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T 
hE fusion pore is the molecular structure that transiently 
connects the lumens of two membrane compartments 
during their fusion. The fusion of membrane compart- 

ments occurs in all cells because intracellular trafficking of 
vesicles in both endocytic and exocytic pathways and in consti- 
tutive exocytosis are ubiquitous cellular processes. In addition, 
many other cells including endocrine, exocrine and neuronal 
cells have a specialized case where exocytosis only occurs in re- 
sponse to specific cellular stimuli. Despite its importance, the 
nature of the fusion pore is unknown. In some ways, this is sur- 
prising given how intensively the regulatory mechanisms of 
membrane fusion have been studied for both intracellular traffic 
and exocytosis ~alch, 1989; Rothman and Orci, 1992; Bur- 
goyne, 1991; Plattner et al., 1991; Lindau and Gomperts, 1991). 
The principal difficulty has been the lack of techniques to di- 
rectly monitor the activity of single fusion pores in isolation: the 
reductionist approach that has proven uniquely suited for the 
study of ion channels. 

Recently, the application of patch clamp techniques to 
monitor the activity of individual fusion pores in mast cells 
has generated a wealth of novel and unexpected observations. 
Our goal here is to review these findings and speculate about 
their significance to our understanding of exocytotic fusion. 
Although the majority of the results come from mast cells, 
many of the observations are now being reproduced in other 
secretory cells suggesting that the conclusions may have 
wider significance in other membrane fusion reactions. 

The Fusion Pore Defined by Electron Microscopy 

A Lipidic Fusion Pore Spans the Gap between Fusing 
Membranes. Rapid freezing techniques can freeze cells in 
<2 ms and are thus ideal for observing the transient inter- 
mediate states associated with vesicle fusion (Chandler, 
1992). In a remarkable series of micrographs, Chandler and 
Heuser (1980) captured the formation of exocytotic fusion 
pores in mast cells. Similar fusion pores have since been seen 
in Limulus amebocytes (Ornberg and Reese, 1981), neutro- 
phils (Chandler et al., 1983), chromaffin cells (Schmidt et 
al., 1983; Nakata et al., 1990) and Paramecium (Knoll et 
al., 1991), thus, providing a common picture of the exo- 
cytotic event in rapidly frozen cells. The micrographs clearly 
show membrane lined pores, 20-100 nm in diameter, that 
provide a water filled pathway between the lumen of the 
secretory granule and the extracellular environment. As can 
be seen from Fig. 1 C, these pores appear to be made of a 
curved bilayer which spans the granule and plasma mem- 
branes. 

Membrane Dimpling Precedes Pore Formation. The 

quick freeze experiments also give a hint of the events pre- 
ceding the formation of a fusion pore. In unstimulated mast 
cells the plasma membrane and secretory granule mem- 
branes are kept at least 100 nm apart (Fig. 1 A; Chandler and 
Heuser, 1980). After stimulation, a new pattern is observed 
in which the plasma membrane invaginates to form a dimple 
that approaches the granule membrane (Fig. 1 B; Chandler 
and Heuser, 1980). This pattern of dimple formation after 
cell stimulation has also been observed in Limulus amebo- 
cytes (Ornberg and Reese, 1981), chromattin cells (Schrnidt 
et al., 1983), neutrophils (Chandler et al., 1983) and Para- 
mecium (Knoll et al., 1991). The secretory granules are 
never seen to bulge outwards towards the plasma membrane 
suggesting that the granule membranes are under tension and 
the plasma membranes relatively slack. The micrographs re- 
veal that the dimples typically end in a tip of ,~10 nm with 
a highly curved membrane. Because the dimple creates a fo- 
cal point where the plasma and granule membranes could 
potentially interact at close range, it was suggested that fu- 
sion pores form at these focal points of contact. Since the 
plasma membrane dimples have been seen only upon cell 
stimulation, it is likely that the dimple forming structures are 
the ones that respond to the intracellular messengers gener- 
ated by the stimulus-secretion coupling mechanisms. 

A Scaffold of Filaments Bridges the Gap. Another im- 
portant observation from the electron micrographs is that 
filamentous structures are seen spanning the gap between the 
secretory granule and cell membranes. These structures 
have been seen in mast cells (Fig. 1 A; Chandler and Heuser, 
1980) as well as in Limulus amebocytes (Ornberg and Reese, 
1981). These filaments might be made of actin because 
filamentous networks containing actin have been seen be- 
tween the cell and granule membranes in many secretory 
cells (Segawa and Yamashina, 1989; Nielsen, 1990; Nakata 
and Hirokawa, 1992). Alternatively, they could be made of 
annexins, which have been shown to form filamentous struc- 
tures between liposomes that closely resemble the filaments 
between chromaffin granules and the cell membranes (Nakata 
et al., 1990). Because the filamentous structures are seen in 
regions where fusion pores can form, and given the large 
amount of biochemical evidence implicating cytoskeletal 
components in regulation of exocytosis (Burgoyne, 1987; 
Linstedt and Kelly, 1987), it is possible that they form part 
of a macromolecular structure, which can direct and regulate 
dimpling and fusion pore formation. We can envisage this 
structure as a scaffold which, by bringing about formation 
of the dimple, causes the two membranes to come into close 
proximity and promotes conditions favorable for membrane 
fusion. 

