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Abstract. A short nonhelical sequence at the COOH- 
terminus of vertebrate nonmuscle myosin has been 
shown to enhance myosin filament assembly. We have 
analyzed the role of this sequence in chicken intestinal 
epithelial brush border myosin, using protein engineer- 
ing/site-directed mutagenesis. Clones encoding the rod 
region of this myosin were isolated and sequenced. 
They were truncated at various restriction sites and ex- 
pressed in Escherichia coli, yielding a series of mutant 
myosin rods with or without the COOH-terminal tail- 
piece and with serial deletions from their NH2-termini. 
Deletion of the 35 residue COOH-terminal nonhelical 
tailpiece was sufficient to increase the critical concen- 
tration for myosin rod assembly by 50-fold (at 150 
mM NaC1, pH 7.5), whereas NH2-terminal deletions 
had only minor effects. The only exception was the 
longest NH2-terminal deletion, which reduced the rod 

to 119 amino acids and rendered it assembly incompe- 
tent. The COOH-terminal tailpiece could be reduced 
by 15 amino acids and it still efficiently promoted as- 
sembly. We also found that the tailpiece promoted as- 
sembly of both filaments and segments; assemblies 
which have different molecular overlaps. Rod frag- 
ments carrying the COOH-terminal tailpiece did not 
promote the assembly of COOH-terminally deleted 
material when the two were mixed together. The tail- 
piece sequence thus has profound effects on assembly, 
yet it is apparently unstructured and can be bisected 
without affecting its function. Taken together these ob- 
servations suggest that the nonhelical tailpiece may act 
sterically to block an otherwise dominant but unproduc- 
tive molecular interaction in the self assembly process 
and does not, as has been previously thought, bind to 
a specific target site(s) on a neighboring molecule. 

M 
VOStN It (hereafter referred to as myosin) is a ma- 
jor constituent of eukaryotic contractile systems 
(Warwick and Spudich, 1987). It is present in sar- 

cometic and smooth muscles and also in nonmuscle tissues 
(cytoplasmic myosins). Structurally, the myosin molecule is 
a hexamer composed of two heavy chains (MHC)/two es- 
sential light chains and two regulatory light chains. The 
heavy chains are organized into two globular head regions 
where the force generating actin-binding and ATPase func- 
tions are located and a tall region composed of an oe-helical 
coiled coil rod involved in filament assembly (Harrington 
and Rogers, 1984). 

Myosins are monomeric in high ionic strength solutions 
(>300 mM NaCI) but assemble into filaments at low ionic 
strength. Such filament assembly behavior is believed to oc- 
cur as a multistep process probably involving different 
regions of the myosin tail (Sinard et al., 1989). First an ini- 
tial interaction between two or more myosin molecules oc- 
curs (nucleation) to form small bipolar assemblies (Reisler 

Robert Cross's present address is Marie Curie Research Institute, The 
Chart, Oxted, Surrey RH8 0TL. 

1. Abbreviations used in this paper: KCNS, potassium thiocyanate; LMM, 
light meromyosin; MHC, myosin heavy chain; PCR, polymerase chain 
reaction. 

et al., 1980; Sinard and Pollard, 1989) followed by the paral- 
lel addition of further molecules to form a filament (elonga- 
tion) (Davis, 1988; Sinard et al., 1989; Cross et al., 1991). 
Although most myosin filaments exhibit an axial 14.3-nm pe- 
riodicity reflecting the packing of the myosin tails in the fila- 
ment (Squire, 1981; McLachlan, 1984; Quinlan and Stewart, 
1987) the purified myosins exhibit a range of assembly prop- 
erties. For example, if one compares vertebrate smooth mus- 
cle and nonmuscle myosins with sarcomeric myosins there 
are differences in their critical concentrations for filament 
assembly (Josephs and Harrington, 1968; Megerman and 
Lowey, 1981; Kendrick-Jones et al., 1987), in their mode of 
nucleation/filament assembly (Cross et al., 1991) and in the 
structure and stability of their filaments (Craig and Meger- 
man, 1977; Hinssen et al. 1978; Suzuki et al., 1978). In ad- 
dition, vertebrate smooth muscle and nonmuscle myosins 
can exist in a dynamic equilibrium between folded monomer 
and assembled filament states regulated by light chain phos- 
phorylation (Suzuki et al., 1978; Trybus et al., 1982; Craig 
et al., 1983). In this paper we have sought to identify those 
regions of the myosin tail which may be responsible for these 
differences in assembly behavior. 

Although there is general heterogeneity in the amino acid 
sequences of vertebrate sarcomeric, smooth, and nonmuscle 
myosin rods, closer analysis reveals the presence of acom- 
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Figure 1. The COOH-terminal sequences of vertebrate sarcomeric, smooth and nonmuscle MHCs. (1) Chicken sarcomeric (skeletal) MHC 
(Molina et al., 1987); (2) rat embryo sarcomeric (skeletal) MHC (Strehler et al., 1986); (3) chicken smooth muscle MHC (Yanagisawa 
et al., 1987); (4) rat neonatal aorta MHC (Babij and Periasamy, 1989); (5) rabbit uterus MHC (Nagai et al., 1988); (6) chicken brush 
border MHC (this study); (7) human nonmuscle MHC (Saez et al., 1990); and (8) Drosophila nonmuscle MHC (Ketchum et al., 1990). 
Also shown are two of the expressed fragments; 407A, nonmuscle rod fragment (407 amino acids) with deleted COOH terminus (last 35 
amino acids deleted); and 407Z, the same rod fragment with the last 15 amino acids deleted. The sequences are grouped together according 
to tissue origin and aligned according to Dibb et al. (1989). Residues where an apparent consensus exists in smooth and/or nonmuscle 
myosins are in bold type and those residues reported to be phosphorylated are indicated (Kelley et al., 1991). 

mon 28-amino acid repeating unit containing four heptad 
repeats, characteristic of coiled-coil molecules, with hydro- 
phobic residues at the first and fourth positions within the 
heptad (Cohen and Parry, 1990). The most striking differ- 
ence between these myosins is at their carboxyl termini 
where the smooth muscle and nonmuscle myosin rods con- 
tain a 35--43 residue nonhelical COOH-terminal tailpiece 
which is absent in sarcomeric myosin rods (Strehler et al., 
1986; Molina et al., 1987; Yanagisawa et al., 1987; Nagai 
et al., 1988; Babij and Periasamy, 1989; Dibb et al., 1989; 
Shohet et al., 1989) (Fig. 1). The contrasting roles of sarco- 
meric myosins which form highly ordered, stable filament 
arrays in muscle and nonmuscle myosins which need to rap- 
idly assemble and disassemble in cells for contractile events 
such as cytokinesis, has led to speculation that the nonmus- 
cle myosin nonhelical tailpiece is the region responsible for 
directing the assembly and possibly the disassembly of this 
myosin. Removal of this COOH-terminal region from 
smooth muscle myosins by proteolytic cleavage (Cross and 
Vanderkerckhove, 1986; Ikebe et al., 1991) indicates that 
this region is required for self-assembly. The existence of 
phosphorylation sites within this tail piece in vertebrate non- 
muscle myosins (Kelley et al., 1991) further strengthens the 
speculation that this domain may have a regulatory role in 
filament assembly/disassembly. Interestingly, alterations or 
modifications to the carboxyl termini of other myosins have 
also been shown to affect myosin filament assembly. For ex- 
ample, mutations in the COOH terminus of Caenorhabditis 
elegans unc-54 MHC disrupts myosin filament assembly 
(Dibb et al., 1985) while fusion proteins containing Acan- 
thamoeba myosin II tail sequences with deletions in the last 
100 amino acids fail to assemble (Sinard et al., 1990). How- 
ever, phosphorylation or deletion of part of the nonhelical 
COOH-terminal tail piece of Acanthamoeba myosin II has 

little apparent effect on filament formation (Atkinson et al., 
1989; Sathyamoorthy et al., 1990; Ganguly et al., 1990) 
whereas removal of the 17 COOH-terminal amino acids 
from rabbit skeletal muscle myosin rod disturbs filament as- 
sembly especially at high pH values (Maeda et al., 1991). 
Obviously the COOH-terminus is a crucial region for fila- 
ment assembly in many types of myosins. 

