3991ymphocytic cell line) or of the CD4(C420-S)
mutant, which cannot interact with p56'ck, is not affected by
p56". Similarly, kinase molecules that cannot interact with
CD4 (pó0rs- and the srcllck chimera) do not affect CD4
endocytosis . The inhibition of CD4 endocytosis appears to
depend on the stoichiometric ratio of p56'c* to CD4 ex-
pressed . This was most clearly apparent with the series of
clones derived by transfection of NIH-CD4 cells with p56'ck
(the M clones) . In these cell lines, there is a very good corre-
lation between the amount of p56'ck expressed and asso-
ciated with CD4, and the level of inhibition of CD4 endocy-
tosis . The clones expressing the highest levels of p56-,
M22 and M39, showed as little CD4 endocytosis as lympho-
cytic cell lines . Similarly, the HeLa-CD4/p56'ck cells,
which expressed only low levels ofp56'ck, showed only par-
tial inhibition of CD4 endocytosis .

Electron microscopy of immunogold-labeled CD4 on the
NIH-CD4 and M22 cells has demonstrated directly that
p56'ck inhibits CD4 endocytosis by preventing entry of CD4
into coated pits. In the presence of p56'ck, the density of
CD4 in coated pits was significantly lower than the density
of CD4cy'- molecules, which we have previously observed
to be internalized as part of the bulk membrane flow (37) .
The mechanism by which p56'ck prevents CD4 entry into
coated pits is not yet clear. Since p56'ck is a relatively large
molecule, it may sterically prevent access ofthe cytoplasmic
domain of CD4 to coated pits . It should be noted, however,
that growth factor receptors such as the EGF, PDGF, and in-
sulin receptors, which contain tyrosine kinase domains as
part of their cytoplasmic sequences, are efficiently endocy-
tosed through coated pits after binding their relevant growth
factors (15) . Thus, a large cytoplasmic kinase domain is not
sufficient to inhibit endocytosis . Instead, p56'ck may prevent
CD4 from entering coated pits through interaction of the
CD4/p5Nck complex with other cytoplasmic components .
Indeed, p56'ck has been reported to form oligomers with
polypeptides of 110, 85, and 32 kD which can act as sub-
strates for tyrosine phosphorylation (43) . Alternatively,
p56'ck appears to be able to interact with components of the
cortical cytoskeleton (25), possibly via the SH2 or SH3 do-
mains, which are known to be involved in protein-protein in-
teractions and, at least in the case ofSH3 domains, are found
in a number of actin-binding proteins (23) . Thus, p56'ck
may serve to anchor CD4 to the submembraneous cytoskele-
ton . This idea would support the requirement for stoichio-
metric ratios of p56'ck and CD4 to effectively inhibit CD4
endocytosis . However, any cytoplasmic or cytoskeletal com-
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Table H. Distribution of Gold-labeled CD4 on NIH-CD4 Cells

' Only particles directly juxtaposed to clathrin-coated membrane were counted .
f Gold particles over broken cell debris or too near grid bars to clearly classify were listed as unidentified .

ponents that are required for the p561c' inhibition of CD4
uptake are presumably not T cell specific, as the lymphoid
phenotype for CD4 endocytosis is observed when CD4 and
p56 1c' are expressed together in NIH-CD4 cells .
Like p56'ck, the lck/src chimera can associate with CD4