�9 The Rockefeller University Press, 0021-9525/92/12/1395/10 $2.00 
The Journal of Cell Biology, Volume 119, Number 6, December 1992 1395-1404 1395 



Patch Clamp Measurements of Exocytosis 
The observations from quick freeze fracture electron mi- 
croscopy defined the fusion pore as a discrete entity but 
provided no kinetic information and are limited to observa- 
tion of fairly large, water filled structures that can be etched. 
A glimpse of an earlier smaller fusion pore was provided 
from patch clamp studies of exocytosis in mast cells from 
the beige mouse, a mutant mouse with unusually large secre- 
tory granules. As we will see below, the patch clamp tech- 
nique, by measuring the fusion pore conductance from the 
instant it conducts ions, has shown that the early fusion pores 
are much smaller than those seen by electron microscopy. 
These measurements have recently led to a number of impor- 
tant new discoveries about the nature of the fusion pore and 
the mechanisms underlying fusion pore formation and devel- 
opment. To appreciate these findings, it is at first necessary 
to briefly review how these measurements are made. 

Patch Clamp Technique. Over the last decade, the patch 
clamp technique has created a revolution in biology, making 
it possible to directly observe the activity of single mem- 
brane proteins, namely ion channels. These studies have re- 
vealed a diverse family of ion channels, many novel regula- 
tory mechanisms and more recently, in combination with 
molecular biological techniques, an insight into structure- 
function relationship (Neher, 1992; Sakmann, 1992). Patch 
clamp is elegantly simple. A small, fire polished micropi- 
pette is pushed against the plasma membrane of a cell to 
form an electrically tight "giga-seal" that ensures complete 
electrical and chemical isolation of the pipette interior from 
the extracellular medium. After seal formation, the patch of 
membrane under the pipette tip can be disrupted by gentle 
suction to establish continuity between the cytosol and the 
pipette interior (Fig. 2 A). In this "whole-cell" recording 
mode the cytosol is dialyzed with the solution in the pipette, 
allowing control of the intracellular environment. 

Once intracellular perfusion is established, a patch clamp 
amplifier, connected between an electrode in the patch pi- 
pette and an extracellular reference electrode, is used to con- 
trol the membrane potential and measure the current passed. 
Two types of ionic currents can be measured: transmem- 
brahe and capacitative. Transmembrane currents are due to 
ion permeation through ion channels. The ionic conductance 
of these channels is calculated from the measured current 
and the voltage using Ohms Law (I = VG, where G is the 
conductance). Capacitative currents correspond to the flow 
of ions required to charge the cell membrane capacitance to 

Figure L Different stages of fusion pore formation and development 
seen in rapidly frozen rat peritoneal mast cells. (A) Unstimulated 
cell showing secretory granule clearly separated from the overlying 
plasma membrane. P marks the plasma membrane, G the secretory 
granule membrane and the arrowhead indicates filamentous struc- 
tures that appear to span the gap between the cell and secretory 
granule membranes. Magnification, 190,000 (B). Cell frozen 15 s 
after stimulation with 8 #g/ml compound 48/80. A dimple, marked 
by the arrowhead, forms in the plasma membrane and approaches 
the secretory granule. Magnification, 225,000. (C) An exocytotic 
fusion pore (arrowhead) forms at the site-of membrane dimpling. 
Specimen frozen 15 s after cell stimulation. Magnification, 190,000. 
Electron micrographs supplied by Douglas E. Chandler, Depart- 
ment of Zoology, Arizona State University, Tempe, Arizona. 
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Figure 2. Patch clamp of a mast cell. (A) Schematic representation of whole cell configuration of the patch clamp technique showing the 
electrical equivalent elements for the plasma membrane capacitance (Cm), the secretory granule membrane capacitance (Cg) and the 
fusion pore conductance (Gp). (B) Photograph of a patch clamped mast cell in whole cell configuration prior to degranuiation. (C) The 
same cell after a complete degranulation induced by intraeellular perfusion of the cell with GTP3,S in the patch pipette solution. 

the desired membrane potential. The total charge needed de- 
pends linearly on the cell surface area because biological 
membranes have a constant specific membrane capacitance. 
Therefore, the membrane capacitance can be used to mea- 
sure the increase in cell surface area as secretory granules 
fuse with the cell membrane during exocytosis. 

Measurements of capacitative currents are not as straight- 
forward as measurements of ion channel currents. Because no 
current passes through a capacitor when it is fully charged, 
the voltage must be changed to measure capacitance. A sim- 
ple approach is to apply a sinusoidal voltage and determine 
the cell admittance, the alternating current equivalent of con- 
ductance. As with transmembrane ion currents, we deter- 
mine the admittance from the measured current using Ohms 
Law for alternating currents: I(o~) = V(r Y(~0), where 
Y(o~) is the admittance, 00 = 2~rf and f is the frequency of 
the sine wave. The admittance of a patch clamped cell has 
two components, one in phase and one 90 ~ out of phase with 
the membrane potential, from which we can determine the 
membrane capacitance as well as the other circuit elements 
shown in Fig. 2 A. Continuous measurements of cell admit- 
tance from a patch-clamped cell undergoing exocytosis can 
be made using a phase sensitive detector, either a lock-in am- 
plifier (Neher and Marty, 1982; Lindau and Neher, 1988) or 
a digital phase detector (Joshi and Fernandez, 1988; Fidler 
and Fernandez, 1989). 

