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Abstract.  Previous studies from several laboratories 
have provided evidence that interaction of hyaluronan 
(HA) with the surface of endothelial cells may be in- 
volved in endothelial cell behavior. We have recently 
characterized a mAb, mAb IVd4, that recognizes and 
neutralizes HA-binding protein (HABP) from a wide 
variety of cell types from several different species 
(Banerjee, S. D., and B. P. Toole. 1991. Dev. Biol. 
146:186-197). In this study we have found that mAb 
IVd4 inhibits migration of endothelial cells from a 
confluent monolayer after "wounding" of the 
monolayer. HA hexasaccharide, a fragment of HA 

with the same disaccharide composition as polymeric 
HA, also inhibits migration. In addition, both reagents 
inhibit morphogenesis of capillary-like tubules formed 
in gels consisting of type I collagen and basement 
membrane components. Immunocytology revealed that 
the antigen recognized by mAb IVd4 becomes local- 
ized to the cell membrane of migrating cells, includ- 
ing many of their lamellipodia. Treatment with high 
concentrations of HA hexamer causes loss of im- 
munoreactivity from these structures. We conclude 
that HABP recognized by mAb IVd4 is involved in en- 
dothelial cell migration and tubule formation. 

I 
T is well established that the extracellular matrix plays 
an important role not only in tissue structure but also 
in cell behavior and differentiation, and that many of the 

effects of matrix macromolecules are mediated by cell sur- 
face binding sites or receptors (e.g., Hay, 1991). Endothelial 
cell morphogenesis, as occurs in angiogenesis or embryonic 
vasculogenesis, involves a series of events that include cell 
migration, division, and tubule formation (Folkman and 
Haudenschild, 1980; Folkman and Klagsbrun, 1987; Poole 
and Coffin, 1989). Many experimental studies have indi- 
cated that interaction of endothelial cells with the extracellu- 
lar matrix plays a key role in these processes (Madri and 
Pratt, 1986; Furcht, 1986; Folkman et al., 1988; Ingber, 
1991). The integrin family of matrix receptors and a 67/69 
kD laminin receptor appear to mediate at least part of this 
influence of matrix on the behavior of endothelial cells 
(Charo et al., 1987; Dejana et al., 1988; Grant et al., 1989; 
Basson et al., 1990; Defilippi et al., 1991). In this study we 
address the potential function of interactions between the 
matrix polysaccharide, hyaluronan (HA) E, and cell surface 
HA-binding protein (HABP) in endothelial cell behavior. 

Based on histochemical evidence, Ausprunk et al. (1981) 
originally proposed that the pericellular region surrounding 
migrating tips of newly forming capillaries is enriched in 
HA. It was also found by this group that capillaries of the 
chorioallantoic membrane begin to form in HA-rich areas 
but the level of HA surrounding the capillaries rapidly 
decreases thereafter (Ausprunk, 1986). In other laboratories 

1. Abbreviations used in this paper: HA, hyaluronan; HABE HA-binding 
protein. 

it was shown that blood vessel formation does not occur in 
HA-rich zones (Feinberg and Beebe, 1983) and that en- 
dothelial cell growth is inhibited by polymeric HA (West and 
Kumar, 1989). However, oligomers of HA containing 3-16 
disaccharide repeats were shown to be angiogenic (West et 
al., 1985) and to stimulate endothelial cell growth (West and 
Kumar, 1989). Taken together these results suggest the pos- 
sibility that, in vivo, degradation of HA by hyaluronidase 
leads to formation of oligosaccharides that promote vessel 
formation, whereas regions where high concentrations of 
HA polymer persist would be inhibitory. 

Although the above hypothesis is attractive, little informa- 
tion has been forthcoming on the production of HA oli- 
gomers in vivo or their mechanism of action, with respect 
to the above conclusions. On the contrary, there are very few 
reports showing extracellular action of hyaluronidases in 
vertebrates. HA-degrading activities with near neutral pH 
optima have been detected in some systems (Bernfield et al., 
1984; Nakamura et al., 1990), but most vertebrate hyaluroni- 
dases so far characterized are lysosomal and have acidic pH 
optima (Roden et al., 1989). Furthermore, lysosomal degra- 
dation of HA has been shown to lead to complete degrada- 
tion to monosaccharides and smaller products (Roden et al., 
1989). Even though it is not clear that HA oligomers them- 
selves play a physiological role, investigation of the biochem- 
ical effect of exogenously added HA oligomers is likely to 
give insight into the potential role of endogenous interactions 
between polymeric HA and HABPs. 

