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Abstract. Multinucleated skeletal muscle fibers are 
compartmentalized with respect to the expression and 
organization of several intracellular and cell surface 
proteins including acetylcholinesterase (ACHE). Mo- 
saic muscle fibers formed from homozygous myoblasts 
expressing two alletic variants of AChE preferentially 
translate and assemble the polypeptides in the vicinity 
of the nucleus encoding the mRNA (Rotundo, R. L. 
1990. J. Cell Biol. 110:715-719). To determine whether 
the locally synthesized AChE molecules are targeted 
to specific regions of the myotube surface, primary 
quail myoblasts were mixed with mononucleated cells 
of the mouse muscle C2/C12 cell line and allowed to 
fuse, forming heterospecific mosaic myotubes. Cell sur- 
face enzyme was localized by immunofluorescence 
using an avian AChE-specific monoclonal antibody. 
HOECHST 33342 was used to distinguish between 

quail and mouse nuclei in myotubes. Over 80% of the 
quail nuclei exhibited clusters of cell surface AChE in 
mosaic quail-mouse myotubes, whereas only 4 % of 
the mouse nuclei had adjacent quail AChE-positive re- 
gions of membrane, all of which were located next to 
a quail nucleus. In contrast, membrane proteins such 
as Na+/K+ ATPase, which are not restricted to spe- 
cific regions of the myotube surface, are free to diffuse 
over the entire length of the fiber. These studies indi- 
cate that the AChE molecules expressed in multinucle- 
ated muscle fibers are preferentially transported and 
localized to regions of surface membrane overlying the 
nucleus of origin. This targeting could play an impor- 
tant role in establishing and maintaining specialized 
cell surface domains such as the neuromuscular and 
myotendinous junctions. 

T 
HE establishment of specialized cell surface mem- 
brane domains in eukaryotic cells requires that the 
expressed proteins be correctly targeted to and retained 

at their appropriate sites of function. In multinucleated skel- 
etal muscle fibers, which in the adult can attain lengths of 
many millimeters and contain many hundreds of nuclei, this 
problem is accentuated by the existence of multiple special- 
ized regions such as the neuromuscular and myotendinous 
junctions. Some proteins, such as acetylcholine receptors 
(AChRs) 1 and acetylcholinesterase (ACHE), are highly con- 
centrated at sites of nerve muscle contact, which account for 
<0.1% of the total cell surface area of the muscle fiber (for 
review see Fambrough, 1979; Salpeter, 1987). Studies of 
adult skeletal muscle have shown that the transcripts encod- 
ing synaptic components such as AChRs (Merlie and Sanes, 
1985; Fontaine et al., 1988; Goldman and Staple, 1989; 
Brenner et al., 1990) and AChE (Jasmin, B. J., R. K. Lee, 
and R. L. Rotundo, manuscript submitted for publication) 
selectively accumulate in the subsynaptic region of the mus- 
cle fiber. This restricted expression of mRNAs encoding pro- 
teins destined for the overlying synaptic membrane suggests 
that skeletal muscle fibers are functionally compartmental- 

1. Abbreviations used in this paper: ACHE, acetylcholinesterase; AChR, 
acetylcholine receptor. 

ized and that individual nuclei are responsible for the expres- 
sion and organization of cell surface as well as intracellular 
proteins within a restricted region of the fiber. 

Muscle fibers do not require functional innervation nor in- 
sertion into tendons in order to exhibit specialized mem- 
brane domains. Evidence for functional compartmentaliza- 
tion in skeletal muscle fibers independent of innervation has 
been obtained using tissue-cultured muscle cells (for review 
see Hall and Ralston, 1989). In situ hybridization studies 
using exonic and intronic probes for ACh receptor subunit 
mRNAs show that only a subset of nuclei within a given myo- 
tube express the transcripts (Harris et al., 1989; Bursztajn 
et al., 1989; Horovitz et al., 1989; Tsim et al., 1992), 
whereas transcripts encoding another cell surface protein, 
ACHE, are more widely distributed in the fiber and ex- 
pressed by a majority of the nuclei (Tsim et aL, 1992). How- 
ever, in both cases, the transcripts were found predominantly 
within a 5-10-t~m radius of the nucleus expressing them. A 
correlation between the distribution of nuclei in myotubes 
with overlying AChR clusters has been reported (Bruner and 
Bursztajn, 1986; Englander and Rubin, 1987) where it was 
postulated that the nuclei accumulated beneath the clusters 
after their formation. Using mouse-human mosaic myo- 
tubes, Pavlath et al. (1989) have shown that several proteins 
including a resident Golgi enzyme, a myofibrillar protein, 
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and a cell surface adhesion molecule were restricted to 
regions oft.he fiber near the nucleus encoding them. Expres- 
sion of a LacZ fusion protein containing a nuclear localiza- 
tion signal in mosaic mouse C2/C12 myotubes resulted in 
preferential accumulation of this marker in the nuclei ex- 
pressing the construct and adjacent nuclei (Ralston and Hall, 
1989a). In primary quail mosaic myombes expressing two 
allelic variants of the AChE polypeptide (Rotundo et al,, 
1988), it was possible to show that the AChE mRNAs were 
preferentially translated on the RER surrounding the nucleus 
of transcription and that the polypeptide chains were locally 
assembled and processed in that RER and Golgi complex 
(Rotundo, 1990). In contrast to ACHE, which localizes to 
cell surface clusters associated with patches of extracetlular 
matrix material (Wallace, 1989), membrane proteins, which 
do not interact with other cellular elements, can diffuse over 
the entire surface of the myotubes regardless of nucleus of 
origin (Ralston and Hall, 1989b). Recent studies using a 
temperature-sensitive mutant of vesicular stomatitis virus, 
whose G protein is retained in the RER at the restrictive tem- 
perature, to infect tissue-cultured myotubes show that the G 
protein is selectively transported to the region of the cell sur- 
face overlying the PER of translation when the cells are 
transferred to the permissive temperature (Metsikko et al., 
1992). Moreover, these authors showed that when myotubes 
were simultaneously coinfected with Semliki forest and 
vesicular stomatitis vLruses, their coat glycoproteins were 
translated, processed, and transported to the cell surface in 
nonoverlapping nuclear domains, providing strong evidence 
for vectorial transport of membrane proteins from the intra- 
cellular organelles surrounding individual nuclei to the over- 
lying region of the plasma membrane in multinucleated 
skeletal muscle fibers. Together, these studies suggest that 
synaptic components expressed by individual nuclei in mul- 
tinucleated skeletal muscle fibers can be selectively targeted 
and localized to regions of the cell surface nearest to the nu- 
cleus of origin. 