Measurement of the Fusion Pore Conductance. When a 
secretory granule fuses with the plasma membrane, a water 
filled fusion pore forms an electrical connection between the 
lumen of the secretory vesicle and the extraceUular environ- 
ment. As illustrated in Fig. 2 A, the membrane capacitance 
of the secretory granule (C~) is in series with the conduc- 
tance of the fusion pore (Gp). Assuming that the secretory 
granule matrix is freely conducting, this series combination 
creates a well defined signature in the electrical admittance 

of the patch clamped cell, which can be used to make time 
resolved measurements of the conductance of the fusion pore 
(Breckenridge and Almers, 1987a; Alvarez de Toledo and 
Fernandez, 1988). The methods for making the measure- 
merits and determining the fusion pore conductance have re- 
cently been reviewed in detail (Lindau, 1991). 

Although the admittance techniques are well suited for 
continuous measurements of the fusion pore conductance, 
the time resolution (10 ms at best) is insufficient to measure 
the fusion pore conductance in the first few milliseconds of 
its lifetime. Fortunately, an alternative method, developed by 
Almers and co-workers (Breckenridge and Almers, 1987a; 
Spruce et al., 1990), allows us to do just this. When the pore 
forms, there is brief current transient, which corresponds to 
the current necessary to charge the vesicle membrane to the 
plasma membrane potential. Analysis of the magnitude and 
time course of these current transients can be used to deter- 
mine the conductance of the fusion pore with submillisecond 
resolution, but only for the few milliseconds that the tran- 
sient lasts. In contrast, the admittance measurements can be 
used to follow the pore for hundreds of milliseconds or sec- 
onds. By combining the charging transient measurements 
with admittance measurements, it is possible to study the 
formation and fast evolution of exocytotic fusion pores from 
their initial structure to the final irreversible expansion (see 
Spruce et al., 1990). 

Opening of a Fusion Pore Causes a Step Increase in 
Membrane Capacitance. As predicted by Cole (1972), long 
before the patch-clamp techniques were available, the capac- 
itance of a secretory cell should reflect increases in surface 
membrane area due to the addition of membrane upon fusion 
of a secretory granule. Indeed, with the improved resolution 
afforded by patch clamp measurements, stepwise increases 
in the cell membrane capacitance as single secretory gran- 
ules fuse with the plasma membrane have been demonstrated 
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Figure 3. Exocytotic fusion events captured by capacitance measurements from a degranulating mast cell stimulated with GTP3,S. (A) A 
typical capacitance staircase resulting from sequential fusion of many secretory granules. Two types of fusion event are discernible: irre- 
versible step increases in capacitance upon membrane fusion and transient fusion events (e.g., asterisks) where the fusion pore closes. 
Note that the interval between successive steps (ti) and the dwell time of transient fusion pores (tt) can be used for kinetic analysis of open- 
ing and closing of fusion pores (Oberhauser et al., 1992a). (B) An example of a transient fusion of a giant secretory granule from a beige 
mouse mast cell. Note the magnitude of the backstep is larger than the initial step indicating that the area of the plasma membrane is 
decreased after a transient fusion event suggesting that there is a large lipid flux through the fusion pore. (C) A simplified scheme of a 
transient fusion event showing membrane transfer (see Monck et al., 1990). 

in a variety of secretory ceils undergoing exocytosis (Neher 
and Marry, 1982; Fernandez et al., 1984; Nusse and Lindau, 
1988; Nusse et al., 1990). Because fusion of a secretory 
vesicle with the plasma membrane increases the surface area 
of the cell membrane by an amount equal to the vesicle mem- 
brane area, the steps have different amplitudes correspond- 
ing to different granule sizes (Fig. 3 A). For example, a 10-fF 
capacitance step corresponds to the addition of 1 ~m 2 of 
membrane, equivalent to a spherical granule with a diameter 
of,~0.5/xm. The size distribution of secretory granules mea- 
sured from the capacitance are in good agreement with the 
size distributions determined from electron micrographs, 
not only for mast cells (Fernandez et al., 1984; Alvarez 
de Toledo and Fernandez, 1990), but also for neutrophils 
(Nusse and Lindau, 1988) and eosinophils (Nusse et al., 
1990). 

Pipette Biochemistry. A patch pipette typically accesses 
the cytosol of the cell through a large, micrometer sized 
opening in the cell membrane through which there is rapid 
diffusional exchange of soluble molecules between the pi- 
pette and the cytosol. Because the volume of the patch pi- 
pette (>10 #I) dwarfs that of the cell (,~1 pl), the freely soluble 
contents of the cytosol, including proteins, nucleotides, me- 
tabolites and ions, will be lost into the patch pipette and rap- 
idly replaced by the pipette solution. Calculations from the 
rates of diffusional exchange between cells and a patch pi- 
pette predict that ions and nucleotides will be lost within a 
few minutes and small soluble proteins within "~15 min 

(Pusch and Neher, 1988). For example, 99% washout from 
a small cell will take 1.3 min for K § (39 D), 3.2 min for 
GTP (530 D), 11.7 min for rab3a (25 kD) and 19.1 min for 
BCOP (110 kD). It has been demonstrated that, in some 
cells, this "washout" uncouples receptor mediated responses 
from the secretory response. 