One mechanism for the angiogenic action of exogenously 
added HA oligomers might be to disrupt or modify an en- 
dogenous interaction of HA polymer with an endothelial cell 
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surface HABE Indeed, HA-binding sites have been detected 
on the surface of vascular endothelial cells (McGuire et al., 
1987), and are greater in number in sparse as compared to 
confluent cells (Antonelli and DAmore, 1991). The special- 
ized endothelial cells of liver sinusoids also exhibit HA- 
binding sites; however, these sites are known to be involved 
in clearance of HA from the circulation (Laurent et al., 
1986; McGary et al., 1989) and are probably distinct from 
the HA receptor(s) involved in mediating effects of HA on 
cell behavior (Raja et al., 1988). 

We have raised a mAb, IVd4, that recognizes HABP pres- 
ent in many embryonic tissues and on the surface of cultured 
cells from a variety of species. The expression and localiza- 
tion of this HABP correlate with morphogenetic events dur- 
ing the development of embryonic tissues (Banerjee and 
Toole, 1991; and unpublished data), mAb IVd4 blocks HA 
binding to soluble and cell surface-bound HABP (Banerjee 
and Toole, 1991) and inhibits formation of HA-dependent 
pericellular matrices (Yu et al., 1992). Thus we have used 
this antibody to probe further the possible role of HA-HABP 
interactions in endothelial cell behavior. In this study we 
show that the antibody and HA oligomers inhibit endothelial 
cell migration and formation of capillary-like tubules. These 
results strongly imply that interaction of endogenous HA 
polymer with endothelial cells is essential to endothelial 
morphogenesis, rather than antagonistic as suggested by 
some of the results from other laboratories described above. 
We propose that these apparently contradictory results may 
be explained on the basis of opposing effects of low vs high 
concentrations of HA in the pericellular milieu of the en- 
dothelial cell. 

Materials and Methods 

mAbs and HA Hexamer 

The mAbs, IVd4 and IIIgl, were produced and characterized as described 
previously (Banerjee and Toole, 1991). mAb IVd4 recognizes HABP from 
several cells and tissues, especially embryonic, and from a variety of spe- 
cies. mAb IIIgl was prepared from the same series of hybridomas as mAb 
IVd4 and recognizes an unknown antigen present in the mixed antigen prep- 
aration used for immunization of the mice. Both antibodies are of the IgM 
class. 

HA hexasaccharide was prepared from testicular hyaluronidase digests 
of HA by Sephadex G50 gel exclusion chromatography, as described previ- 
ously (Banerjee and Toole, 1991). 

Endothelial Cell Culture 

Endothelial cells were obtained from two sources. Bovine aortic endothelial 
cells were isolated by standard techniques (Yannariello-Brown et al., 1988) 
from aortas collected fresh from a local slaughterhouse and used between 
passage 4 and 10. Bovine pulmonary artery cells were from American Type 
Culture Collection (CCL 209) and were used between passage 16 and 30. 
The cells were maintained in 75-cm 2 tissue culture flasks in DME contain- 
ing 5% calf serum (aortic endothelium) or MEM with 20% FBS (pulmo- 
nary artery endothelium) plus antibiotic/antimycotics. The cultures were 
routinely monitored with antibodies to the LDL receptor or factor VIII, and 
for acquisition of cobblestone morphology at confluence. 

For the experiments described herein, the cells were harvested in 0.6 mM 
Versene in PBS at 37~ transferred to 35-mm dishes, and allowed to attach 
in the same media as above. Sparse cultures are defined as cultures contain- 
ing "~5 x 104 cells per 35-mm dish, in which cell contact is rare. 
Confluent cultures were used 3-4 d beyond the time when they first ap- 
peared confluent by microscopic observation, and contained "~2 • 106 
cells per dish. 

Experiments testing the inhibitory effects of antibody or HA oligomers 
on cell migration or tubule formation were performed in serum-free media 

to avoid possible interference from HABPs present in serum (Underhill, 
1982; Yoneda et al., 1990). To ensure that the cells remained healthy during 
the course of these experiments, reversal controls were carried out where 
the cells were washed subsequent to the experiment to remove the agent and 
reversal of inhibition was then monitored. 