We have used a molecular biological approach to identify 
the specific regions of a vertebrate nonmuscle myosin rod in- 
volved in filament assembly and define the role of the nonhe- 
lical COOH-terminai tailpiece. We have isolated and se- 
quenced clones encoding the myosin rod from a chicken 
intestinal epithelium (brush border cells) cDNA h library, 
and have used these clones to construct recombinant protein 
expression plasmids designed to yield a series of truncated 
rod polypeptides for analysis in filament assembly experi- 
ments. By shortening the length of the expressed rod poly- 
peptides progressively at the amino terminus in different 
constructs we have shown that a minimum length is required 
for assembly. Conversely, deletion of the COOH-terminal 
nonhelical tailpiece results in a dramatic increase in the criti- 
cal concentration of rod polypeptide required for assembly 
which we believe results from an induced change in the 
association-dissociation kinetics of assembly. The data 
strongly suggest that the tailpiece favors assembly by induc- 
ing a favorable stagger between neighbors in the growing 
polymer. We discuss the possibility that productive staggers 
are forced by steric clashes between neighboring tailpieces. 

Materials  and  Methods  

Materials 

Analytical grade reagents were used throughout and were obtained from 
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BDH Chemicals Ltd. (Poole, UK) and Bethesda Research Laboratories 
(Gaithersburg, MD). Radiochemicals were obtained from Amersham Inter- 
national (Amersham, UK). Papain, chymotrypsin, and hen egg white lyso- 
zyme were from Sigma Chemical Company (Poole, UK). All other en- 
zymes were from New England Biolabs (Beverly, MA) or from 
Boehringer-Manrdaeim GmbH (Mannheim, Germany) and were used ac- 
cording to the manufacturer's standard assay conditions. Oligonucleotides 
were synthesized on an Applied Biosystems 380B automated DNA syn- 
thesizer (Applied Biosystems, Inc., Foster City, CA) by Jan Fogg and Terry 
Smith (MRC Laboratory of Molecular Biology, Cambridge, MA). The 
brush border hgtll eDNA library was a generous gift from Dr. Paul Mat- 
sudaira (Whitehead Institute, Massachusetts Institute of Technology, Cam- 
bridge, MA). Chicken gizzards and intestines were obtained from G. W. 
Padley Ltd., (Bury St. Edmunds, UK). 

Biochemical Methods 
Chicken gizzard and brush border myosins and their light meromysin 
(LMM) and rod subfragments (for control experiments) were prepared as 
previously described (Kendrick-Jones et al., 1971, 1983; Citi and Kendrick- 
Jones, 1986). The protein concentrations of the myosin, native LMM, and 
rod fragments were estimated spectrophotometrically using the following 
absorption coefficients (A2so nm in 1-cm cells) for myosin 0.54, rod 0.30, 
and LMM 0.30 m_g m1-1. The concentrations of the expressed fragments 
were determined by the Pierce BCA protein assay (Pierce Chemical Co., 
Rockford, IL). 

5-20% acrylamide gradient SDS-PAGE gels were run as described by 
Matsudaira and Burgess (1978) using the Pharmacia low molecular weight 
marker kit (14,000-94,000) for calibration (Pharmacia Chemicals, Piscata- 
way, NJ). Glycerol-PAGE gels were used to analyze the purified rod frag- 
ments under nondissociating conditions. Gels (7.5 % acrylamide 40 % glyc- 
erol) were polymerized and electrophoresed in the following buffer: 0.122 M 
glycine, 0.02 M Tris, pH 8.6, and 40 mM sodium pyrophosphate, final 
pH *8.9. For sample loading we included 10% 2-mercaptoethanol and 40% 
glycerol. Gels were run at 5 W constant power for 3 h. The proteins were 
visualised by staining with PAGE blue 83 (BDH Chemicals Ltd.). Western 
blots were carried out by the method of Burnette (1981) using brush border 
myosin mAbs BM1, BM3, and BM4 (Citi and Kendrick-Jones, 1987b) and 
were visualized using the Vector Laboratories ABC kit (Vector Laborato- 
ries Inc., Burlingame, CA). 

DNA Manipulations 
Unless otherwise stated, all DNA manipulations were performed as de- 
scribed in Sambrook et al. (1989). Bacteria harboring recombinant plas- 
mids were grown in 2 • YT medium containing 50-100 ttg m1-1 ampicil- 
lin. The chicken epithelial brush border hgtll eDNA library was screened 
by the procedure described previously (Huynh et al., 1985) using brush bor- 
der myosin mAbs BM1 and BM4 (Citi and Kendrick-Jones, 1987b), a bi- 
otinylated secondary antibody and an avidin-biotinylated HRP complex 
(Vector ABC kit, Vector Laboratories Inc,). 

Initially 10 eDNA clones were identified after screening ~6  x 105 
plaque forming units. Subcloning into pUC18 and restriction enzyme diges- 
tion analysis revealed that these were overlapping clones representing three 
eDNA clones derived from one transcript (Fig. 2). Restriction fragments 
from the 5' end of our clones were used to reprobe the eDNA library, bat 
unfortunately no new clones were detected. Similar results were observed 
by Shohet et al. (1989) using the same library but with different probes. We 
believe that during preparation of this eDNA library some artifact in the 
eDNA cloning process has blocked the reverse transcriptase from extending 
beyond the region represented in our clones. 

Plasmid constructs, designed for bacterial expression of the desired poly- 
peptides, were made in the relevant pINII vectors (Nakarnura and Inouye, 
1982), using the EcoRl or HindlII sites at the 5' end and the BamHI at the 
3' end of the clones. (See Fig. 2 for details of clone manipulation.) Expres- 
sion constructs with deleted nonhelical tailpieces were made either by dele- 
tion with restriction enzymes or by amplification from the original clone 
DNA by a polymerase chain reaction (PCR) method (Bunnell and Kidd, 
1989). PCR products were digested with HindlII, a unique site in the origi- 
nal clones, and BamHI, introduced by the primer, and ligated into the ex- 
pression clone. 

Expression and Purification of Recombinant Proteins 
The conditions for the bacterial expression of the rod constructs and the ini- 
tial stages of purification were as described by Atkinson and Stewart (1991). 

Figure 2. The expressed vertebrate nonmuscle myosin rod frag- 
ments. The expressed rod fragments are shown in diagrammatic 
form with u-helical coiled coils and nonhelical COOH termini. 
Also shown for comparison is intact myosin. They are labeled ac- 
cording to the number of amino acid residues present, including 
residues introduced by the cloning process. The first and last amino 
acid residues are numbered according to the published sequence 
(Shohet et al., 1989). Fragments 786, 586, 40"~, and 119 have intact 
COOH termini; 407A has no tailpiece and 407Thas a truncated tail- 
piece. The construct 407A is an example of a set of COOH-terminal 
deletions made on all the intact fragments. A restriction map of the 
sites used for cloning the expression constructs is also shown be- 
neath that of A786, the EcoRI insert of an isolated ~,gtll eDNA 
clone. Clones 786, 586, and 407 are DraI-EcoRI deletions of hgtl 1 
isolates while 119 is a PstI subclone derived from h786. Clone 407A 
is an AvaII-DraI deletion of 407 and 407T was produced by PCR 
amplification of a novel 3' sequence (see Materials and Methods). 
A, AvalI; D, DraI; E, EcoRI; H, HindlII; P, PstI; and asterisk, 
translation stop codon. 