The washout of the cytosol is a blessing in disguise be- 
cause it challenges the investigator to identify the soluble 
components mediating the sought response. These manipu- 
lations, collectively named "pipette biochemistry" have led 
to several unanticipated discoveries. For example, a long 
standing paradigm of the stimulus secretion field was that an 
elevation of cytosolic calcium into the micromolar range was 
sufficient and necessary to elicit exocytotic fusion. Surpris- 
ingly, patch clamped mast cells failed to undergo exocytotic 
degranulation in response to perfusion with pipette solutions 
that contained an elevated calcium concentration. In con- 
trast, mast cells undergo a complete and spontaneous de- 
granulation in response to the hydrolysis-resistant GTP ana- 
log, GTP'rS (0.1-50 #M), when the Ca 2+ concentration is 
clamped below 50 nM with strong calcium buffers (Fernan- 
dez et al., 1984; Neher, 1988). These results demonstrated 
that an elevated concentration of cytosolic calcium was nei- 
ther sufficient nor necessary under the conditions created 
in a patch clamped cell, and directly implicated guanine 
nucleotide binding proteins in the regulation of exocytotic 
fusion. Similar results have since been seen in patch clamped 
neutrophils (Nusse and Lindau, 1988) and eosinophils 
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Figure 4. Time-course of fusion pore conductance measured in beige mouse mast cells. (A) Pore conductance calculated from the real 
and imaginary components of the cell admittance. See Nanavati et al. (1992) for details. (B) Pore conductance calculated from the brief 
current transient that occurs while the membrane of the secretory granule is charged to the cell membrane potential (see Breckenridge 
and Almers (1987a), from where B is taken, for details). Note that the fusion pores shown opened abruptly with initial diameters of 5 
and 2 nm, respectively. In A, the pore remained in a semistable state for more than a second before expanding. 

(Nusse et al., 1990), as well as in various permeabilized cells 
(Vallar et al., 1987; Lindau and Gomperts, 1991). The mea- 
surement of capacitance in patch clamped cells has become 
a productive approach for the study of stimulus-secretion 
coupling (Neher, 1988; Penner, 1988; Mason et al., 1988; 
Penner et al., 1988; Zorec et al., 1991). 

The Fusion Pore Evolves in Distinct Stages 

Patch clamp measurements of secretory cells undergoing 
exocytosis have revealed the exocytotic fusion pore as a re- 
markably dynamic entity. The existence of the fusion pore 
can be divided into several distinct phases. The fusion pore 
is first detected as an abrupt increase in pore conductance. 
This is followed by an expansion phase characterized by the 
wide fluctuations in fusion pore conductance. These fluctua- 
tions, termed flicker, can be brief (ms) or prolonged (s). 
Flicker usually terminates with a rapidly increasing phase as 
the pore irreversibly expands to a structure akin to that seen 
in electron micrographs, but sometimes the pore can close 
again completely (Fernandez et al., 1984; Spruce et al., 
1990). The properties of these different phases will be dis- 
cussed in turn. 

Opening of the Fusion Pore. The fusion pore opens abruptly 
with a conductance similar to that of a large ion channel 
(Breckenridge and Almers, 1987a; Spruce et al., 1990). This 
observation is interesting because several secretory granule 
membrane proteins, including synexins and synaptophysin, 
have been shown to form ion channels in vitro (Thomas 
et al., 1988; Pollard et al., 1990; Sudhof and Jahn, 1991). 
This has led to the hypothesis that the opening of the fusion 
pore corresponds to the opening of an ion channel (Almers, 
1990; Almers and Tse, 1990). Analysis of the transient cur- 
rent discharges through the fusion pores of beige mice mast 
cells showed that the median initial conductance is '~300 pS, 
but varies between 80 and 1,000 pS (Fig. 4 B; Breckenridge 
et al., 1987a; Spruce et al., 1990). Admittance measure- 
ments give similar values for initial fusion pore conductance 
(Fig. 4 A; Spruce et al., 1990; Nanavati et al., 1992). 

The smallest fusion pores seen in the electron micrographs 

are approximately 20 nm across and 50 nm long. By model- 
ing the pore as a water-filled tube, we can estimate that this 
pore would have a conductance of ~10 nS. Thus, the fusion 
pore when it first opens is considerably smaller and must 
represent an earlier, more transient stage in the development 
of the fusion pore. If  we assume that this early fusion pore 
is merely a smaller version of those seen in electron micro- 
graphs, a lipidic tube with a length of ~15 nm, slightly larger 
than the width of two bilayers, then an initial conductance 
of 80 pS corresponds to a diameter of 1 nm. 