Wounded Cultures 

Confluent cultures, as described above, were used for establishment of 
"wounded" cultures by a modification of previously published techniques 
(Sato and Rifldn, 1988; Hoock et al., 1991). Before wounding, the cells 
were washed extensively with serum-free DME (aortic) or MEM (pulmo- 
nary) containing 0.1% BSA and incubated at 37~ in this medium for 2 h. 
After this they were incubated at 4~ for 30 rain with or without experimen- 
tal reagents (i.e., antibody or HA hexarner) and washed again in serum-free 
medium with 0.1% BSA. A scratch was then made in the monolayer using 
a pasteur pipette tip that had been smoothened by flaming. The monolayer 
was washed to remove debris and fresh serum-free medium containing 0.1% 
BSA, with or without test substances was added. The cultures were then 
incubated for 8, 17, or 30 h at 37~ after which the degree of emigration 
of endothelial cells from the wound edges was observed by microscopy and 
the cultures were processed for photography and/or immunocytochemistry. 

In some cases the cultures were washed, scratched, and incubated for 8 h 
before addition of antibody or HA hexamer, and then re-incubated for an 
additional 17 h in the presence of the particular reagent. These cultures were 
then processed for photography and/or immunocytochemistry. 

To ensure that the cells were viable during the course of the experiments, 
recovery controls were performed. Subsequent to incubation with antibody 
or HA oligomer as described above, the wounded monolayers were in- 
cubated in three changes of reagent-free media at 37~ for 15 rain, rein- 
cubated for several hours in the absence of reagent, and then monitored for 
migration from the wound edge. 

For quantitation of migration of the cells in the wounded cultures, photo- 
graphs were taken at various time intervals using an ocular grid. The photo- 
graphs were then analyzed for the number of cells migrating from the wound 
edge within a defined field (Sato and Rifkin, 1988). 

Capillary-like Tubule Formation 

The culture conditions used for production of capillary-like tubules were 
modified from a combination of previously published methods (Montesano 
et ai., 1983; Madri et al., 1983; 1988; Kubota et al., 1988). Type I collagen 
(2 mg/ml; UBI, Lake Placid, NY; or Collaborative Research Inc., Bedford, 
MA) and a mixture of basement membrane proteins (50 t~g/ml ECL from 
UBI) were mixed with DME (aortic) or MEM (pulmonary), with or without 
experimental reagents (i.e., antibody or HA hexamer), at 4~ Confluent 
endothelial cells from bovine aorta or pulmonary artery were then harvested 
by scraping in medium containing 1% BSA, washed by centrifugation, in- 
cubated with or without the experimental reagents at 4~ for 30 min, and 
resuspended as clumps while mixing with the collagen-ECL mixture at 
4~ The mixture was allowed to gel at 37~ for 30 rain, and then diluted 
with serum-free medium and incubated for 48 h under culture conditions. 

In experiments where recovery subsequent to treatment with antibody or 
hexamer was examined, the cultures were first incubated for 48 h in the pres- 
ence of the reagent as described above. They were then incubated in three 
changes of reagent-free medium containing 2% BSA at 37~ for 15 min, 
and reincubated in the absence of reagent for a further 48 h. 

Immunocytochemistry 

The cultures were examined for localization of HABP with mAb IVd4 by 
routine immunocytochemical methods. Briefly, the ceils were washed with 
PBS, fixed with 3.7% paraformaldehyde in saline for 15 min at room tem- 
perature, washed, and quenched with 0.1 M NH4C1 or 0.25 M glycine in 
PBS for 30 min. Non-specific reactions were blocked by incubating for 30 
min with a cocktail containing 10 mg/ml BSA, 10 mg/ml dried non-fat milk 
and 100/zg/ml rabbit IgG. The cells were then washed, incubated with 20 
/zg/ml primary antibody (mAb IVd4) overnight at 4~ washed, incubated 
with 4 #g/mi rhodamine-conjugated rabbit anti-mouse Ig for 30 min, 
washed, and mounted in gel-mount media (Biomedia, Foster City, CA). 

Gel Electrophoresis and Western Blotting 

A subconfluent culture of bovine aortic endothelial cells was harvested by 
scraping in 0.6 mM Versene in PBS containing 1 mM PMSF and extracted 
by sonication in 0.25 M sucrose/40 mM Tris-HC1, pH 7.4 buffer containing 
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protease inhibitors (Banerjee and Toole, 1991). After centrifugation, the su- 
pernatant was assayed for protein content (Bradford, 1976), and 20 #g pro- 
tein per lane separated by SDS-PAGE and Western blotted, using a 1:100 
dilution of QAE-purified mAb IVd4, as described previously (Banerjee and 
Toole, 1991), except that the secondary antibody was adsorbed with a sus- 
pension of lyophilized endothelial cells (1 x 106/ml in 0.1% Tween in 
TBS) and centrifuged before use. Also, an additional sample was electro- 
phoresed by the same procedure as described above except that the reaction 
was mAb IVd4 was omitted to control for residual reactivity of the proteins 
with the adsorbed secondary antibody. 