A battery of protease irthibitors was present in all these steps (Citi and 
Kendrick-Jones, 1986). After lysis of the bacterial cells and centrifugation 
to remove cellular debris, the proteins were precipitated from the supema- 
tant by the addition of 5 vols of ethanol and stirred at 4~ for 30 min. A 
heavy, sticky precipitate formed which was resuspended in 10 ml (per liter 
of culture) of 25 mM "Iris, pH 7.5, 1 mM MgC12, 1 mM DTT and then dia- 
lyzed against 2 • 2.5 liters of the same. Solid urea was added to 7 M to 
dissolve the precipitate which was fractionated on a DEAE-callulose DE52 
column (Whatman, Maidstone, UK) with a 0-500 mM NaCl gradient in 
6 M urea, 25 mM Tris pH 7.5, 1 mM MgC12, and 1 mM DTT. Fractions 
containing the required polypeptides were identified by SDS-PAGE and 
checked by Western blotting. The fractions were pooled and dialyzed into 
0.6 M NaCl, 25 mM sodium phosphate, pH 7.0, 10 mM Tris, pH 7.5, 0.5 
mM sodium azide, and 2 mM DTT (myosin storage/dilution buffer) and 
stored at concentrations between 0.5 and 2 nag m1-1. In later preparations 
all the expressed myosin fragments, with the exception of 119, were further 
purified by dialyzing into low salt buffer (50 mM NaC1, 25 mM sodium 
phosphate, pH 6.5, 5 mM MgCl2 and 0.5 mM DTT) and collecting the 
precipitate by centrifugation at 30,000 g for 30 min before resuspending in 
storage/dilution buffer at 4-5 mg m1-1. 
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Analysis of the Expressed Proteins 
Sedimentation Analysis. Samples of the expressed myosin rod proteins 
(100 #1, 0.5 nag m1-1) were dialyzed in small dialysis bags (visking dialysis 
tubing size 8/32) against a range of salt concentrations (50-400 mM NaCI) 
in 25 m_M sodium phosphate, pH 7.5, 0.5 mM DTT, and 2 mM MgC12, 
(sedimentation buffer) for 5 h with gentle agitation. For critical concentra- 
tion determinations a range of protein concentrations between 0.1 and 3.0 
nag ml -I were dialyzed against 150 mM NaCI in 'sedimentation buffer" 
Dialyzed samples were weighed to determine final volume then centrifuged 
at 100,000 g for 20 rain in a Beckman alrfuge (Beckman Instruments Inc., 
Fullerton, CA). Previous sedimentation velocity measurements on thymus 
myosin filaments (Kendrick-Jones et al., 1987) indicated that any oligomers 
with sedimentation coefficients larger than 15S would be sedimented under 
these conditions (see also Pollard, 1982). The top 40% of each superna- 
tant was taken for analysis by SDS-PAGE. The remainder of the supernatant 
was removed from the tube and the pellet redissolved in 100 #1 of myosin 
storage/dilution buffer overnight at room temperature. Samples of the pel- 
lets were taken for SDS-PAGE. The solubility of the myosin rod fragments 
(expressed as percent fragment in the supernatant) were determined by mea- 
suring the relative amounts of each fragment in the pellet and supernatant 
fractions by densitometry of the stained PAGE gel bands using either a Ca- 
mag etectrophoresis densitometer (Cambridge Instruments, Cambridge, 
UK) or with a Molecular Dynamics Computing Densitometer (model 
30(0; Molecular Dynamics, Sunnyvale, CA). 

Electron Microscopy 
Samples for EM were prepared by a number of procedures: (a) Native and 
expressed myosin rod proteins (,~ mg ml -l) in 600 mM NaCI, 40 mM 
lmidazole, pH 7.3, 5 m/vl MgCI2 were rapidly diluted with 3 vols of water 
(final concentration 150 mM NaCI, 1 mM MgCI2, 10 mM Imidazole, 
pH 7.3) and 10-#1 aliquots taken for negative staining. Similar aggregates 
were formed if the proteins were dialyzed for 90 rain against the 150 mM 
NaC1 solution. (b) 10-#1 aliquots of the samples from the sedimentation as- 
says which had been dialyzed against 50 raM, 100 raM, and 150 mM NaCI 
in 2 mlVl MgCI2, 25 mM phosphate buffer, pH 7.5, 0.5 mM DTT were 
taken for negative staining. (c) For paracrystal formation, 100-#1 aliquots 
of native LMM, rod, and expressed fragments 786, 586, and 586AC (,00.5 
nag ml -t) were initially dialyzed against 50 mM Tris-HCl, pH 8.25, con- 
taining 50. mM potassium thiocyanate (KCNS) for native LMM, 100 mM 
KCNS for native rod, 65 m/Vl KCNS for expressed fragments 786 and 586, 
and 0--80 mM KCNS for expressed 586AC. The solutions were centrifuged 
in an airfuge for 15 min at 30 psi (100,000 g) and then redialyzed against 
the appropriate Tris-HCl buffer/KCNS solution containing in addition 50 
or 100 mM CaC12 (or other divalent cations) to form the paracrystals. 

For negative staining 10-t~l samples were applied onto carbon coated, 
400 mesh grids and left for 15 s. The grids were washed with six drops of 
the appropriate salt/buffer solution and stained with six drops of 1.5% ura- 
nyl acetate and dried. For shadowing, the samples were mixed with an equal 
volume of glycerol, sprayed onto freshly cleaved mica, and shadowed with 
platinum and carbon (Citi and Kendrick-Jones, 1987a). The specimens were 
examined in a Philips electron microscope (model EM400; Philips Elec- 
tronic Instruments Co., Mahwah, NJ) operated at 80 kV and representative 
views photographed. 

Results 
Shotgun sequencing of the longest of our cDNA clones 
(X786) yielded data which agrees almost completely with the 
sequence already published by Shohet et al. (1989). The only 
difference is that in their deduced protein sequence there is 
a disruption in the heptad and 28-residue repeat patterns in 
zone 39 of the rod, whereas in our translated cDNA se- 
quence we detected an extra amino acid residue in this re- 
gion. In our sequence there is no disruption in the repeats 
and the protein sequence is identical to that of human non- 
muscle myosin reported by Saez et al. (1990). The DNA in 
this region was found to be subject to compressions when 
electrophoresed on the sequencing gel such that the sequence 
reported as: CGA GCC AAC GTC CGC AGG (bases 5662- 
5679, protein sequence: RANVRR, Shohet et al., 1989), we 

Table L SDS-PAGE and Western Blot Analysis of the 
Expressed Rod Fragments 

Clone Predicted Estimated 
name size size BM1 BM4 BM3 

kD kD 

786 91.0 88.2 + + + 
586 68.2 70.6 + + + 
407 47.2 50.4 - + + 
1 1 9  13.7 14.4 - + + 

786A 87.5 82.1 + + + 
586A 64.7 67.2 + + + 
407A 43.8 43.4 - + + 
407T 45.8 46.8 ND + ND 

mAb BMI binds to a region ,~71 nm from the COOH-terminal end of brush 
border myosin, whereas the epitopes for antibodies BM3 and BM4 are at the 
COOH terminus of the molecule (Citi and Kendfick-Jones, 1987b). BM1 and 
BM4 are IgGs, whereas BM3 is an IgM. 

have read as: CGA GCC AAC GCG TCC CGC AGG 
(RANASRR). Some of our clones have a longer 3' untrans- 
lated region to those described by Shohet et al. (1989) and 
terminate in a short poly-A tail preceded by a putative poly-A 
addition signal (data not shown). This would suggest a 3' un- 
translated region of some 1.4 kb. 