In the present studies we show that cell surface AChE 
clusters form primarily on regions of the muscle membrane 
overlying nuclei, suggesting that each nucleus is responsible 
for organizing plasma membrane and extraceUular matrix 
molecules on the overlying region of its cell surface. These 
celt surface AChE clusters are resistant to extraction with 
high salt and detergents but can be removed by treatment 
with collagenase. Using quail-mouse hybrid myotubes and 
avian-specific anti-AChE antibodies, we show that AChE 
molecules expressed by a given quail nucleus are selectively 
targeted to and retained on the region of the fiber surface 
overlying that nucleus. Together, these observations provide 
evidence for the existence of cell surface nuclear domains in 
skeletal muscle fibers and suggest that the localization of 
AChE molecules at the neuromuscular junction in vivo 
arises from the selective expression and targeting of this pro- 
tein from nuclei located in the subsynaptic sarcoplasm to the 
overlying synaptic basal lamina. 

Materials and Methods 

Tissue Culture of Primary Quail Muscle and Mouse 
C2/CI2 Cells 
Cells were grown on scratched collagen-coated glass coverslips to promote 

alignment of myoblasts during the period of cell fusion and differentiation. 
This procedure results in the formation of linear arrays of myotubes, which 
in turn facilitates analysis of the distribution of nuclei and celt surface 
clusters of antigens. Acid-washed glass coverslips were coated with concen- 
trated rat tail collagen and baked at 60~ for 48 h before brushing with a 
piece of triple-0-grade steel wool. The coverslips were then placed in 35- 
mm tissue culture dishes and sterilized by UV irradiation for 30-60 min 
before use. 

Primary quail skeletal muscle cdtures were made from myoblasts ob- 
tained from pectoral muscle of t0-d embryos and grown in MEM with 10% 
horse serum, 2% chick embryo extract, and 50 t~g/ml gantamiein (EMEM 
210) for 7 d (Rotundo and Fambrough, 1980a). All culture media supplies 
were obtained from Gibcar-BRL, Grand Island, NY. Cytosine arabinoside 
(1 #M final concentration; Sigma Chenftcal Co., St. Louis, MO) was added 
from days 3 to 5. Low-serum medium (2% horse serum and 2% embryo 
extract in EMEM) was used to feed the quail myotubes the day before ex- 
traction of AChE and analysis of oligomerie forms by velocity sedimenta- 
tion to increase the asymmetric collagen-tailed forms. 

Mouse-derived C2/C12 cells were passaged as mononucleated cells in 
DME supplemented with 20% FBS and 0.5 % chick embryo extract (growth 
medium). Differentiation was initiated by replacing the growth medium 
with fusion medium consisting of DME supplemented only with 2 % horse 
serum, which induces the cells to pull out of the cell cycle and fuse to form 
multinucleated myotubes. 

Quail-Mouse Mosaic Muscle l~bers 
Mosaic quail-mouse myotubes were grown by plating primary quail cells 
on collagen-coated coverstips and then adding C2/C12 mouse ceils grown 
under growth conditions. Generally, 6 • I04 primary quail muscle cells 
were cultured on the coverslips overnight in EMEM 210. The next day, 1-2 
• 104 C2/C12 cells were added to the cultures in growth medium. After 
24 h the medium was replaced with fusion medium and the cells were al- 
lowed to differentiate overo.ight. Cultures were then fed with fusion medium 
containing cytosine arabinoside and refed every 48 h thereafter. The ceils 
were then used for experiments 4 d after onset of cell fusion (day 7 of 
culture). 

lramunofluorescence Localization of AChE and 
AChR Clusters 
AChE clusters were localized by indirect immunofluorescence using the 
anti-avian AChE monoelonal antibody IA2 (Rotundo, 1984a) followed by 
fluorescein-conjugated affinity-purified rabbit anti-mouse IgG (FITC- 
RAM; Cappel Laboratories, Cochranville, PA). AChR clusters were visual- 
izcd using tetramethyl rhodamine-conjugated a-bungarotoxin (TRITC 
~-Btx; Molecular Probes, Inc., Junction City, OR). mAb No. 24 against 
avian Na+/K+ ATPase was the generous gift of Dr. Douglas M. Fam- 
brough (Johns Hopkins University, Baltimore, MD). 