Results 

Immunocytochemical Localization of HABP 

Sparse, confluent, and wounded endothelial cell cultures 
were examined by immunocytochemistry using mAb IVd4 to 
establish the presence in endothelial cells of HABP recog- 
nized by this antibody and to determine whether the localiza- 
tion of HABP changes in motile vs. sessile cells. 

In confluent cultures of arterial endothelial cells that had 
not been permeabilized, immunoreactivity was mainly local- 
ized to patches beneath the monolayer (Fig. 1 B). On treat- 
ment with EDTA to remove the cells, much of this im- 
munoreactive material remained attached to the substratum, 
and is presumably present in the extracellular matrix or in 
membrane fragments attached to the matrix (Fig. 2). When 
the cells were permeabilized, strong immunofluorescence 
was observed within the cytoplasm, mainly in a perinuclear 
location (data not shown). 

When the cultures were wounded, however, most of the 
cells emerging from the edges of the confluent monolayer ex- 
hibited strong immunoreactivity associated with various 
regions of their plasma membrane (Fig. 3). In '~50% of 
these cells, reactivity was mainly present in lamellipodia at 
their leading edges (Fig. 3 D). Patches of subcellular reactiv- 
ity, similar to those seen beneath the cells in non-wounded 
confluent cultures, were present in association with the mo- 
tile cells emerging from the edges of the wounded monolayer 
as well as the confluent cells remaining behind the edges. On 

Figure 2. mAb IVd4 immunoreactivity of substratum-attached ma- 
terial. The substratum-attached material was processed for immu- 
nocytochemistry subsequent to removal of a confluent monolayer 
of pulmonary artery endothelial cells by treatment of the culture 
with 10 mM EDTA. Bar, 25 gm. 

permeabilization, it was apparent that intracellular reactivity 
was reduced in the motile cells in comparison to the con- 
fluent cells behind the wound edges. 

A similar pattern of immunoreactivity to the above was 

Figure 1. mAb IVd4 immunoreactivity of pulmonary artery endothelial cells in culture. The cultures were processed for immunocytochemis- 
try without permeabilization as described in the Materials and Methods. (A) Phase contrast; (B) mAb IVd4 immunoreactivity. Immunoreac- 
tivity is mainly seen in subcellular patches. Bar, 40/~m, 
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Figure 3. mAb IVd4 immunoreactivity of a wounded monolayer of pulmonary artery endothelial cells. (A and C) Phase contrast; (B and 
D) mAb IVd4 immunoreactivity. A confluent monolayer was wounded, and then incubated for 8 h before processing for immunocytochemis- 
try as described in the Materials and Methods. (A and B) Immunoreactivity is seen in the cell membranes, including several of the lamellipo- 
dia, of the cells emigrating from the edge of the wound. Most of the cells behind the original wound edge show identical distribution of 
reactivity to those in an undisturbed confluent monolayer, i.e., in subcellular patches, as shown in Fig. 1 B. (C and D) Higher magnification 
of a cell showing immunoreactivity in its lamellipodium. Bars, 18/zm. 

seen in sparse, non-wounded cultures of endothelial cells in 
that many of the ceils, without permeabilization, showed 
variable regions of membrane staining. Trypsinization of 
these cells removed the membrane reactivity, confirming that 
it is localized at the outer cell surface. However, these sparse 
cultures also contained numerous cells that resembled 
confluent cells in that they only exhibited patches of subcel- 
lular reactivity (data not shown). 

The pattern of immunoreactivity was indistinguishable in 
the bovine aortic and pulmonary artery endothelium. We 
also examined sparse cultures of endothelial cells from 
human umbilical vein, human aorta, human omental micro- 
vasculature (from Dr. R. Orkin, Vascular Surgery, Massa- 
chusetts General Hospital, Boston, MA), and rat epididymal 
microvasculature (from Dr. Castellot, Tufts Medical School, 
Boston, MA) and observed a similar pattern to that seen for 
the bovine aortic and pulmonary artery endothelium (data 
not shown). 

lmmunoblot of Endothelial Cell Extract 

An extract of growing endothelial cells was electrophoresed 
and Western blotted using mAb IVd4. As shown in Fig. 4, 
three major bands were obtained, with mol wts of '~95, 77, 
and 50 kD. 

Figure 4. Western blot of endothelial cell 
extract with mAb IVDd4. (A) extract of 
subconfluent bovine aortic endothelial 
cells (arrowheads indicate major protein 
bands at 95, 77, and 50 kD); (B) partially 
purified preparation of HABP from chick 
embryo brain, with major bands at 93, 90, 
and 69 kD (Banerjee and Toole, 1991). 