Expression and Characterization of the 
Expressed Proteins 
The eDNA expression clone 786 codes for a protein of 786 
amino acids with a predicted molecular weight of 91,000 dal- 
tons, which is in good agreement with its size estimated from 
SDS-PAGE (Table I). Aligning the sequence with that of 
chicken smooth muscle MHC (Yanagisawa et al., 1987) indi- 
cates that it codes for more than two thirds of the rod region 
(from residue 1,180 to the COOH-terminus). 

Using our sequence data we designed a number of expres- 
sion constructs using pINII expression vectors (Nakamura 
and Inouye, 1982). Two types of constructs were made: 
those with deletions at the 5' end of the sequence to generate 
deletion mutants 786, 586, 407, etc. and those with deletions 
at the extreme 3' end of the coding sequence, which remove 
or truncate the nonhelical COOH-terminal tailpiece, hence 
clone 407 becomes 407A or 407T (Fig. 2). The constructs 
were expressed and after initial screening by SDS-PAGE, the 
required expressed proteins were purified using procedures 
based on the known stability properties of native myosin rod 
and LMM. Proteins made in this way were stable to ethanol 
and heat, selectively precipitated at low pH and pI and 
showed mobilities on PAGE gels close to those predicted 
(Fig. 3, Table I). The appearance of multiple bands in the ex- 
pressed protein samples was noted from the outset of the 
purification procedure despite the presence of 10 mM EDTA 
and a wide spectrum of protease inhibitors (Citi and 
Kendrick-Jones, 1986). They were not removed by chroma- 
tography or by repeated low salt precipitation cycles. Prelim- 
inary data indicates that nicking of the coiled coil occurs at 
the amino terminus and the extra bands have no effect on the 
sedimentation assays or on the formation of paracrystais. 
Under nondissociating conditions on glycerol-PAGE (40% 
glycerol/7.5 % acrylamide) in the presence of 40 mM sodium 
pyrophosphate the samples run as single bands (Fig. 3B). 
Thus the multiple bands are not apparent until the proteins 
are boiled in SDS loading buffer for the SDS-PAGE analysis. 
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Figure 3. PAGE analysis of ex- 
pressed rod fragments. (A) 
SDS-PAGE. Lane 1, Isolated 
chicken gizzard myosin rod 
(proteolytic digest); lane 2, iso- 
lated gizzard light meromyo- 
sin (digest); lane 3, expressed 
myosin fragment 786; lane 4, 
fragment 786A; lane 5, frag- 
ment 586; lane 6, fragment 
586A; lane 7, fragment 407; 
lane 8, fragment 407A; and 
lane 9, fragment 119. See Ta- 
ble I for details of predicted 
and observed fragment size. 
(B) Glycerol-PAGE. Lane 1, 
fragment 407; lane 2, frag- 
ment 407T; and lane 3, frag- 
ment 407A. 

The proteins were further tested with the brush border my- 
osin rod mAbs BM1, BM3, and BM4 (Citi and Kendrick- 
Jones, 1987b), to check their identity and their approximate 
lengths (Table I). Earlier work (Citi and Kendrick-Jones, 
1987b) had suggested that BM4 bound to the extreme 
COOH-terminal end of the rod but our results show it still 
binds to rod molecules where the last 35 residues have been 
deleted. Rotary shadowing the expressed proteins revealed 
rod-like structures of the correct average size in the electron 
microscope. Furthermore low angle x-ray scattering analysis 
(carried out by Dr. W. Faruqi, LMB, Cambridge, UK) on 
these proteins yielded data consistent with c~-helical coiled- 
coil rods (data not shown). 

Assembly Properties of the Nonmuscle 
Myosin Fragments 
Sedimentation Assay. All the expressed fragments with the 
exception of fragment 119, showed assembly characteristics 
which were similar, i.e., they assembled into polymers at 
low salt and as the salt concentration was increased they dis- 
assembled and became soluble monomers (>300 mM) (Fig. 
4 a). The effect of lowering the pH from 7.5 to 6.5 on the 
assembly of all the fragments was minimal. Fragment 119 
however was soluble under all conditions tested, i.e., at all 
salt concentrations and at pH 6.5 and 7.5. It even remained 
completely soluble when mixed with equal concentrations of 
fragments 586 or 407 in high salt and dialyzed to low salt 
at pH 6.5, conditions under which fragments 586 and 407 
readily assembled (data not shown). O'Halloran et al., 1990 
have previously shown that a minimum length of rod is re- 
quired for Dictyostelium myosin filament assembly. The 
results with 119 suggest a minimum rod length is also re- 
quired for assembly of vertebrate nonmuscle myosins. Rod 
paracrystals assembled from COOH-terminally intact mate- 
rial have a 14.3-nm repeat which indicates that their constit- 
uent molecules are staggered by this amount. If this is indeed 
the case, then it is not surprising that rod fragment 119 did 
not assemble, since after taking into account the 35-residue 
tailpiece it is <14.3 nm long (14.3 nm of u-helix corresponds 

to ~98 residues, i.e., 0.1485-nm rise per amino acid residue 
[McLachlan and Karn, 1982]) Low angle x-ray scattering 
analysis on 119 confirms that it is the correct size and shape 
to be a short piece of coiled coil (A. R. Faruqi, unpublished 
data). Hence its inability to assemble is unlikely to be due 
to incorrect formation of the o~-helical coiled-coil structure. 

Deletions at the COOH-terminus lead to a dramatic altera- 
tion in the assembly properties of the rod fragments (Fig. 4 
b). Removal of the entire 35-residue COOH-terminal tail- 
piece results in a clear shift in the solubility curves, so that 
at 150 mM NaC1 >60% of the protein remained soluble. 
This change in solubility is because of a dramatic increase 
in the critical rod fragment concentration (Co) required for 
assembly (Fig. 4 c). At 150 mM NaCI, pH 7.5, deletion of 
the COOH-terminal tailpiece leads to a 20-50-fold increase 
in critical concentration (Co); from Cc ~20-50 #g ml -~ for 
the rod with an intact or truncated COOH terminus to ~1 
mg/ml -t for the deleted COOH-terminal (CA) fragments. 
Unlike fragment 119 which is assembly incompetent, the CA 
fragments could be forced to assemble at higher protein or 
at lower salt concentrations. The data indicate that the action 
of the tailpiece is to cause self-assembly to occur at protein 
concentrations considerably below those at which it would 
otherwise occur. This observation is consistent with the idea 
that the nonhelical tailpiece in some way promotes assembly, 
rather than being absolutely required for assembly. 