Expansion of the b'ttsion Pore. After fusion pore opening 
the pore begins to expand. This expansion phase can be fast 
or slow and is characterized by large, rapid fluctuations in 
pore conductance. Hundredfold changes in conductance 
(0.1-10 nS) can occur within tens of milliseconds (Alvarez 
de Toledo and Fernandez, 1988; Spruce et al., 1990; Monck 
et al., 1991a). These changes usually appear to be continu- 
ous (Breckenridge and Almers, 1987a; Spruce et al., 1990; 
Nanavati et al., 1992), rather than as discrete levels typical 
of ion channels, although on occasion several semi-stable 
conductance states can be seen (Spruce et al., 1990). 

Flicker usually ends with the irreversible expansion of the 
fusion pore to a large conductance, which is beyond the de- 
tectable limit of the admittance measurements. The limiting 
value is typically ~10 nS, corresponding to a pore with a di- 
ameter of more than 20 nm. Once the pore expands beyond 
this size the pore rarely or never closes, suggesting the possi- 
bility of a structural change from an early fusion pore which 
can close to a larger pore that is unable to close. The lifetime 
of the early fusion pore can be measured from the length of 
flicker because, in mast cells from the beige mouse, flicker 
begins abruptly when the fusion pore opens and terminates 
equally abruptly when the pore expands. The distribution of 
flicker length is exponential, allowing extraction of a time 
constant for pore expansion of ~ 200 ms (Monck et al., 
1991a). Although some fusion pores flicker for hundreds of 
milliseconds or even several seconds, most pores expand in 
less than 50 ms. It is quite possible that the pore expansion 
is faster in cells with smaller, more highly curved secretory 
granules such as synaptic vesicles. 
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The mechanism of fusion pore expansion is unknown. The 
fusion pore provides a path for water entry into the secretory 
granule matrix, which causes decondensation of the contents 
and matrix swelling (Verdugo, 1991). However, inhibition of 
this swelling does not change the fusion pore expansion in 
mast cells, suggesting that the initial phase of pore expansion 
seen with the patch clamp reflects some other property of the 
fusion pore (Monck et al., 1991a), The fusion pores seen in 
electron micrographs are still relatively small structures, so 
it seems likely that matrix swelling will provide the force for 
a second phase of pore expansion leading to complete incor- 
poration of the secretory granule membrane into the cell 
membrane and expulsion of the secretory granule contents 
into the extracellular environment. 

Closure of the Fusion Pore. The first new finding pro- 
vided by patch clamp measurements of rat mast cells was that 
a fusion pore does not always expand irreversibly but some- 
times closes leaving an intact secretory vesicle inside the cell 
(Fernandez et al., 1984), The ability of fusion pores to close 
was quite unexpected. Transient fusion events have since 
been observed in normal and beige mouse mast cells (Zim- 
merberg et al., 1987; Breckenridge and Almers, 1987b; 
Spruce et al., 1990; Monck et al., 1990). Several examples 
of transient fusion events are shown in Fig. 3 (A and B). 
Sometimes a vesicle can undergo many transient fusions be- 
fore a final irreversible fusion occurs (Breckenridge and A1- 
mers, 1987b; Alvarez de Toledo and Fernandez, 1988; 
Spruce et al., 1990). 

Ceccarelli and colleagues have proposed that contrary to 
the conventional view of neurotransmissien, a fusion pore 
might open, allow discharge of the vesicle contents and 
then close, obviating need for membrane merging and subse- 
quent recycling (Valtorta et al., 1990). Recent advances in 
measuring low concentrations of biogenic amines using vol- 
tammetric techniques have allowed measurement of cate- 
cholamine release from single chromaffin granules (Lesz- 
czyszyn et al., 1990: Chow et al., 1992) and serotonin 
release from single mast cell granules (Alvarez de Toledo 
et al., 1993). Interestingly, there was a small amount of 
release before the main phase of release (Chow et al., 1992; 
Alvarez de Toledo et al., 1993). In mast cells this leak also 
occurred during transient fusion events, providing support 
for Cecearelli's proposal. 

When a fusion pore connects a secretory granule to the 
plasma membrane, there is a net flow of lipid into the secre- 
tory granule (Monck et al., 1990). Analysis of transient fu- 
sion events revealed that the backsteps were larger than the 
onsteps (Fig. 3 B), indicating a net movement of phospho- 
lipid membrane from the cell membrane to the secretory 
granule during flicker, as illustrated in Fig. 3 C. The quanti- 
fies of the phospholipids moved are large, equivalent to al- 
most a million molecules per second-enough to replace all 
the phospholipids in a small lipidic fusion pore every milli- 
second. Because biological membranes contain a mixture of 
lipids, the composition of the pore could change dramati- 
cally over short time intervals and could provide an explana- 
tion for the rapid fusion pore conductance changes if, as 
seems likely from energetic considerations, some lipids fa- 
vor pore expansion and others promote closure (Kozlov et 
al., 1989; Nanavati et al., 1992). The flux of lipid through 
the fusion pore also indicates that the pore, when it closes, 
is partially or totally lipidic, an observation that limits the 

types of molecular models that can be proposed for the struc- 
ture of the fusion pore, but also raises the question as to how 
lipidic pores might close. 