Figure 5. mAb IVd4 inhibition of endothelial cell migration. Confluent monolayers of bovine aortic endothelial cells were wounded by 
scratching with a smoothened pasteur pipette and then incubated for 8 h (A and B) or 30 h (C and D) in the presence of 280 #g/ml mAb 
IVd4 (B), 50/~g/ml mAb IVd4 (D), or in the absence of the antibody (A and C) (see Materials and Methods). The curved arrows in the 
margin indicate the approximate positions of the cut edges immediately after wounding. In the absence of antibody, the cells emigrated 
into the space between the wound edges, partially occupying this space within 8 h (A) and completely filling the space within 30 h (C). 
Incubation with 280/zg/ml completely blocked the migration occurring over 8 h (B) or longer intervals (see Table I), whereas 50/~g/ml 
caused partial inhibition (D). Bars, 60 #m. 

Effect of  mAb IVd4 on Endothelial Cell Migration 

To determine whether HA-HABP interactions might be im- 
portant in endothelial cell migration, mAb IVd4 was added 
to wounded cultures and emigration of cells into the space 
between the cut edges was analyzed. The antibody was found 
to inhibit emigration of the cells (Fig. 5); 50-100 #g/ml of 
mAb IVd4 caused partial inhibition whereas 250-300 #g/ml 
was completely inhibitory. A series of experiments was per- 
formed in which concentrations of 50 and 280/~g/ml of mAb 
IVd4 were added to aortic or pulmonary artery cells. As can 
be seen from Table I, the lower concentration of antibody 
gave rise to an average of 70% inhibition of emigration of 
the endothelial cells and the higher concentration caused 
complete inhibition. The results obtained with the aortic en- 
dothelium were indistinguishable from those obtained with 
the pulmonary artery cells. On removal of mAb IVd4 from 
the cultures subsequent to treatment, the cells initiated 
migration in similar fashion to controls. Also, addition of 
250-500 #g/ml of mAb IIIgl, which is of the same Ig class 

Table I. Effects of mAb IVd4 and HA Hexamer 
on Endothelial Cell Migration 

Number of cells migrating per field 

Mean SD 

Controls 
No mAb 93.8 12.3 
mAb I l lgl  96.0 5.8 

mAb IVd4 
50 #g/ml  30.2 6.5 
280 #g/ml  0 0 

Hexamer  
75 #g/ml  33.7 6.7 
500/zg/rnl  0 0 

The data represent nine experiments, in each case performed with both bovine 
aortic and pulmonary artery endothelial cells cultured for 17 h after wounding. 
In three of these experiments, control cultures included 250 #g/ml mAb Illg 1; 
in the other six experiments the control cultures contained no antibody; in all 
nine experiments cultures treated with the two indicated concentrations of mAb 
IVd4 and HA hexamer were included. Fields along the cut edge of wounded 
cultures were selected randomly and analyzed for the numbers of cells that had 
migrated from the wound edge (Sato and Rifkin, 1988). 
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Figure 6. Inhibition of endothelial cell migration by HA hexamer. 
Confluent monolayers of bovine aortic endothelial cells were 
wounded by scratching with a smoothened pasteur pipette and then 
incubated for 8 h in the presence (B) or absence (A) of 500/~g/ml 
of HA hexamer (see Materials and Methods). The curved arrows 
in the margins indicate the approximate positions of the cut edges 
immediately after wounding. The hexamer caused complete inhibi- 
tion of emigration at this concentration. Bar, 60 #m. 

as mAb IVd4 but does not recognize HABP (Banerjee and 
Toole, 1991), had no effect on migration of the endothelial 
cells (Table I). 

In addition to the above experiments, we added mAb IVd4 
to wounded cultures 8 h subsequent to wounding to test its 
effect on the continuing migration of ceils that had already 
begun to emigrate from the cut edge of the monolayer. The 
antibody inhibited further migration of the cells (data not 
shown), thus illustrating that its effect was not only on initial 
emergence of the cells. 

Effect of  HA Hexamer on Endothelial Cell Migration 

The results above suggest that HA-HABP interaction is im- 
portant for endothelial cell migration. If  this is the case, 
other reagents that disrupt HA-HABP interaction, in addi- 
tion to antibody to HABP, would also be expected to affect 
migration. HA oligomers competitively inhibit interaction of 
polymeric HA with cell surface HABP (Underhill and Toole, 
1979; UnderhiU et al., 1983) and so we tested their effect. 
We used HA hexamer since it does not compete for interac- 
tion of HA with link protein or proteoglycans (Hascall and 
Hascall, 1981; Tengblad, 1981; Yamagata et al., 1986) but 
does inhibit interaction with cell surface HA receptors (Un- 
derhiU and Toole, 1979; Nemec et al., 1987). 