For labeling, cultures were rinsed with HBSS and incubated with PBS 
(pH 7.4) containing 10% horse serum (PBS/HS) and the monoclonal anti- 
body at a concentration of 20 #g/ml for 60 rain. Cultures were then rinsed 
three times with PBS/HS and incubated with fluorescein-conjugated second 
antibody at 10/~g/ml. In some experiments, cells were preincubated with 
1/~g/mt TRITC c~-Btx in PBS/HS for 30 rain at 37~ to label AChRs. The 
cells were then rinsed three times with PBS/HS, then PBS alone, followed 
by fixation with 4 % phosphate-buffered paraformaldehyde. After fixation, 
the cultures were rinsed in PBS and incubated with 1 /~g/rnl HOECHST 
33342 to label the nuclei. Coverslips were then mounted in bicarbonate- 
buffered glycerol containing 1 mg/rnl phenylenediamine and viewed with 
a Universal microscope (Carl Zeiss, Inc,, Thornwcod, NY)~equippe d for 
epifluorescence with narrow band filters for HOECHST dyes, fluorescein, 
and rhodamine. Photographs were taken on (Tri-X; Eastman Kodak Co, 
Rochester, NY) film and developed with Diafinc (Acufine, Inc., Chicago, IL). 

For histocbemical localization of ACHE, the method of Koelle and 
Friedenwaid (1949) was used after the fixation and washing step, and the 
cells were incubated overnight at 5~ The coverslips were then washed and 
processed as described above. 

CoUagenase Treatment of Quail Muscle Cultures 
Primary quail muscle cultures were grown on collagen-coated glass cover- 
slips in 35-ram culture dishes as described above. 7-d cultures were rinsed 
with 2 x 2 ml 10 mM Hepes-buffered HBSS, pH 7.2 (Hepes/I'IBSS) con- 
taining 0.5 mg/ml BSA. Cultures were incubated in the 35-ram dishes in 
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Figure L Differential distribution of AChE molecules on upper and lower surfaces of quail myotubes in culture. Primary quail myotubes 
were extracted with three l-ml washes of extraction buffer consisting of 20 mM borate, pH 9.0, 1 M NaCI, 1% Triton X-100, and 1 mM 
EDTA, followed by three rinses with PBS and preincubation for 10 min in PBS containing 10% horse serum. The cultures were then incu- 
bated with IA2 anti-avian AChE followed by FITC rabbit anti-mouse IgG as described in Materials and Methods. A and B show the distribu- 
tion of AChE clusters on the upper surface of the myotubes. C and D show the diffuse punctate of AChE on the regions where the myotube 
is in direct contact with the substratum. B and C are, respectively, the upper and lower surfaces of the same region of myotube, which 
was thick enough to allow "optical sectioning" using a conventional microscope. 
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Figure 2. Localization of  AChE and AChR dusters  over nuclei in primary quail myotubes. Primary quail muscle cultures (7 d) were double 
stained using rhodamine-conjugated c~-bungarotoxin to label AChRs, and with mAb 1A2 followed by FITC-conjugated rabbit anti-mouse 
IgG to label ACHE. The cultures were fixed and incubated with the nuclear stain HOECHST 33342 before mounting in glycerol. A and 
D show the distribution of nuclei in individual quail myotubes. B and E show the distribution of cell surface AChE clusters in the vicinity 
of the quail nuclei. C and F show the localization of ACh receptor clusters. Bar, 25/~m. 

500 ~1 Hepes/HBSS with or without 100-500 U/nil collagenase at room 
temperature on a rotary platform for 1-3 h, Three types of collaganase were 
used in these studies: purified bacterial collagenase type HI (Advanced Bio- 
factures, Lynnbrook, NY), Clostridium histolyticum collagenase type IV 
({25138; Sigma Chemical Co.), and tissue culture-grade collagenase CLS 
IV (Worthington, Freehold, NJ). Details of individual experiments are 
given in Results. After collagenase treatment the cultures were rinsed with 
Hepes/HBSS and the AChE clusters localized by indirect immunofluores- 
cence as described above. The coverslips were stained with HOECHST 
33342 after the fixation step to visualize the nuclei. 

Analysis of Cluster and Nuclear Distributions 
AChE-rich clusters are defined as conspicuous accumulations of AChE on 
the upper surface of the myotubes. They are virtually absent from the 
regions of myotubes in contact with the substratum, where AChE im- 
munofluorescence appeared as a very even punctate distribution. The dis- 
tance between individual nuclei in myotubes was measured from center to 
center using a calibrated ocular micrometer and a 40• oil immersion objec- 

five. The distance between nuclei and AChE cluster was measured from the 
center of a nucleus to the nearest cluster. Quail and mouse nuclei can easily 
be distinguished by their relative sizes and the presence of clumped chroma- 
tin in the mouse nuclei. 