Fusion pore closure has an unusual temperature depen- 
dency. The rate of pore closure, which was determined from 
the dwell time of transient fusions using kinetic analysis 
similar to that used for single ion channels (Oberhauser et 
al., 1992a), undergoes a large and sharp discontinuity in the 
Arrhenius plot at 13~ Such discontinuous temperature de- 
pendencies had never been seen in biological membranes, 
but are typical of diffusional processes in homogeneous 
phospholipid bilayers (Krasne et al., 1971; Hoffmann et al., 
1980). Therefore, to explain this unusual observation, it was 
suggested that below the transition temperature, a class of 
lipids with a tendency to close the pore could be frozen out 
into a crystalline microdomain and be unavailable to induce 
closure of the fusion pore (Oberhauser et al., 1992a). 

The rate of movement of membrane through the fusion 
pore is surprisingly constant throughout the lifetime of the 
early fusion pore, and the same rate occurs regardless of 
stimulus strength or a number of other chemical and physical 
perturbations (Monck et al., 1990, 1991b). It seems that 
when the fusion pore opens, there is a constant driving force 
for lipid flow. We proposed that a difference in lateral mem- 
brane tension between the secretory granule membrane and 
cell membrane is the driving force for the membrane flow. 
Because this tension difference is always the same when 
membranes fuse, we further suggested that there is a critical 
tension for membrane fusion. Such a mechanism is very 
compelling because many of the perturbations used to fuse 
phospholipid bilayers and vesicles in model fusion systems, 
are conditions that have been shown to increase the mem- 
brane tension (see below). 

Molecular Structure of  the Fusion Pore 

Fusion pores must exist in all cases where two membrane 
compartments fuse, whether in artificial bilayer systems, in 
virus-mediated fusion, intracellular traffic, fertilization or 
exocytosis. These fusion pores are likely to share certain 
physical principles and molecular structures. If this is true, 
then information learned from study of other fusion pores 
should aid our understanding of the exocytotic fusion pore. 

Lipidic Fusion Pores in Artificial Bilayer Systems. The 
structure of the fusion pore and the mechanism of fusion are 
interrelated problems. The structure can tell us something 
about the mechanism and vice versa. The fusion of two pla- 
nar bilayers or of a vesicle with a bilayer has been extensively 
studied in model lipid systems. It is well established that 
when two bilayers are brought together, as they must be for 
membrane fusion to occur, there are a number of attractive 
and repulsive forces that determine whether the membranes 
are kept apart, adhere or fuse (Rand, 1981; Israelachvili and 
McGuiggan, 1988). At large separations, the balance be- 
tween the attractive van der Waals forces, repulsive elec- 
trostatic double layer forces, and fluctuation (or undulation) 
forces describes the interaction between two membranes. 
However, as the separation is reduced below 3 nm, repulsive 
hydration and steric forces begin to dominate and act to keep 
the bilayers apart. For fusion pore formation these short 
range repulsive forces must be overcome. 

Recently, Israelachvili and co-workers (Helm et al., 1989, 
1992) have argued that reducing the repulsive forces is insuf- 
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ficient for membrane fusion and that exposure of a strongly 
attractive hydrophobic force is necessary for membrane fu- 
sion. It was shown that phospholipid bilayers applied to mica 
surfaces could be induced to spontaneously fuse at a separa- 
tion of 1-2 nm if they were "depleted" by a technique that 
reduces the density of phospholipid head groups per unit 
area of membrane, equivalent to increasing the lateral ten- 
sion. The fusion occurs as the result of localized exposure 
of the hydrophobic interior which allows a strong attractive 
hydrophobic force to bypass the repulsive hydration forces. 
This conclusion fits well with the fact that protocols designed 
to induce fusion in artificial membrane systems-osmotic 
and hydrostatic pressure, electric fields, temperature, Ca 2§ 
and other divalent cations, pH, and possibly polyethylene 
glycols-also increase lateral membrane tension (Finkel- 
stein et al., 1986; Zimmermann, 1986; Ohki, 1987; Wood- 
bury and Hall, 1988). Thus, exposure of the hydrophobic 
force will cause hemifusion of two bilayers if the separation 
is less than 2 nm. Once the hemifusion breakthrough has oc- 
curred, increased local stresses in the common bilayer favor 
pore formation and subsequent full fusion (Helm et al., 
1992). 

The fusion pore formed according to this mechanism is a 
pore through a single bilayer and has a purely lipidic struc- 
ture. But can a purely lipidic pore show the dynamic proper- 
ties of the exocytotic fusion pore, namely multiple conduc- 
tance levels, rapid fluctuations and reversibility? A lipidic 
fusion pore can be modeled by assuming that the free energy 
of the pore is determined by the elastic energy associated 
with the bilayer curvature and the isotropic tension of the fus- 
ing membranes (Markin et al., 1984; Chernomordik et al., 
1987; Kozlov et al., 1989; Nanavati et al., 1992). When ex- 
perimentally determined values for the spontaneous curva- 
ture of biological membranes and estimates of the membrane 
tension present in the secretory granule were used in such 
models, fusion pores that can expand irreversibly or open for 
several seconds and then close, were predicted (Nanavati et 
al., 1992). Strikingly, the range of conductances predicted 
for such lipidic pores was indistinguishable not only from 
that measured for exocytotic fusion pores in the beige mouse 
mast cell, but also for electromechanically induced pores in 
the secretory granule membrane (Oberhauser and Fernan- 
dez, 1992). Further evidence that such pores through a sin- 
gle bilayer can occur in biological membranes is provided by 
the observation that electrically-induced fusion of erythro- 
cytes proceeds through hemifusion (Song et al., 1991). 