The hexamer was found to be inhibitory to migration in 

Figure 7. Loss of mAb IVd4 immunoreactivity in motile cells after 
exposure to HA hexamer. A confluent monolayer of pulmonary ar- 
tery endothelial cells was wounded and incubated in the absence of 
hexamer for 8 h, and the cells emigrated from the wound edges in 
similar fashion to the cultures shown in Figs. 3 A, 5 A, and 6 A. 
The culture was then incubated for a further 17 h with 500/~g/ml 
HA hexamer, following which the culture was washed thoroughly 
with hexamer-free medium, photographed, and processed for im- 
munocytochemistry. (A) Phase contrast; (B) Immunoreactivity 
with mAb IVd4. Exposure to the hexamer inhibited further emigra- 
tion of the cells and caused loss of mAb IVd4 immunoreactivity in 
the lamellipodia and other areas of the membrane (compare with 
Fig. 3). However, reactivity persisted in the subcellular patches (see 
Fig. 1 B). Bar, 40 txm. 

the wounding assay (Fig. 6). In a dose response, no apparent 
inhibition was obtained with 25 #g/ml of hexamer, partial in- 
hibition with 50-125/zg/ml, almost complete inhibition with 
300 #g/ml, and complete inhibition with 500 #g/ml. Table I 
shows that, in a series of experiments performed with both 
bovine aortic and bovine pulmonary arterial endothelium, 75 
#g/ml hexamer gave rise to an average of 66% inhibition and 
500 #g/ml totally inhibited emigration. Inhibition was not 
obtained with 500 #g/ml of HA tetrasaccharide, Na uronate, 
N-acetylglucosamine, or a mixture of 500 #g/ml each of Na 
uronate and N-acetyl glucosamine. 

We also examined the effect of hexamer on nlAb IVd4 im- 
munoreactivity. To do this we treated cells with 250 and 500 
#g/ml of hexamer 8 h after wounding of a confluent mono- 
layer. At this time many endothelial cells had emigrated from 
the edges of the wound but they ceased to migrate further on 
exposure to the hexamer (Fig. 7 A). After a 24-h exposure to 
the hexamer the cells were washed thoroughly with hexamer- 
free medium, fixed, and examined for immunoreactivity with 
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Figure 8. Inhibition of capillary-like tubule formation by mAb Ivd4. Pulmonary artery endothelial cells were cultured for 48 h within gels 
containing type I collagen and basement membrane components as described in the Materials and Methods. (A) Control culture showing 
the capillary-like tubules that form in these cultures. (B) Inhibition of tubule formation by addition of 280/~g/rnl of mAb IVd4 to a similar 
culture. (C) Recovery of tubule formation after treatment with 280/~g/ml mAb IVd4 as in B, followed by washing of the gel with medium 
and reincubation for 48 h in the absence of antibody. (D) Electron micrograph of one of the capillary-like tubules within a culture similar 
to that in A. A continuous basal lamina (arrowheads) surrounding the tubule and tight junctions (straight arrow) between the cells are 
visible. The lumen of the tubule is clearly apparent between the apical aspects of the endothelial cells. The curved arrow indicates a degener- 
ating endothelial cell in the lumen that did not become incorporated into the tubule wall. Bars: (A, B, and C) 60 #m; (D) 1 /~m. 

mAb IVd4. Reactivity was virtually absent in the cell mem- 
brane of the treated cells but persisted in the subcellular 
patches (Fig. 7 B). These results suggest that the HA hex- 
amer may inhibit endothelial cell migration by causing loss 
of HABP from the plasma membrane rather than by compe- 
tition for HA polymer-HABP interaction. 

Effect of  mAb IVd4 and HA Hexamer on 
Capillary-like Tubule Formation 

We have developed a culture system, based on previous ob- 
servations from other laboratories (Montesano et al., 1983; 
Madri et al., 1988; Kubota et al., 1988), where endothelial 
cells grown to confluence in monolayer are transferred into 
a gel composed of a mixture of type I collagen and basement 
membrane components. In this system, the confluent en- 

dothelial cells rearrange into capillary-like tubular networks 
in 24-48 h (Fig. 8 A). The endothelial cells first form cords 
in which a partial lumen appears in many locations; these 
cylindrical regions subsequently fuse to form a longer lumen 
(e.g., Fig. 8 D), in similar fashion to that described previ- 
ously by Folkman and Haudenschild (1980). Addition of 250 
#g/ml mAb IVd4 into the gel inhibited tubule formation (Fig. 
8 B). On removal of the antibody, the capillary-like tubules 
formed in similar manner to the controls (Fig. 8 C). 