and inhibit CD4 endocytosis, although the inhibition ob-
served with four different lck/src-transfected cell lines was
only partial . Similarly, the lck/src chimera significantly re-
duced the amount of CD4 that could be observed in coated
pits. Immunoblots with an antiserum directed to an NH2 -
terminal epitope of p56'ck suggested that all four lck1src-
transfected cell lines expressed levels of the protein com-
parable to the levels of p56'ck in the M22 cell line, in which
CD4 endocytosis is completely inhibited . Thus, it appears
that the lck/src chimera is less efficient than p561c' in in-
hibiting CD4 endocytosis . Immunoprecipitation ofCD4 and
in vitro kinase assays indicated that the lck/srcchimera could
associate with CD4 . In addition, the kinase activity of this
chimera appeared significantly higher than that of p56'ck .
We do not know whether the efficiency of association of
lck/src with CD4 is impaired as a result of the increased ki-
nase activity, thus liberating CD4 molecules which can be
internalized . Alternatively, the interaction ofthe lck/src mol-
ecule with CD4 may mask the endocytosis signal on the cy-
toplasmic domain of CD4, but not prevent entry of the
CD4-lck/src complex into coated pits . In the latter case, the
CD4-lck/src complex would be expected to be internalized
as a component of the bulk membrane flow, with kinetics
similar to the CD4crt - molecules (37) . The observed ki-
netics of CD4 internalization in the NIH-CD4/lck/src cell
lines agree with this proposal . In the lck/src chimera, the an-
choring interaction with the cytoskeleton could be dis-
rupted, either because the relevant parts of p56'ck have been
replaced by the src gene product or because of the increased
activity ofthe lck/src kinase . Studies with constitutively acti-
vated lck mutants may resolve this issue .

Modulation of CD4 Endocytosis
The different rates of CD4 endocytosis observed in cells that
express p561c' (such as lymphocytes) compared with cells
that do not (e.g ., macrophages and monocytes) may be im-
portant in understanding the mechanisms underlying the
different functions of CD4 as a receptor for lymphokine or
coreceptor for MHC-II . Furthermore, the dissimilar pat-
terns of CD4 endocytosis may be responsible for the differ-
ent susceptibilities of T cells or cells of the macrophage/
monocyte lineage to HIV infection (30) .
For T cells, the interaction of CD4 and p56',k provides a
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mechanism to rapidly and reversibly modulate CD4 cell sur-
face expression during activation . Previous studies have
demonstrated that the cell surface expression of CD4 can be
down-regulated during antigen stimulation (5, 40, 57), that
this down-regulation can be mimicked by treatment with
phorbol esters (1, 16), and that down-regulation occurs by
processes involving endocytosis (16, 17) . Our studies sug-
gest, at least in part, how this down-regulation may occur.
Phorbol ester treatment activates protein kinase C, and trig-
gers the phosphorylation of serine residues in both the cyto-
plasmic domain of CD4 (1, 50) and in p56'ck (29, 53) . This
phosphorylation induces the dissociation of the CD4/p56k*
complex (19), and the liberated CD4 is then free to enter
coated pits and internalize. Whether or not these are the only
steps required in down-regulation is at present unclear. En-
docytosis of CD4 from the cell surface to the endosome com-
partment would bring about a redistribution of CD4 . We
have found that phorbol ester-induced phosphorylation of
CD4 also increases the rate of CD4 endocytosis and may,
thereby, enhance the extent ofthe down-regulation observed
(Pelchen-Matthews, A ., and M. Marsh, unpublished data) .
In addition to the effects ofprotein kinase C activation, incu-
bation oflymphocytic cells with cross-linking anti-CD4 anti-
bodies (52, 54) or with the HIV surface glycoprotein gp120
(21) have been reported to trigger the dissociation of CD4
from p561,k and may, therefore, be expected to influence the
endocytosis and cellular distribution of CD4 . Whether simi-
lar reactions occur during the interaction ofCD4 with MHC
class II molecules remains to be determined .
p56 1c' itself has tyrosine kinase activity and is part of a

network of interacting kinases and phosphatases involved in
T cell activation (2, 18, 22) . Cross-linking of CD4 with cer-
tain anti-CD4 antibodies can increase the kinase activity of
p561c' (26, 54, 55), and lead to phosphorylation of cellular
proteins such as the T cell receptor ~ chain (54) . Although
CD4 lacks a tyrosine residue in its cytoplasmic domain (27)
and is not itself a substrate for p56'ck, it remains unclear
whether tyrosine phosphorylation of p56'ck in vivo or its ki-
nase activity influence the interaction of p56" and CD4
or affect CD4 endocytosis . However, the observation that
the CD4/p56'ck interaction is reversible and subject to mod-
ulation indicates a mechanism through which the endocyto-
sis of CD4 and the cellular distributions of both CD4 and
p56'ck may be precisely regulated according to the physio-
logical requirements of the cells .
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NIH-CD4+lck/src-12 931 873 (93 .8) 36 (3 .9) 22
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