Analysis of AChE Oligomeric Forms and Assay of 
Enzyme Activity 
Muscle cultures were rinsed three times with HBSS and extracted in 500 
/d borate extraction buffer (20 mM borate buffer, pH 9.0, 1.0 M NaCl, 5 
mM EDTA, 0.5% Triton X-100, 0.5% BSA, and protease inhibitors consist- 
ing of 2 mM benzamidine, 0.7 mM bacitracin, and 5 mM N-ethylmaleimide) 
for three 35-ram culture dishes (RoUmdo, 1984b). The extracts were cen- 
trifuged for 20 rain at 27,000 g. 200-~1 aliquots of supernatant were ana- 
lyzed by velocity sedimentation on isocratic 5-20% sucrose gradients made 
up in the same buffer minus serum albumin and protease inhibitors. The 
fractions were assayed for AChE activity using the radiometric assay of 
Johnson and Russell (1975) as previously described (Rotundo and Fam- 
brough, 1979). 
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Figure 3. Distribution of AChE clusters and nuclei in primary quail 
myotubes. The distances between individual nuclei and nuclei to 
nearest AChE cluster were measured using a calibrated ocular 
micrometer and plotted as percent of the total observations that fell 
within a 20-gin distance class. (solid bars) Nuclei-to-nearest AChE 
cluster; (hatched bars) nuclei-to-nuclei. The average diameter of 
a quail nucleus is t4.5/~m. In primary quail myotubes, 72% ofaU 
AChE clusters were localized directly over the nuclei; >85 % oc- 
curred within one nuclear diameter distance. In contrast, the aver- 
age distance between individual nuclei ~as 74 :t: 24 #m (n = 163), 
Thus, AChE clusters are preferentially localized to the regions of 
the myotube surface overlying the nuclei. 

Results 

Clusters of  AChE and AChR Are Localized over Nuclei 
in Primary Quail Myotubes 

Primary quail myoblasts proliferate and fuse to form mul- 
tinucleated myotubes during the first 3-5 d in culture, after 
which they become spontaneously contractile and clusters of 
AChR and AChE appear on the upper surface of the n~,o- 
tubes. The appearance of cell surface AChE clusters coin- 
cides with the expression of the collagen-tailed AChE form, 
approximately half of which is associated with the cell sur- 
face, where it is tightly bound to the extracellular matrix. 
Both the numbers of AChE clusters and levels of the asym- 
metric enzyme form continue to increase from days 5 to 9 
in culture. That these cell surface clusters are associated with 
the extracellular matrix is suggested by the observation that 
they are resistant to extraction by high salts and detergents 
(Fig. 1). The relationship between cell surface AChE clusters 
and the underlying myotube nuclei was suggested in prelimi- 
nary studies to determine the distribution of AChE on tissue- 
cultured skeletal muscle. Numerous clusters of AChE were 
distributed over the upper surface on intact myotubes, most 
frequently in the vicinity of nuclei. The AChE on the upper 
surface of the myotubes w~as usually confined to morphologi- 
cally distinct clusters, in contrast to the diffuse punctate dis- 
tribution on the lower surface, where the myotubes were in 
direct contact with the substratum (Fig. 1). 

To determine the relationship between individual AChE 
clusters and the underlying nuclei, 7-d primary quail myo- 
tubes were labeled with anti-AChE mAb 1A2 followed by 
FITC-conjngated anti-mouse IgG and HOECHST 33342 to 
stain the nuclei (Fig. 2), In some experiments, TRITC-ot-Btx 
was included in the first incubation to label the AChRs, 
which also occur in clusters. On primary quail myotubes we 
were able to detect AChRs in only ,~10-20% of the AChE 
clusters. This could reflect decreased numbers of recei~ors 
in the quail muscle cultures; however, we cannot exclude the 
possibility that this reflects the sensitivity of detection using 
TRITC-~-Btx. The distance between individual clusters and 
the center of the nearest nucleus was measured using a 
calibrated ocular micrometer and the internuclear distances 
were measured from center to center. Fig. 3 shows the dis- 
tribution of internuclear distances compared with cluster- 
nucleus distances in primary quail myotubes, The average 
distance between myotube nuclei was 74 :t: 24 #m, whereas 
85% of the AChE clusters was localized either directly over 
or within 15 t~m (one nuclear diameter) of the nearest nu- 
cleus. These observations indicate a high correlation be- 
tween cell surface clusters and the underlying nuclei, and 
suggest the possibility that each nucleus is responsible for 
synthesizing and localizing the AChE molecules on the sar- 
colemma above it. 

CoUagenase Removes Cell Surface AChE Clusters; 
Clusters Contain the Collagen-tailed Asymmetric 
AChE Form 

On tissue-cultured myotubes, the AChE concentrated at 
clusters is resistant to extraction by detergents even in the 
presence of high salt concentrations, suggesting that it is 
tightly associated with the extracellular matrix (Fig. 1). To 
determine whether the collagen-tailed form was associated 
with the cell surface clusters, primary quail myotubes were 
incubated with several different preparations of bacterial col- 
lagenase and the AChE clusters localized by indirect im- 
munofluorescence. When possible, AChE clusters were 
quantitated and their size distributions determined by direct 
measurement of their longest dimension using an ocular 
micrometer. 