HA hexamer also inhibited tubule formation; 75 /~g/ml 
gave rise to partial inhibition (Fig. 9 B) and 500 /~g/ml 
caused complete inhibition (Fig. 9 C). Tubules formed read- 
ily after removal of the hexamer (Fig. 9 D). 

Bovine aortic and pulmonary arterial endothelial cells 
responded in similar fashion in the above experiments. 
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Figure 9. Inhibition of capillary-like tubule formation by HA hexamer. Pulmonary artery endothelial cells were cultured as in Fig. 8. (.4) 
Control culture. (B) Partial inhibition of tubule formation by addition of 75 #g/ml HA hexamer. ( C ) Complete inhibition of tubule formation 
by 500 gg/ml hexamer. (D) Recovery of tubule formation after treatment with 500 gg/ml hexamer as in C, followed by washing of the 
gel with medium and reincubation for 48 h in the absence of hexamer. Bar, 60 #m. 

D i s c u s s i o n  

In the present study we have examined the function of a 
hyaluronan receptor in endothelial cell behavior, specifically 
migration and formation of capillary-like tubules in vitro. 
HA oligomers and mAb to HABP both inhibit these pro- 
cesses; also, the appearance of HABP in the cell membrane 
of motile cells, including within many of their lamellipodia, 
is consistent with its association with endothelial cell move- 
ment. These results implicate HA-HABP interactions in en- 
dothelial cell morphogenesis. 

The mechanism whereby mAb IVd4 inhibits endothelial 
cell migration and capillary-like tubule formation is presum- 
ably due to its specific binding to HABP which in turn would 
block interaction of endogenous HA with the HABP. Our 
previous studies have shown that mAb IVd4 blocks binding 
of exogenous HA to soluble or membrane-bound HABP 
(Banerjee and Toole, 1991) and formation ofpericellular ma- 
trices which are dependent on endogenous HA-HABP inter- 
action (Yu et al., 1992). Several types of ceUs exhibit pericel- 

lular matrices that are dependent on both HA and HABE and 
assembly of these matrices is inhibited by mAb IVd4 and HA 
oligomers (Knudson and Knudson, 1991; Yu et al., 1992). 
Although endothelial cells do not normally produce large 
amounts of HA in culture (Amanuma and Mitsui, 1991), they 
do produce small pericellular matrices that are dependent on 
HA and HABP (Yu et al., 1992). It is likely that these 
pericellular matrices play an important role in morpho- 
genetic processes such as those involved in angiogenesis and 
vasculogenesis. 

The inhibitory mode of action of HA oligomer on en- 
dothelial cell migration and capillary-like tubule formation 
is not yet certain. Our initial rationale for use of HA 
oligomers was their ability to block HA polymer-HABP in- 
teractions competitively (Underhill and Toole, 1979; Un- 
derhill et al., 1983). However, our results strongly suggest 
that treatment of motile endothelial cells with HA hexamer 
leads to reduction in the level of membrane-associated 
HABP and consequently to loss of HA-HABP interactions. 
The observation upon which this is based is that high concert- 
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trations of HA hexamer cause disappearance of mAb IVd4 
immunoreactivity in lamellipodia and other areas of the cell 
membrane of motile cells. It might be argued that this ab- 
sence of immunoreactivity results from occupation of HABP 
by the added HA oligomer, thus blocking access of the anti- 
body to the HABP. There are at least two reasons why this 
would not be the case. First, HA oligomers have a low 
affinity of binding to HABP (Underhill and Toole, 1979) and 
thus are readily removed in the process of washing before 
reaction with antibody. Second, concomitant with loss of im- 
munoreactivity in the cell membrane, immunoreactivity per- 
sists in the subcellular matrix (Fig. 7). Therefore, we con- 
clude that treatment with HA hexamer leads to loss of HABP 
from the endothelial cell membrane and that this loss results 
in inhibition of migration. Whether this would also explain 
the inhibitory action of HA hexamer on capillary-like tubule 
formation is not yet clear. 

The effect of HA hexamer discussed above suggests the 
possibility that membrane-bound HABP is subject to "down- 
regulation" in similar fashion to hormone receptors in the 
presence of excess ligand. Our finding that the subcellular 
immunoreactivity observed in endothelial cultures is largely 
attached to the substratum (Fig. 2) would explain why it is 
not lost in similar fashion to the membrane HABP when ex- 
posed to HA hexamer, since this extracellular HABP would 
not be subject to the membrane events involved in down- 
regulation. We are currently attempting to determine more 
definitively whether the mechanism underlying the appar- 
ent loss of HABP from the membrane is indeed down- 
regulation. 