Coassembly experiments. The finding that the intact and 
deleted COOH-terminal fragments have very different criti- 
cal concentrations for assembly suggests either that the tail- 
piece accelerates a step or steps in the assembly pathway, or 
else it induces assembly to occur via a different pathway. As 
one way to distinguish between these possibilities, the fol- 
lowing coassembly experiments were carried out (Fig. 5). 
When the intact COOH-terminal fragments 586 and 407 
were mixed together at a 1:1 ratio, assembly of both of them 
was increased, i.e., less of each of them was present in the 
supernatants after dialysis and centrifugation. In contrast, 
when fragment 586 was mixed with the COOH-terminal- 
deleted fragment 407A in a similar ratio, then assembly of 
586 and 407A was not significantly altered, i.e., fragment 
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Figure 5. Coassembly of myosin rod fragments. Mixtures of equal 
concentrations of 586 alone or with either 407 or 407A, or 407A 
alone or with 586 (total protein concentration 0.5 mg/m1-1) were 
dialyzed against sedimentation buffer at 150 mM NaC1, centrifuged 
and the supernatant and pellet fractions analyzed by SDS-PAGE. 
The bar graphs are grouped according to the fragment whose solu- 
bility was measured and any other fragment present in the dialysis 
bag is shown after the bar. The lower solubility of 586 in the pres- 
ence of 407 suggests some cooperative effect on filament formation. 
The minimal effect of 586 on the solubility of 407A shows that intact 
molecules are unable to 'rescue' COOH-terminal deleted mole- 
cules. Identical results were obtained at 200 mM NaCI and when 
other mixtures of intact and COOH-terminal deleted rod fragments 
were used. 

40?A still remained mainly soluble. Thus, fragment 586 
with an intact COOH-terminal tailpiece is not able to 'rescue' 
the COOH-terminal-deleted fragment 407A by interacting 
with it to assemble into copolymers. There is apparently a 
requirement for symmetry in the self-assembly process, sug- 
gesting that the growing polymer senses in some way whether 
incoming molecules have the COOH-terminal tailpiece or 
not. This is consistent with earlier work with proteolytic rod 
fragments (Cross and Vanderkerckhove, 1986), which indi- 
cated that a mixture of chicken gizzard LMM fragments with 
intact and deleted COOH-termini segregated to the pellet 
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Figure 4. The assembly properties of the expressed myosin rod 
fragments. (a) The assembly behavior of expressed fragments 586 
( - A - ) ,  407 ( - o - ) ,  and 119 ( - - - )  as a function of the salt 
concentration. At these protein concentrations (0.5 mg ml -t) all 
the fragments including 786 (not shown) show similar assembly 
profiles with the exception of fragment 119 which is completely 
soluble. (b) Comparison of the assembly behavior of expressed 
fragments with the COOH-terminal tailpiece (407 [ - � 9  - ]  and 586 
[ - � 9  and without the COOH-terminal tailpiece (407A [--O--] 
and 586A [ -zx-] )  as a function of the salt concentration. Deletion 
of the COOH-terminal tailpiece increases the solubility of frag- 
ments 407 and 586. 407T (X) (last 15 amino acids deleted). (c) The 
critical monomer concentration for assembly of fragment 407 (e), 
407A (O) and 407T (X) (last 15 amino acids deleted) at 150 mM 
NaC1, 2 mM MgC12, pH 7.5. The change in solubility brought 
about by deletion of the tailpiece is due to a dramatic increase in 
the critical monomer concentration required for assembly. 
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Figure 6. Electron micro- 
graphs of the ordered aggre- 
gates formed by native and ex- 
pressed myosin rod fragments 
at approximately physiologi- 
cal salt, pH, and MgCI2 con- 
centrations (150 mM NaCI, 1 
mM MgCI2 and pH 7.3). (a) 
expressed 786; (b) native myo- 
sin rod; (c) native myosin 
LMM; (d) expressed 586; 
(e) expressed 586A at '~ 
mg ml-~; O r) expressed 586A 
(at >1.0 mg m1-1) left for 
,o16 h. Fragments 786 and 
586 (and fragment 407 not 
shown) form structures very 
much like those formed by the 
native rod and LMM control 
fragments. Deletion of the 
nonhelical tailpiece disrupts 
formation of these needle-like 
structures. However, close ex- 
amination of e reveals numer- 
ous small parallel aggregates 
in the background. By in- 
creasing the protein concen- 
trations of these COOH-ter- 
minal deleted fragments, they 
will, given time, form large 
well ordered structures with 
prominent 14.3-rim periodici- 
ties as seen inf. Note the con- 
ditions used were similar to 
those used in the sedimenta- 
tion assay (at 150 mM NaCI) 
shown in Fig. 4. All the 'ag- 
gregates' were formed by the 
rapid dilution from high salt 
into low salt buffer procedure. 
Very similar structures were 
observed when the rod frag- 
ments were dialyzed into the 
low salt buffer conditions or 
samples were taken directly 
from the sedimentation assay. 
The results are very reproduc- 
ible with different prepara- 
tions of the rod fragments. 
The micrographs shown are 
representative of all the mate- 
rial observed on the grids. 
Bar, 0.1 #m. 

and supernatant fractions, respectively, after ultracentrifu- 
gation. These results mean that provision of nuclei composed 
of intact, assembly competent rod molecules does not allow 
molecules with deleted COOH-termini to coassemble, indi- 
cating that the nonhelical COOH-terminus promotes both 
polymer initiation and polymer growth. 

Electron Microscopy, The ability of the expressed frag- 
ments to assemble was compared by examining the assem- 
bled forms in the electron microscope after negative staining 
(Fig. 6). Under approximately physiological conditions (150 

mM Nat1, 2 mM MgCl~, pH 7.3) the expressed fragments 
586 and 786 assembled to form numerous short symmetrical 
filaments with pointed ends (Fig. 6, a and d) which were 
very similar to those formed by the native rod and LMM 
fragments (Fig. 6, b and c). Fragment 786 showed a slightly 
elevated solubility in the sedimentation assay (data not 
shown) but formed filaments which were similar in structure 
although variable in size compared with those formed by the 
other fragments. Under the same conditions the COOH- 
terminal-deleted fragment 586A formed only a few small 
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Figure 7. Electron micro- 
graphs of paracrystalline 'seg- 
ments' formed by native and 
expressed rod fragments. (a) 
native gizzard LMM; (b) ex- 
pressed 786 fragment; (c) ex- 
pressed 586 fragment; and (d) 
schematic representation of 
the packing of the rod mole- 
cules in the 'segments' as pro- 
posed by Kendrick-Jones et 
al., (1971). The 'segments' dis- 
play both bipolar and polar 
bonding patterns with an axial 
stagger of 43 nm. The NH2- 
terminal ends of the mole- 
cules are indicated by the 
arrowheads and the dark stain- 
ing lines on each side of the 
central 43-nm region are be- 

lieved to represent small gaps between the molecules, i.e., they are not end to end bonded. The lengths of the molecules estimated from 
the micrographs are in agreement with the expected values, i.e., ~100 nm for the native LMM, '~110 nm for 786, and '~90 nm for 586. 
Bars, 50 nm. 

"carrot-shaped" arrays and a high concentration of protein 
was evident in the background (Fig. 6 e). When higher con- 
centrations of 586A (>1 mg/ml -t) were used and the sam- 
pies were left for •16 h at 4~ then the small loosely packed 
arrays aggregated to form large paracrystaUine structures 
with prominent 14.3-nm periodicities (Fig. 6 f ) .  The forma- 
tion of these large aggregates which require high protein con- 
centrations and time suggests that they assemble by a less 
favorable pathway with few stable nuclei and a slow filament 
growth rate. 