In preliminary studies, cultures were incubated with sev- 
eral concentrations of each collagenase ranging from 100 to 
500 U/ml in Hepes/FIBSS for periods ranging from 1 to 3 h 
at room temperature. Three different preparations of col- 
lagenase of varying degrees of purity were tested, only one 
of which was completely free of contaminating proteases 
(type 1II; Advanced Biofactures). Only enzyme concentra- 
tions and incubation times that completely detached the cells 
from the substratum were capable of removing the AChE 
from the clusters. However, digestion with moderate concen- 
trations of highly purified bacterial collagenase type IV (Ad- 
vanced Biofactures) resulted in a time-dependent decrease in 
total numbers of AChE clusters per myotube nucleus as well 
as the absolute sizes of the clusters (Table I). Almost half of 
the clusters could be completely removed by collagenase 
from the myotube surface before the cells detached from the 
substratum, while the remaining clusters were markedly re- 
duced in size and density. These studies together with the 
results presented in Fig. 1 suggest that the predominant, if 
not exclusive, AChE form in the cell surface clusters is the 
asymmetric collagen-tailed AChE form. 
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Table L Disruption of Cell Surface AChE Clusters 
by Collagenase 

Cluster 
Clusters/ 

Treatment Nuclei Clusters Nucleus Change Size Change 

n % (urn) 
l-h control 938 189 0.22 • 0.09 10.1 • 6.0 
1-h collagenase 823 164 0.20 + 0.02 - 9  8.2 • 3.8 -19 

3-h control 701 182 0.25 • 0.02 9.9 + 5.8 
3-h collagenase 1215 171 0.14 • 0.03 -44 6.8 5:4.2 -30  

Quail muscle fibers grown on collagen-coated coverslips were rinsed and in- 
cubated for the indicated times in Hepes-buffered HBSS with or without 500 
U/ml purified bacterial type III collagenase (Advanced Biofactures) at room 
temperature. Cell surface AChE clusters were localized by indirect imlnu- 
nofluorescence and the nuclei stained with HOECHST 33342 as described in 
Materials and Methods. Three cultures were used for each group; 10 randomly 
selected fields per culture were counted using a 40:,< oil immersion objective. 
The lengths of the clusters were measured using a calibrated ocular microme- 
ter. Longer periods of incubation or use of partially purified collagenase prepa- 
rations resulted in detachment of cells from the coverstip (see Results). The 
number of nuclei refers to the total number of nuclei in multinucleated myo- 
tubes counted in the three cultures. The number of clusters are the total number 
associated with those myotubes. Where appropriate, values are expressed as 
the mean 5: SD of three cultures. 

Expression of AChE Oligomeric Forms and 
Distribution of AChE Enzyme Activity in Mosaic 
Quail-Mouse Myotubes 

When primary quail and mouse C2/C12 cells are cocultured 
under conditions that promote differentiation of the mouse 
cells, ~ 4 0 %  of the cells fuse to form heterospecific mosaic 
myotubes. After 7 d in culture, and treatment from days 3-5 
with 1 /~M cytosine arabinoside to reduce proliferating 
mononucleated cells, rv50% of the nuclei are found in myo- 
tubes. The ratio of quail to mouse nuclei present in the myo- 
tubes depends on the initial density of each cell type. The 
nuclei of the two species can be readily distinguished after 
staining with HOECHST 33342 since the mouse nuclei are 
several times larger than the quail nuclei and contain charac- 
teristically clumped chromatin. The mosaic myotubes ex- 
hibit the morphological characteristics of primary myotubes 
and express AChE catalytic activity all along their length, as 
determined by enzyme histochemistry using the Koelle reac- 
tion (Fig. 4). Furthermore, all AChE oligomeric forms are 
expressed in these cultures, including the 16S mouse and 20S 

Figure 4. Distribution of AChE 
activity by enzyme histochem- 
istry and expression of AChE 
oligomeric forms in mosaic quail- 
mouse muscle cultures. The dis- 
tribution of totat quail plus mouse 
AChE activity in mosaic myo- 
tubes was determined using the 
histochemical procedure of KoeUe 
and Friedenwald (1949). The cul- 
tures were first incubated with 
monoclonal anti-AChE antibody 
followed by FITC-conjugated rab- 
bit anti-mouse IgG. The cultures 
were then fixed with 4 % parafor- 
maldehyde in PBS and incubated 
in the buffer-substrate mixture 
for AChE histochemistry. After 
rinsing, the cultures were also 
stained with HOECHST 33342 to 
show the localization of individ- 
ual nuclei. (A) Distribution of 
quail and mouse nuclei. Arrows 
indicate the quail nuclei. (B) Dis- 
tribution of total AChE in mo- 
saic myotubes by enzyme his- 
tochemistry. The fine punctate 
reaction product shown is distrib- 
uted throughout the muscle fiber. 
(C) Distribution of cell surface 
quail AChE (bar. 25 /~m). (D) 
Distribution of avian and murine 
AChE forms extracted from 7<1 
muscle cultures and analyzed by 
velocity sedimentation. AChE 
activity was assayed using the 
radiometric method of Johnson 
and Russell (1975). Both the 20S 
quail and 16S mouse collagen- 
tailed forms are expressed in the 
mosaic muscle fibers as well as 
the globular dimeric and tetra- 
merle forms. 
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Figure 5. Localization of AChE 
clusters on mosaic quail-mouse 
myotubes. Mosaic quail-mouse 
myotubes were generated by co- 
culturing quail myoblasts with 
C2/C12 mouse myoblastic cells 
in fusion medium. The C2/C12 
cells were added to the quail cells 
24 h after initial culturing. Stain- 
ing was done and measurements 
were made as described in Fig. 2. 
(A, C, and E) Distribution of nu- 
clei. (B, D, and F) Distribution of 
AChE clusters. The mouse nuclei 
are large and characteristically 
stained with HOECHST while the 
quail nuclei indicated by the ar- 
rows are much smaller and more 
homogeneously stained. Note the 
accumulation of AChE in the vi- 
cinity of quail nuclei. Bar, 25 #m. 

quail collagen-tailed forms of the enzyme, which are the 
predominant types localized in the clusters (Fig. 4 D). 