The above findings strongly suggest that HA-HABP inter- 
action is required for endothelial cell morphogenesis. How- 
ever, the molecular nature of the HABP involved is not yet 
known. In previous studies, we have shown that mAb IVd4 
recognizes three proteins, of mol wt 93, 90, and 69 kD, in 
Western blots of partially purified HABP preparations from 
chick embryo brain (Banerjee and Toole, 1991), and an addi- 
tional HABP of ~50 kD from several other chick and rat 
embryo tissues (unpublished data). We have found here that 
extracts of endothelial cells contain mAb IVd4-reactive pro- 
teins of 95, 77, and 50 kD. The interrelationship of these pro- 
tein variants is not yet known, nor is their relationship to the 
widely distributed HA receptor, CD44 (Culty et al., 1990). 
Another HABP, isolated from normal and transformed fibro- 
blasts, is of particular interest since interaction of HA with 
this protein promotes cell movement (Turley et al., 1985, 
1991; Boudreau et al., 1991) and since it is preferentially lo- 
cated in lamellipodia of motile cells (Turley and Torrance, 
1984; Turley and Auersperg, 1989). This 52/58 kD HABP 
is part of a cell membrane complex of proteins (Turley, 1989) 
and has recently been cloned (Hardwick et al., 1992). It is 
not related to CIM4 but its relationship to the HABP recog- 
nized by mAb IVd4 is not yet known. 

Previous studies have shown that HA oligomers are angio- 
genic (West et al., 1985), and that this angiogenic effect may 
derive from their stimulatory effect on endothelial cell pro- 
liferation (West and Kumar, 1989). However, HA oligomers 
are only stimulatory at low concentrations, i.e., <10/xg/ml, 
and high concentrations appear to be somewhat inhibitory 
(West and Kumar, 1989). In the present study we have found 
that higher concentrations of HA oligomer inhibit, rather 
than stimulate, endothelial cell migration and assembly into 

capillary-like tubules. The stimulatory effect of low concen- 
trations of HA oligomer on proliferation is unlikely to be due 
to competitive inhibition of the interaction of endogenous 
polymeric HA with HABP since, in other systems, oligomers 
have been shown to have a much lower affinity for cell sur- 
face HA receptors than polymer (Underhill and Toole, 1979; 
Laurent et al., 1986). Possibly the interaction of HA oligomer 
with unoccupied cell surface HABP, albeit with low affinity, 
may stimulate second messenger-generating assemblies within 
the cell; the inhibitory effects at high concentration would re- 
sult from loss of the receptor by down-regulation, as dis- 
cussed above. There is considerable evidence that the intra- 
cellular domain of HA receptors, or receptor complexes, of 
several cell types is linked to the cytoskeleton (Lacy and Un- 
derhill, 1987; Turley et al., 1990; Lokeshwar and Bourguig- 
non, 1991; Camp et al., 1991) and can be phosphorylated 
(Carter and Wayner, 1988; Kalomiris and Bourguignon, 
1989; Turley, 1989; Culty et al., 1990; Camp et al., 1991), 
suggesting that it may indeed be involved in signal transduc- 
tion. However, as discussed above, there is no detailed infor- 
mation yet available regarding the nature of the endothelial 
HA receptor or its involvement in transmembrane signaling. 

We conclude that HA-HABP interactions at the endothe- 
lial cell surface are most likely essential to endothelial cell 
morphogenesis. However, blood vessels fail to form in HA- 
enriched tissues in vivo (Feinberg and Beebe, 1983). This 
latter phenomenon is presumably due to inhibition of the 
proliferative phase of angiogenesis since high concentrations 
of polymeric HA, greater than 100/~g/ml, inhibit endothe- 
lial cell proliferation in culture; low concentrations do not 
(West and Kumar, 1989). Thus the concentration of HA in 
the extracellular matrix may be in part responsible for speci- 
fying the sites of angiogenesis or vasculogenesis during em- 
bryonic development. Low concentrations of HA would be 
essential whereas high concentrations would be inhibitory. 

Modulation of angiogenesis is also of importance thera- 
peutically. For example, angiogenic inhibitors may be bene- 
ficial in treating cancer since solid tumor growth requires 
new blood vessel formation (Folkman, 1986). HA oligomers 
in particular may be useful in this regard. 
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