To further probe the interactions involved in assembly, at- 
tempts were made to induce the expressed fragments to form 
paracrystalline segments in the presence of high concentra- 
tions of divalent cations (Fig. 7). As previously demon- 
strated (Kendrick-Jones et al., 1971) native LMM readily 
forms these bipolar segments where the molecules are stag- 
gered by 43 nm as shown in Fig. 7 d. Under similar condi- 
tions, fragments 786 and 586 formed similar structures al- 
though the number observed were few and they tended to be 
less well ordered and rather ragged. We were unable to in- 
duce the 586A fragment to form such paracrystalline arrays 
despite testing a variety of conditions, for example, differing 
pHs from 7.5 to 8.6, using differing amounts of the solubiliz- 
ing agents potassium thiocyanate and sodium chloride and 
different divalent cations such as Ca 2§ Mg 2+, or Cd 2§ at 
high concentrations. These results provide further proof that 
the COOH-terminal tailpiece is crucial for generating bipo- 
lar assemblies with a 43-nm stagger which may reflect one 
of the axial staggers between myosin rods involved in assem- 
bling thick filaments. 

In both the segments and filament aggregates the electron- 
dense striations in the assemblies are due to stain accumula- 
tion at the ends of the molecules. Hence the COOH-terminal 
nonhelical domain enhances the assembly of rod fragments 
into two types of polymers having two different molecu- 
lar overlaps. One can therefore exclude that the tailpiece 
recognizes and binds to a single target site on a neighboring 
molecule. We note further that filaments formed from rod 
fragments with intact COOH termini and (at higher concen- 

trations) those with deleted COOH termini both have 14.3 
nm striations, suggesting that the tailpiece does not alter the 
overlap between molecules in the filaments. It remains possi- 
ble however that two or more recognition sites for the tail- 
piece exist on neighboring molecules. To test this possibility 
we made further truncations in the tailpiece region, and as- 
sayed the assembly of the resulting constructs (Fig. 4 b). 
Truncation of the brush border myosin tailpiece sequence 
down to 40% of its original length (407T) did not affect its 
function, again consistent with there being no specific se- 
quence requirements in this region. This truncation removes 
the last 15 amino acids and most of the region of negative 
charge within the tailpiece (Fig. 1), yet it does not appear to 
affect the assembly of the rod fragments. 

Discussion 

The most significant difference between the o~-helical coiled 
coil rod regions of vertebrate smooth muscle/nonmuscle and 
sarcomeric (skeletal) muscle myosins is the presence in the 
former of nonhelical carboxyl-terminal tailpieces, ,~35-43 
amino acids long (Fig. 1). Although the lengths and se- 
quences of the COOH-terminal tailpieces vary in the differ- 
ent smooth muscle/nonmuscle myosins, the distribution of 
hydrophobic, basic, and acidic amino acids is preserved (Fig. 
1). It is not clear from the sequences however whether the 
conformation of the tailpiece is a true random coil or 
whether some nonhelical secondary structure is present. 

Previous experiments involving the removal of this 
COOH-terminal nonhelical domain from various myosins, 
either by proteolysis or site-directed mutagenesis (Cross and 
Vanderkerckhove, 1986; Sinard et al., 1990; Ikebe et al., 
1991) have suggested that this domain is required for self- 
assembly. In addition work on chicken epithelial brush bor- 
der myosin (Citi and Kendrick-Jones, 1988) showed that 
mAbs binding to the COOH-terminal tip of the rod blocked 
filament assembly while those binding to regions one third 
and two thirds along the rod, gave rise to assembly inter- 
mediates, suggesting that some interaction involving the 
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Figure 8. Models to explain 
the action of the nonhelical 
tailpiece on the assembly of 
smooth and nonmuscle myo- 
sins. In Model 1, the tailpiece 
promotes assembly by binding 
to a target site on a neighbor- 
ing molecule. Molecular over- 
laps are specified by this site- 
specific binding. In Model 2, 
the tailpieces of neighboring 
molecules clash, forcing an 
intermolecular stagger to occur 
and thus when tailpieces are 
present, unstaggered modes of 
assembly are disfavored (A). 
This model supposes that in 
the absence of tailpiece, un- 
staggered intermediates accum- 
ulate (B), which only infre- 
quently develop productive 
staggers and go on to assemble 
into filaments. This model 
makes a testable prediction, 
that unproductive oligomers 
of tailpiece-free molecules 
should be present under as- 
sembly conditions. Preliminary 
observations are in agreement 
with this prediction (see mate- 
rial in background of Fig. 6 e). 
The result of productive fila- 
ment assembly (A) is seen in 
the electron microscope as re- 
peating striations of 14.3 nm 
which represent 98 residues of 
u-helical coiled coil or 3.5 
repeating charge units (C). 
Packing of rod molecules into 
filaments is thought to be de- 
termined by a unit of 7 x 28 
residue repeats (196 amino 
acids), half staggered relative 
to each other resulting in a 
14.3-nm repeating structure, 
i.e., 196/2 x 0.1485 nm 
rise/amino acid (Quinlan and 
Stewart, 1987). 

nonhelical tailpiece is a pr imary step in filament assembly. 
Antibodies to Acanthamoeba and Dictyostelium myosin IIs 
have similarly demonstrated the importance of the distal tail 
in the initial steps in the assembly of  these myosins (Pagh and 
Gerisch, 1986; Rimm et al., 1990). Recently Ikebe et al. 
(1991) made the interesting observation that after assembly 
of vertebrate smooth muscle myosin filaments, the tailpiece 
can be proteolytically cleaved away, without inducing fila- 
ment disassembly. The present series of experiments were 
designed to address the question of which steps in the assem- 
bly pathway of a vertebrate nonmuscle myosin are promoted 
by the presence of the tailpiece. 

Models to Explain the Role of the Tailpiece 

We have considered two types of possible model to explain 
our results (Fig. 8). Both postulate that the tailpiece 
produces its effect on the critical monomer  concentration for 
assembly by enhancing the ability of molecules to bind 
productively to one or more partners in such a way that the 
molecules build into a filament. In Fig. 8, Model 1, the tail- 
piece is postulated to recognize and bind to a target site on 
one or more neighboring molecules, thereby increasing the 
binding constant, and specifying a particular overlap be- 
tween molecules. This was suggested by E. D. Korn and his col- 
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leagues to be the way in which the COOH terminus of Acan- 
thamoeba myosin II promoted myosin filament assembly 
(Atkinson et al., 1989). Recently Kalbitzer et al. (1991) 
showed by nuclear magnetic resonance spectroscopy that 
even the COOH terminus of rabbit skeletal muscle myosin 
contains a short unfolded mobile region which they propose 
might function as a 'kind of cement' to stabilize the thick fila- 
ment structure. In Fig. 8, Model 2, the nonhelical tailpiece 
is postulated to block an otherwise dominant, but unproduc- 
tive mode of intermolecular binding (Fig. 8 A). In this model 
the tailpiece promotes assembly by diverting molecules out 
of this futile cycle, and on to a productive pathway. 

The lack of any obvious sequence anomaly within the rod, 
which would indicate a specific binding site, argues against 
Fig. 8, Model 1. The finding that the tailpiece enhances both 
filament and segment assembly, and hence enhances two 
different molecular overlaps, also argues against a specific 
single binding site in the myosin rod. Finally, we found that 
the tailpiece could be deleted down to half its wild type 
length, substantially altering its charge, without affecting 
function. This again renders it unlikely that specific se- 
quence features in the tailpiece are required for function. 
Rather, the data indicate that the COOH-terminal tailpiece 
must have a minimum size, but that its length and sequence 
can vary substantially without affecting function (see Fig. 1). 
We feel this is much more consistent with a steric blocking 
role (model 2) than with there being one or more specific 
tailpiece-binding sites within the rod molecule. Further sup- 
port is provided by the observations of Ikebe et al. (1991) that 
the tailpiece can be selectively removed from myosin fila- 
ments by proteolytic cleavage without inducing filament dis- 
assembly, indicating that it is accessible and not buried in the 
spaces in the filament structure. 