Bilayer fusion, pore formation and pore expansion can be 
very fast. For example, fusion of vesicles with planar bilay- 
ers can be measured as incorporation of ion channels into the 
bilayer. The full step in single channel conductance occurs 
in less than 200 /~s (Cohen et al., 1980) indicating that, 
within this time interval, the fusion pore has both formed and 
expanded to a size where the resistance is negligible, equiva- 
lent to a cylindrical pore 10 nm long and 30 nm in diameter 
(Zimmerberg, 1987). There is evidence that pores in a single 
bilayer induced by electroporation form at sub-microsec- 
ond time-scales (Hibino et al., 1991). Therefore, such a 
mechanism is fast enough to account for even the most rapid 
exocytotic responses such as those occurring during neuro- 
transmission. 

Virus-induced Fusion Pores. The ability of viruses to in- 
duce fusion pores is particularly instructive because this fu- 

sion reaction is the only one where the proteins that induce 
fusion have been identified (reviewed Hoekstra, 1990; Bentz 
et al., 1990; White, 1990, 1992). The fusogenic activity re- 
sides in virally encoded membrane glycoproteins, of which 
the influenza virus hemagglutinin is the best studied. The 
hemagglutinin fusion proteins have a transmembrane an- 
choring segment, which holds the two membranes together, 
and a fusogenic domain, which forms an amphiphilic peptide, 
with bulky hydrophobic residues on one side and acidic 
groups on the other. Putative fusion peptides for other viruses 
have been assigned, but fusogenic activity has only been 
demonstrated for some peptides, such as the hemagglutinin 
peptides. The fusogenic domain of most viral fusion proteins 
forms an ot helix, with most of the hydrophobic residues on 
one face (White, 1990). 

Recent models for viral fusion propose that several hemag- 
glutinin trimers assemble to form a "collar" within which the 
fusion pore forms (Bentz et al., 1990; White, 1990). The 
membrane region within this collar is •5 nm in diameter. 
The hydrophobic side of the fusion domain, on the inside of 
the collar, is proposed to form a bridge that allows lipids 
from the two membranes to come into contact. However, 
given that two closely opposed bilayers fuse when under ten- 
sion, or when a local perturbation of the bilayer structure oc- 
curs, it is possible that the arrangement of the viral proteins 
could draw the two membranes into close apposition within 
the collar and induce fusion by either increasing the mem- 
brane tension, or inducing appropriate local perturbations in 
the physical structure of the bilayer. 

The viral fusion pore has also been examined using elec- 
tron microscopy and patch clamp techniques. The lipid pores 
seen in the electron micrographs appear identical to the 
exocytotic fusion pore with a diameter of * 5 0  nm (Knoll et 
al., 1988). Patch clamp measurements of the fusion between 
two cell membranes induced by influenza virus hemaggluti- 
nin, that has been transfected into one of the cells, reveal a 
fusion pore that opens abruptly and undergoes fluctuations 
in pore conductance, much as the exocytotic fusion pore, but 
expands relatively slowly (Spruce et al., 1989, 1991). These 
similarities between the properties of the viral and exocytotic 
fusion pores suggest similar structures and mechanisms of 
formation. Recently, a sperm glycoprotein implicated in 
sperm-egg fusion during fertilization has been proposed to 
contain a sided helical domain, like the viral fusion peptides 
(Blobel et al., 1992), suggesting that this mechanism might 
be more widespread. 

Models for Exocytotic Fusion Pores. Many models for the 
exocytotic fusion pore have been proposed. One model pro- 
poses that the initial pore is a proteinaceous ion channel-like 
structure traversing the bilayers of the secretory granule and 
plasma membranes (Almers, 1990; Almers and Tse, 1990). 
According to this hypothesis, the exocytotic fusion pore re- 
sults from a preassembled, ion channel-like structure that 
opens in response to a cellular messenger. The rationale for 
this model is that opening of an ion channel would be readily 
subject to the rapid regulation necessary, for example, in 
neurosecretion. In addition, it is easy to explain how such 
a fusion pore would close. Drawing analogy with the gap 
junction, the only known channel to span two bilayers, it was 
proposed that the initial pore (conductance, 80 pS) corre- 
sponds to an oligomeric channel with an internal diameter 
of ,,ol nm (assuming the 15-nm length of the gap junction). 
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Figure 5. Model describing exocytotic fusion as a lipidic fusion event directed by a protein scaffold. (Top left) Membranes separated by 
a protein scaffold. Because GTP3,S is the trigger for exocytosis in most fusion pore experiments, GDP is depicted as bound to the scaffold 
to represent the inactive state ofa GTP-binding protein, which is the cellular switch for fusion pore formation and forms part of the scaffold. 
(Top center) In response to exchange of GDP for GTP3,S on the GTP-binding protein, the scaffold directs a dimple in the plasma membrane 
towards the secretory granule. (Top right) Hemifusion occurs spontaneously due to local tension in the two membranes. (Bottom right) A 
small pore forms in the stressed common bilayer of the hemifusion structure. This pore can either close or expand. (Bottom center) The 
fusion pore develops into the hour-glass structure seen in the electron micrographs. (Bottom left) The pore further expands to allow release 
of secretory products. 