Clusters of Avian AChE on Mosaic 
Quail-Mouse Myotubes Are Localized 
Exclusively over Quail Nuclei 

To test the hypothesis that localized targeting of AChE mole- 
cules to the cell surface occurs in skeletal muscle fibers, we 
took advantage of the fact that primary quail myoblasts can 
fuse with mononucleated cells of the C2/C12 mouse muscle 
cell line to form heterospecific mosaic myotubes. The quail 
AChE can be readily detected using our monoclonal anti- 
avian AChE antibody 1A2, which does not cross-react with 
mouse AChE (Rotundo, 1984a). For the present studies, we 
introduced approximately equal numbers of quail and mouse 
nuclei in each myotube; under these conditions, ,080% of the 
quail nuclei exhibited clusters of cell surface AChE (Fig. 5). 
When quail AChE clusters did appear in the vicinity of 
mouse nuclei, there was always a quail nucleus nearby (Fig. 
6). This observation is significant because it indicates that 
the mouse nuclei did not express factors that could inhibit 
the formation of avian AChE clusters in their vicinity. 

The distances between individual nuclei and between 
nuclei and AChE clusters, regardless of species of origin, in 
quail-mouse mosaic myotubes were determined as de- 
scribed for primary quail myotubes. The average distance 
between nuclei in the mosaic myotubes was 64 • 25 #m and 
showed a similar distribution to the internuclear distances 
observed in primary quail cultures (Fig. 7). Of the total 
number of AChE clusters counted, 96 % were localized in the 
vicinity of a quail nucleus; of these, >80% were either 
directly over or within a 20-#m radius from the center of the 
quail nucleus. This highly circumscribed localization of 
AChE molecules occurred even in mosaic myotubes in which 
only one quail nucleus was present, clearly illustrating that 
the source of the enzyme was the underlying nucleus. This 
preferential accumulation of AChE molecules on the cell sur- 
face overlying the nucleus encoding them indicates that this 
protein is selectively targeted to and retained on the overly- 
ing specialized membrane domain. 

Avian Na+/K+ ATPase in Mosaic Myotubes Is Not 
Restricted to Nuclear Domains 

In contrast to molecules such as the collagen-tailed form of 
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Figure 6. Mouse nuclei do not inhibit formation of AChE clusters over quail nuclei. Occasionally, clusters of AChE activity could be ob- 
served in the vicinity of mouse nuclei in mosaic myotubes. However, these accounted for only ,x,4% of the cases; in every instance, there 
was a quaff nucleus adjacent to the mouse nucleus. These occasional observations indicate that the mouse nuclei are not acting to inhibit 
the formation of quail AChE clusters on their overlying regions of membrane. (.4) Cluster of AChE visualized by indirect immunofluores- 
cence. (B) Mouse and quail nuclei stained with HOECHST 33342 in the same field. The arrow shows the position of the quail nucleus. 
Bar, 25 #m. 

ACHE, which are tightly associated with the extracellular 
matrix, integral membrane proteins are free to diffuse in the 
plane of the lipid bilayer unless specifically anchored to ei- 
ther intra- or extracellular structures. To determine whether 
integral membrane proteins were freely diffusible in our mo- 
saic quail-mouse cocultures, we examined the cell surface 
distribution of the quail Na+/K+ ATPase under the same 
conditions used for observing the distribution of AChE 
clusters. As shown in Fig. 8, even a single quail nucleus pres- 
ent in a predominantly mouse myotube expressed sufficient 
Na+/K+ ATPase to diffuse over the entire surface of the 
myotube, clearly indicating the absence of diffusion barriers 
to integral membrane proteins. 

Discuss ion  

We have previously shown that mosaic myotubes made from 
homozygous quail myoblasts expressing two different allelic 
variants of AChE preferentially translate the polypeptides on 
the RER surrounding the nuclei expressing the transcripts 
(Rotundo, 1990). The polypeptides were also locally assem- 
bled in the RER into disulfide-bonded dimers and presum- 
ably processed in the Golgi region surrounding that nucleus. 
These studies indicated that the myotubes were functionally 
compartmentalized with respect to the expression and trans- 
lation of mRNAs encoding this cell surface protein. Since 
clusters of AChE are found distributed over the entire length 
of tissue-cultured quail myotubes (Figs. 1 and 2) and the vast 
majority are localized directly over nuclei or within a 20-#m 
radius (Figs. 2 and 3), these observations suggested the pos- 
sibility that AChE molecules expressed by a given nucleus 
were selectively targeted to the region of the cell surface 
overlying that nucleus. 