For a steric blocking mechanism to be effective in promot- 
ing productive assembly, there must be at least one compet- 
ing, unproductive pathway, which sequesters molecules lack- 
ing a tailpiece. Our experiments do not reveal details of this 
competing pathway, but it might for example involve rod 
molecules lacking a COOH-terminal nonhelical tailpiece 
tending to bind to one another with full overlap (see Fig. 8 
B). The model requires that this mode of assembly becomes 
unstable after the addition of a few molecules. Steric inter- 
ference by the tailpieces with one another would force a stag- 
ger to occur between molecules, thereby promoting produc- 
tive filament assembly. In this model, myosin rod fragments 
without tailpiece would interact rapidly to form small ag- 
gregates, possibly only dimers or trimers, which once 
formed are able only slowly to reorganize (dissociate or slip) 
to form protofilaments. The action of the tailpiece would be 
to promote this reorganization. In this connection, it is in- 
teresting to note that Egelhoff et al. (1991) have demonstrated 
that a COOH-terminal tailpiece promotes the disassembly of 
Dictyostelium myosin filaments. 

In conclusion, we have shown that the COOH-terminal 
nonhelical tailpiece of a vertebrate nonmuscle myosin II acts 
to lower the critical concentration of myosin required for as- 
sembly by 20-50-fold at physiological ionic strength and 
have presented evidence consistent with a role for this tail- 
piece in the steric blocking of unproductive modes of assem- 
bly. By extending the approach described, it should now be 
possible to dissect in molecular detail those steps of the as- 
sembly reaction which are promoted by the presence of the 
tailpiece. 

Received for publication 28 January 1992 and in revised form 25 May 1992. 

R t~f-ere~e$ 

Atkinson, S. L, and M. Stewart. 1991. Expression in Escherichia coli of frag- 
ments of the coiled-coil rod domain for rabbit myosin: influence of different 
regions of the molecule on aggregation and paracrystal formation. J. Cell 
Sci. 99:823-836. 

Atkinson, M. A. L., P. K. Lambooy, and E. D. Korn. 1989. Cooperative de- 
pendence of the actin activated Mg2+-ATPase activity of Acanthamoeba 
myosin II on the extent of filament phosphorylation. J. Biol. Chem. 
264:4127-4132. 

Babij, P., and M. Periasamy. 1989. Myosin heavy chain isoform diversity in 
smooth muscle is produced by differential RNA processing. J. Mol. Biol. 
210:673-679. 

Bunnell, B. A., and V. J. Kidd. 1989. Formation of deletion mutants by poly- 
merase chain reaction. Technique (Phila.) 1(2):103-107. 

Burnette, W. N. 1981. "Western blotting": electropboretic transfer of proteins 
from SDS-PAGE to unmodified nitrocellulose and radiographic detection 
with antibody and radioiodinated protein A. Anal. Biochem. 112:195-203. 

Citi, S., and L Kendrick-Jones. 1986. Regulation in vitro of brush border myo- 
sin by light chain phosphorylation. J. Mol. Biol. 188:369-382. 

Citi, S., and J. Kendrick-Jones. 1987a. Regulation of nonmuscle myosin struc- 
ture and function. Bioessays. 7:155-159. 

Citi, S., and J. Kendrick-Jones. 1987b. Studies on the structure and conforma- 
tion of brush border myosin using monoclonal antibodies. Eur. J. Biochem. 
165:315-325. 

Citi, S., and J. Kendrick-Jones. 1988. Brush border myosin filament assembly 
and interaction with actin investigated with monoclonai antibodies. J. Muscle 
Res. Cell Motil. 9:306-319. 

Cohen, C., and A. D. Parry. 1990. s-Helical coiled coils and bundles: how 
to design an or-helical protein. Proteins Struct. Funct. Genet. 7:1-15. 

Craig, R., and J. Megerman. 1977. Assembly of smooth muscle myosin into 
side-polar filaments. J. Cell Biol. 75:990-996. 

Craig, R., R. Smith, and J. Kendrick-Jones. 1983. Light chain phosphorylation 
controls the conformation of vertebrate nonmuscle and smooth muscle myo- 
sin molecules. Nature (Lond.). 302:436-439. 

Cross, R. A., and J. Vanderkerckhove. 1986. Solubility-determining domain 
of smooth muscle myosin rod. FEBS (Fed. Eur. Biochem. Soc.) Len. 
200:355-360. 

Cross, R. A., M. A. Geeves, and J. Kendrick-Jones. 1991. A nucleation- 
elongation mechanism for the self-assembly of side polar sheets of smooth 
muscle myosin. EMBO (Eur. Mol. Biol. Organ.) J. 10:747-756. 

Davis, J. S. 1988. Assembly processes in vertebrate skeletal thick filament for- 
rnation. Annu. Rev. Biophys. Biophys. Chem. 17:217-239. 

Dibb, N. J., S. L. Brown, J. Karn, D. G. Moerman, S. L. Bolten, and R. H. 
Waterston. 1985. Sequence analysis of mutations that affect the synthesis, 
assembly and enzymatic activity of the unc-54 myosin heavy chain of 
Caenorhabditis elegans. J. Mol. Biol. 183:543-551. 

Dibb, N. J., I. Maruyama, M. Krause, and J. Karn. 1989. Sequence analysis 
of the complete Caenorhabditis elegans myosin heavy chain gene family. J. 
Mol. Biol. 205:603-613. 

Egelhoff, T. T., S. S. Brown, and J. A. Spudich. 1991. Spatial and temporal 
control of nonmuscle myosin localization: Identification of a domain that is 
necessary for myosin filament disassembly in vivo. J. Cell Biol. 
112:677-688. 

Ganguly, C., M. A. L. Atkinson, A. K. Attri, V. Sathyamoorphy, B. Bowers, 
and E. D. Korn. 1990. Regulation of the actin activated ATPase activity of 
Acanthamoeba myosin II by copolymerisation with phosphorylated and de- 
phosphorylated peptides derived from the C-terminai end of the heavy chain. 
J. Biol. Chem. 265:9993-9998. 

Harrington, W. F., and M. E. Rogers. 1984. Myosin. Annu. Rev. Biochem. 
53:35-73. 

Hinssen, H., J. D'Haese, J. V. Small, and A. Sobieszek. 1978. Mode of fila- 
ment assembly of myosins from muscle and non-muscle cells. J. Ultrastruc. 
Res. 64:282-302. 

Huynh, T. U., R. A. Young, and R. W. Davis. 1985. Construction and screen- 
ing cDNA libraries in lumbda gt 10 and lambda gt 11. In DNA Cloning Tech- 
niques: A Practical Approach. D. Glover, editor. IRL Press Ltd., Oxford. 
49-78. 

Ikebe, M., T. E. Hewett, A. F. Martin, M. Chen, and D. J. Hartshorne. 1991. 
Cleavage of a smooth muscle myosin heavy chain near its C-Terminus by 
ct-Chymotrypsin. J. Biol. Chem. 266:7030-7036. 

Josephs, R., and W. F. Harrington. 1968. Polymerisation of myosin filaments. 
Biochemistry. 7:2834-2847. 

Kaibitzer, H. R., K. Maeda, A. R6sch, Y. Maeda, M. Geyer, W. Beneicke, 
J-P. Neidig, and A. Wittinghofer. 1991. C terminal structure and mobility 
of rabbit skeletal muscle light meromyosin as studied by one- and two- 
dimensional ~H NMR spectroscopy and X-ray small-angle scattering. Bio- 
chemistry. 30:8083-8091. 

Kelley, C. A., S. Kawumoto, M. A. Conti, and R. A. Adelstein. 1991. Phos- 
phorylation of vertebrate smooth muscle and noumuscle myosin heavy 
chains in vitro and in intact cells. J. Cell. Sci. Suppl. 14:49-54. 