The ion channel would show multiple initial conductance 
levels, like the gap junction, and expand by intercalation 
of lipid molecules between the subunits of the structure lead- 
ing to a mostly lipidic fusion pore that expands irreversi- 
bly, completing exocytosis (Almers, t990; Almes and Tse, 
1990). 

Several models have proposed a fusion pore which com- 
prises both proteins and lipids from its earliest moments and 
where the proteins serve as a hydrophobic bridge between 
the membranes. The "hydrophobic bridge" model has re- 
cently been reviewed in two different flavors (Pollard et al., 
1991; Zimmerberg et al., 1991). According to this model, 
proteins form a bridge across which phospholipids can cross 
with their hydrophobic tails interacting with the hydrophobic 
surface of the proteins. The rationale of this model is that the 
repulsive hydration forces do not have to be overcome en 
masse. In one form, synexins are the bridge proteins (Pollard 
et al., 1991). These models have many similarities with 
models for viral fusion (see above). The fusion pore would 
quickly become mainly lipidic as otherwise the model could 
not readily explain the large fluctuations in pore conduc- 
tance. 

Alternatively, the initial fusion pore could be an entirely 
lipidic structure. As discussed above, the lipid flux through 
the fusion pore, the unusual temperature dependency and the 
comparison between the exocytotic fusion pore and a theo- 
retical lipidic pore suggest that the fusion pore has a strong 
lipid character at an early stage. Given that two bilayers will 
fuse spontaneously at separations below 2 nm when the 
membranes are under tension, we favor this latter mecha- 

nism for exocytotic membrane fusion. It is not unreasonable 
that the cell will utilize intrinsic properties of phospholipid 
bilayers as the fusion mechanism. We propose that the role 
of proteins is to respond to intracellular signals, to draw the 
plasma membrane into close proximity with the secretory 
granule membranes, and to favor fusion by increasing mem- 
brane tension or inducing local perturbations in the bilayer 
structure. 

A Protein Scaffold Directs Exocytotic 
Membrane Fusion 

The electron micrographs show that the secretory granule 
and cell membranes are normally kept apart until, after cell 
stimulation, a dimple in the plasma membrane approaches 
the granule membrane. According to our model, the macro- 
molecular scaffold of proteins is responsible for directing the 
dimpling of the cell membrane in response to intracellu- 
lar signals (Fig. 5; Nanavati et al., 1992). The filamentous 
structures seen between the two membranes are likely to be 
part of this scaffold. The dimple is seen to end in a small (10 
nm), highly curved tip. The high curvature of this tip will 
provide a localized region of high tension, When the tip of 
the dimple approaches the granule membrane, which in the 
stimulated cell has a high tension, hemifusion of the two 
bilayers will occur spontaneously. 

Pore formation will follow because stresses in the common 
bilayer, comprising the intragranular leaflet of the granule 
membrane and the extracellular leaflet of the plasma mem- 
branes, will induce membrane breakdown. Thus, the initial 
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fusion pore is a pore in a single bilayer. As discussed earlier, 
models of the free energy profiles of such pores predict that 
they will behave similarly to the measured exocytotic fusion 
pore. These pores should fluctuate around a certain size be- 
fore either expanding irreversibly or closing. An advantage 
of progressing through hemifusion, is that potentially injuri- 
ous secretory products cannot leak into the cytosol. It is also 
easy to explain pore closure by changes in the spontaneous 
curvature of the lipid that make up the fusion pore (Nanavati 
et aI., 1992). As the pore expands the trilaminar structure 
retreats and the full fusion pore typical of the electron micro- 
graphs is irreversibly formed. 

There is precedent for macromolecular scaffolds in pro- 
cesses that regulate membrane organization and shaping 
of organelles: clathrin scaffolds for endocytosis, small GTP- 
binding proteins and ~COPs for maintenance of the shape of 
transport vesicles, a complex of several proteins including 
SNAPS and NSF for regulating intracellular fusion in the 
Golgi, and the association of several hemagluttinin trimers 
for viral fusion (Rothman and Orci, 1992; Wilson et al., 
1992; White, 1990; Bentz et al., 1990). The exocytotic 
scaffold is likely to contain GTP and Ca 2+ binding proteins 
to detect and respond to intracellular signals, and share cer- 
tain regulatory and structural components with other mem- 
brane fusion reactions like those of intracellular traffic 
(Oberhauser et al., 1992; White, 1992). Although the scaf- 
fold proteins have not yet been identified, many proteins that 
may play important structural and regulatory roles in the 
scaffold are being discovered (Sudhof et al., 1989; Burgoyne 
and Geisow, 1989; Sudhof and Jahn, 1991; Bennett et al., 
1992). Identification of the scaffold proteins and character- 
ization of how they interact to promote fusion will provide 
many challenges in the years ahead. In combination with 
molecular biological techniques, biophysical measurements 
of the fusion pore will define structure-function relationships 
between the proteins of the scaffold and the fusion pore and 
provide the molecular basis for understanding regulated 
membrane fusion. 
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