In the present studies, we used mosaic quail-mouse myo- 

tubes to test the hypothesis that localized clusters of AChE 
form over the nucleus encoding them. Our choice of quail- 
mouse mosaic fibers for studying AChE localization was 
based on the following observations. The primary quaff myo- 
blasts readily fuse with the mouse C2/C12 cells to form het- 
erospecific myotubes (Fig. 4). Both cell types express all 
oligomeric forms of AChE (Inestrosa et al., 1982; Rotundo, 
1984b) and continue to do so when cultured together (Fig. 
4 D). The C2/C12 cells also express clusters of AChE on 
their surface that consist entirely of the 16S mouse colla- 
gen-tailed form (Inestrosa et al., 1982). In all species exam- 
ined including electric rays (Bon et al., 1978; Vigny et al., 
1983; Brandan et al., 1985), rat (Torres and Inestrosa, 
1985), chicken (Ramirez et al., 1990), and quail (Rossi, S., 
and R. Rotundo, unpublished observation), the asymmetric 
collagen-tailed AChE form appears to be attached to the ex- 
tracellular matrix via the glycan portion of a heparan sul- 
fate-type proteoglycan, the glycan portion being the same 
across all species. Both quail and mouse nuclei expressed 
AChE and these molecules are distributed throughout the 
myotubes (Fig. 4). However, since our antibody is specific 
for the avian ACHE, only the quaff AChE clusters were de- 
tected by cell surface labeling (Figs. 4-6). Thus, the forma- 
tion of AChE clusters strictly over quail nuclei, which ex- 
press the quail AChE transcript, is evidence for the selective 
targeting of this protein to the overlying region of the mem- 
brane. 

Although an alternative explanation that could account for 
these findings is suppression or inhibition of AChE cluster 
formation in the vicinity of the mouse nuclei, this possibility 
is unlikely for the following reasons. First, C2/C12 cells cul- 
tured alone form AChE clusters on their surface (Inestrosa 
et al., 1982). Second, the C2/C12 nuclei in mosaic myotubes 
express AChE and the enzyme is detected surrounding all the 
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Figure 7. Distribution of AChE clusters and nuclei in mosaic quail- 
mouse myotubes. The distances between nuclei or nuclei and AChE 
clusters refer to the distances to the nearest nucleus regardless 
of species of origin. Measurements were made as in Fig. 3. (solid 
bars) Nuclei-to-AChE cluster distance; (hatched bars) nucleus-to- 
nucleus distance. The distribution of AChE clusters and the average 
distance between nuclei were very similar between primary quail 
and mosaic myotubes (64 + 25 #m); 76% of the AChE clusters 
were directly over quail nuclei and 83 % were within one nuclear 
diameter. Only 4 % of the AChE clusters were near mouse nuclei. 
In these cases, there was always a quail nucleus in close proximity. 
A total of t13 nuclei were measured in mosaic myotubes. We con- 
clude that AChE clusters are restricted to the regions of the myotube 
surface overlying the nuclei expressing the ACHE. 

mouse nuclei (Fig. 4). Finally, in a small number of cases, 
clusters of quail AChE could be found adjacent to and 
slightly overlying mouse nuclei in mosaic myotubes (Fig. 6), 
yet in every one of those instances there was an adjacent 
quail nucleus. Since the C2/C12 cells are also capable of or- 
ganizing AChE clusters on their surface when cultured alone 
(Inestrosa et al., 1982), we inter that selective targeting of 
mouse AChE molecules to the regions overlying their nuclei 
must also be occurring. Since AChE as well as AChR mole- 
cules are cotransported to the plasma membrane via a consti- 
tutive pathway in myotubes (Rotundo and Fambrough, 
1980a,b; Porter-Jordan et al., 1986), the present studies sug- 
gest that a similar transport pathway is established from the 
Golgi region surrounding each nucleus to the overlying re- 
gion of the plasma membrane in mulfinucleated skeletal 
muscle fibers. 

Several lines of evidence from both in vitro as well as in 
vivo studies over the past few years have established that 
skeletal muscle fibers are compartmentalized with respect to 
transcription, translation, assembly, and localization of sev- 
eral classes of skeletal muscle proteins. Transcripts encoding 
all subunits of the nicotinic AChR (Mertie and Sanes, 1985; 
Fontaine et al., 1988; Goldman and Staple, 1989; Brenner 
et at., t990) and the synaptic isoform of AChE (Jasmin, 

B. J., R. K. Lee, and R. L. Rotundo, manuscript submitted 
for publication) have been showaa to be selectively expressed 
at the neuromuscular junction in adult skeletal muscle. In 
tissue-cultured ceils, transcripts encoding components of the 
myofibrillar apparatus and a resident Golgi enzyme have 
been shown to be locally translated and assembled in mosaic 
myotubes (Pavlath et al., 1989). Expression of transcripts 
encoding proteins with an "exposed" nuclear localization sig- 
nal are preferentially transported into the nuclei encoding 
them and within a short distance away, whereas in the ab- 
sence of this signal the molecules are free to diffuse over long 
distances within the myotubes (Ralston and Hall, 1989a). 
Furthermore, recent studies using the temperature-sensitive 
mutant of vesicular stomatitis virus G protein that remains 
in the PER at the restrictive tem~rature show that the G pro- 
tein is transported to the overlying region of the plasma 
membrane when the block is released (Metsikko et al., 
1992). These studies provide convincing evidence for a 
localized constitutive transport pathway leading from a par- 
ticular nucleus to the local region of the cell surface. 