Kendrick-Jones, J., A. G. Szent-Gy6rgyi, and C. Cohen. 1971. Segments from 
smooth muscle myosin rod. J. Mol. Biol. 59:527-529 

The Journal of Cell Biology, Volume 118, 1992 1094 



Kendrick-Jones, J., W. Z. Cande, P. J. Tooth, R. C. Smith, andJ. M. Scholey. 
1983. Studies on the effect of phosphorylation of the 20,000 Mr light chain 
of vertebrate smooth muscle myosin. J. Mol. Biol. 165:139-162. 

Kendrick-Jones, J., R. C. Smith, R. Craig, and S. Citi. 1987. Polymerisation 
of vertebrate nonmuscte and smooth muscle myosins. J. Mol. Biol. 
198:241-255. 

Ketchum, A. S., C. T. Stewart, M. Stewart, and D. P. Kiehart. 1990. Complete 
sequence of the Drosophila nonmuscle myosin heavy chain transcript: con- 
served sequences in the myosin tail and differential splicing in the 5' untrans- 
lated sequence. Proc. Natl. Acad. Sci. USA. 87:6316-6320. 

Maeda, K., A. R6sch, Y. Maeda, H. R. Kalbitzer, and A. Wittinghofer. 1991. 
Rabbit skeletal muscle myosin. Unfolded carboxyl-terminus and its role in 
molecular assembly. FEBS (Fed. Fur. Biochem. Soc.) Lett. 281:23-26. 

Matsudaira, P. T., and D. R. Burgess. 1978. SDS microslab linear gradient 
polyacrylamide gel electrophoresis. Anal. Biochem. 87:386-396. 

McLachlan, A. D. 1984. Structural implications of the myosin amino acid se- 
quence. Annu. Rev. Biophys. Biophys. Chem, 13:167-189. 

McLachlan, A. D., and J. Karn. 1982. Charge distributions in the myosin rod 
amino basic sequence match crossbridge spacings in muscle. Nature (Lond.). 
299:226-231. 

Megerman, J., and S. Lowey. 1981. Polymerisation of myosin from smooth 
muscle of calf aorta. Biochemistry. 20:2099-2110. 

Molina, M. I., K. E. Kropp, J. Gulick, and J. Robbins. 1987. The sequence 
of an embryonic myosin heavy chain gene and isolation of its corresponding 
cDNA. J. Biol. Chem. 262:6478-6488. 

Nagai, R., D. M. Larson, and M. Periasamy. 1988. Characterization of a mam- 
malian smooth muscle myosin heavy chain cDNA clone and its expression 
in various smooth muscle types. Proc. Natl. Acad. Sci. USA. 85:1047-1051. 

Nakamura, K., and M. Inouye. 1982. Construction of versatile expression clon- 
ing vehicles using the lipoprotein gene of Escherichia coli. EMBO (Eur. 
Mol. Biol. Organ.)J. 1(6):771-775. 

O'Hailoran, T., S. Ravid, and J. A. Spudich. 1990. Expression of Dictyostelium 
myosin tail segments in Escherichia coil: domains required for assembly and 
phosphorylation. J. Cell Biol. 110:63-70. 

Pagh, K., and G. Gerisch. 1986. Monoclonal antibodies binding to the tail of 
Dictyostelium discoideum myosin: their effects on antiparallel and parallel 
assembly and actin activated ATPase activity. J. Cell Biol. 103:1527-1538. 

Pollard, T. D. 1982. Structure and polymerization of Acanthamoeba myosin 
II filaments. J. Cell Biol. 95:816-825. 

Quinlan, R. A., and M. Stewart. 1987. Crystalline tubes of myosin 
subfragment-2 showing the coiled-coil and molecular interaction geometry. 
J. Cell Biol. 105:403--415. 

Reisler, E., C. Smith, and G. Seegan. 1980. Myosin minifilaments. J. Mol. 
Biol. 143:129-145. 

Rimm, D. L., D. A. Kaiser, D. Bhandari, P. Maupin, D. P. Kiehart, and T. D. 

Pollard. 1990. Identification of functional regions on the tail of Acan- 
thamoeba myosin-II using recombinant fusion proteins. I. High resolution 
epitope mapping and characterisation of monoclonal binding sites. J. Cell 
Biol. 111:2405-2416. 

Saez, C. G., J. C. Myers, T. B. Shows, and L. A. Leinwand. 1990. Human 
nonmuscle myosin heavy chain mRNA: generation of diversity through al- 
ternative polyadenylation. Proc. Natl. Acad. Sci. USA. 87:1164-1168. 

Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Lab- 
oratory Manual. Second edition. Cold Spring Harbor Laboratory, Cold 
Spring Harbor, NY. 

Sathyamoorthy, V., M. A. L. Atkinson, B. Bowers, and E. D. Korn. 1990. 
Functional consequences of the proteolytic removal of regulatory serines 
from the non-helical tailpiece of Acanthamoeba myosin II. Biochemistry. 
29:3793-3797. 

Shohet, R. V., M. A. Conti, S. Kawamoto, Y. A. Preston, D. A. Brill, and 
R. S. Adelstein. 1989. Cloning of the cDNA encoding the myosin heavy 
chain of a vertebrate cellular myosin. Proc. Natl. Acad. Sci. USA. 86: 
7726-7730. 

Sinard, J. H., and T. D. Pollard. 1989. The effect of heavy chain phosphoryla- 
tion and solution conditions on the steady state assembly of Acanthamoeba 
myosin II. J. Cell Biol. 107:1529-1535. 

Sinard, J. H., W. F. Stafford, and T. Pollard. 1989. The mechanism of assem- 
bly of Acantharnoeba myosin II minifilaments. Minifilaments assemble by 
three successive dimerisation steps. J. Cell Biol. 109:1537-1547. 

Sinard, J. H., D. Rimm, and T. Pollard. 1990. Identification of functional 
regions of the tail of Acanthamoeba myosin H using recombinant fusion pro- 
teins. II. Association properties of tails with NH2- and COOH- deletions. 
J. Cell Biol. 111:2417-2426. 

Squire, J. M. 1981. The Structural Basis of Muscle Contraction. Plenum Pub- 
lishing Corp., New York. 276 pp. 

Strehler, E. E., M-A. Strehler-Page, J-C. Perriard, M. Periasamy, and B. 
Nadal-Grinard. 1986. Complete nucleotide and encoded amino acid se- 
quence of a mammalian myosin heavy chain gene. Evidence against Intron- 
dependent Evolution of the rod. J. Molec. Biol. 190:291-397. 

Suzuki, H., H. Onishi, K. Takahashi, and S. Watanabe. 1978. Structure and 
function of chicken gizzard myosin. J. Biochem. (Tokyo). 84:1529-1542. 

Trybus, K. M., T. W. Huiatt, and S. Lowey. 1982. A bent monomeric confor- 
mation of myosin from smooth muscle. Proc. Natl. Acad. Sci. USA. 79: 
6151-6155. 

Warwick, H. M., and J. A. Spudich. 1987. Myosin structure and function in 
cell motility. Annu. Rev. Cell Biol. 3:379--421. 

Yanagisawa, M., Y. Hamada, Y. Katsuragawa, M. Imarnura, T. Mikawa, and 
T. Masaki. 1987. Complete primary structure of vertebrate smooth muscle 
myosin heavy chain deduced from its complementary DNA sequence. J. 
Mol. Biol. 198:143-157. 

Hodge et al. Role of Myosin COOH-terminal Tailpiece 1095 