The accumulation of AChE clusters on the surface of myo- 
tubes or at the neuromuscular synapse requires the presence 
of other plasma membrane and extracellular matrix mole- 
cules. In vivo, AChE at the neuromuscular junction consists 
predominantly of the asymmetric collagen-tailed forms (for 
review see Toutant and Massoulit, 1987; Rottmdo, 1987), 
where it is attached to the synaptic basal lamina (McMahan 
et al., 1978). Collagenase has been shown to remove essen- 
tially all AChE associated with the synaptic basal lamina 
using enzyme histochemistry as an endpoint (Hall and Kelly, 
1971; Betz and Sakmann, 1973), suggesting that the predom- 
inant AChE form at sites of nerve-muscle contact is the 
asymmetric collagen-taUed form. In tissue-cultured myo- 
tubes, the AChE clusters also appear to be associated with 
the extracellular matrix (Wallace, 1989; Fig. 1; Table I). Fac- 
tors such as agrin, which induce formation of AChR clusters 
on myotubes (Godfrey et al., 1984), also induce accumula- 
tions of AChE (Wallace et al., 1985), heparan sulfate pro- 
teoglycan and the cytoplasmic 43-kD AChR-assoeiated pro- 
tein (Wallace, 1989), and several cytoskeletal proteins 
known to accumulate at the vertebrate neuromuscular junc- 
tion including ct-actinin, filamin, and vinculin (Shadiack and 
Nitkin, 1991). In fact, proteins expressed from nearby nuclei 
in quail-mouse mosaic cells can even cooperate to establish 
clusters of AChRs on the cell surface as shown in recent 
studies using a glycosaminoglycan-deficient mouse muscle 
cell line (Gordon et al., 1992). In contrast to proteins such 
as the AChR and AChE, membrane proteins not known to 
be restricted to specific cell surface domains in tissue- 
cultured skeletal muscle, including the Na+/K+ ATPase 
(Pumplin and Fambrough, 1983; Fig. 8) and transfected 
CD8 (Ralston and Hall, 1989b), are free to diffuse over the 
entire myotube surface and are not associated with the nu- 
cleus encoding that protein. Thus, a picture emerges 
whereby each nucleus is responsible for expressing many, if 
not all, of the proteins necessary for organizing specialized 
cell surface domains, including the necessary extracellular 
matrix components, on the overlying region of the cell 
surface. 

These studies bear directly on the question of how AChE 
molecules, and other synaptic components, are targeted to 
the neuromuscular junction. In addition to AChE and 
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Figure 8. Distribution of cell surface avian Na+/K+ ATPase on mosaic quail-mouse myotubes, In the absence of specific mechanisms 
for restricting their movement, transmembrane proteins are free to diffuse in the plane of the lipid bilayer. In this experiment, mosaic 
quail-mouse myotubes were stained by indirect immunofluorescence with a monoclonal antibody specific for the avian Na+/K+ ATPase. 
A shows the distribution of nuclei in the mosaic quail-mouse myotube. B shows the distribution of Na +/K+ ATPase in the same myotube. 
In all cases, the avian Na+/K+ ATPase was distributed over the entire surface of the myotabes, regardless of nuclear composition. The 
presence of a single quail nucleus in a mixed myotube expressed sufficient ATPase to be detected over the entire myotube surface. The 
arrow points to the single quail nucleus in this fiber. Bar, 25/~m. 

AChRs, several cell surface molecules expressed by muscle 
cells have been shown to accumulate at the neuromuscular 
synapse, including S-laminin (Hunter et al., 1989), heparan 
sulfate proteoglycan (Bayne et al., 1984), and voltage- 
dependent sodium channels (Betz et al., 1984; Beam et at., 
1985). Several c-ytoskeletal and cytosotic proteins, which act 
in part to stabilize the membrane proteins at the neuromus- 
cular junction, also accumulate in this region (for review see 
Bloch and Pumplin, 1988; Froehner, 1991). Additional spe- 
cializations also occur in the subsynaptic domain of the 
skeletal muscle fiber, including unique arrays of specialized 
microtubules (Jasmin et al., 1990) and increased expression 
of certain specific Golgi antigens (Jasmin et al., 1989) in the 
innervated portions of the muscle fiber. Since AChE enzyme 
and its mRNA are highly concentrated at the neuromuscular 
junction (Jasmin, B. J., R. K. Lee, and R. L. Rotundo, 
manuscript submitted for publication), the enzyme preferen- 
tially translated on the RER surrounding the nucleus of tran- 
scription, and the polypeptide chains assembled and pro- 
cessed in that RER and Golgi region (Rotundo, 1990), it 
seems reasonable that selective transport to localized regions 
of the cell surface should also occur. The present studies sug- 
gest that once assembled, the AChE oligomeric forms are 
targeted to the overlying region of the cell surface, where 
they may be selectively retained by components of the ex- 
tracellular matrix. Thus, compartmentalized transcription, 
translation, and processing alone are not sufficient to estab- 
lish specialized cell surface domains; interactions with other 
cellular components must be necessary,. These results further 
suggest that, in vivo, molecules expressed in the vicinity of 
the neuromuscular junction will be selectively targeted and 
retained at that specialized cell surface domain and that the 
spatial and temporal regulation of gene expression at the 
neuromuscular junction can regulate the local accumulation 
of synaptic components. 
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