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Summary
Chromosome alignment and segregation during cell division rely on a highly ordered bipolar
microtubule array called the mitotic spindle. The organization of microtubules into bipolar spindles
with focused poles during mitosis requires numerous microtubule-associated proteins including both
motor and non-motor proteins. Non-motor microtubule-associated proteins display extraordinary
diversity in how they contribute to mitotic spindle organization. These mechanisms include
regulation of microtubule nucleation and organization, direct and indirect influences on motor
function, and control of cell cycle progression. Furthermore, many non-motor spindle proteins
display altered expression in cancer cells emphasizing their important roles in cell proliferation.

Introduction
Accurate chromosome segregation during cell division is essential for cell viability. The mitotic
spindle, a molecular machine composed primarily of microtubules, is responsible for
chromosome segregation. Microtubules within mitotic spindles are highly ordered with their
minus ends focused at spindle poles through the combined actions of centrosome-based
microtubule nucleation and microtubule motor-based focusing. Dynamic microtubule plus
ends extend to the cell cortex to position the spindle and to chromosomes where they mediate
chromosome movement by binding to specialized centromeric structures called kinetochores.

The organization of microtubules into the highly ordered bipolar array of the mitotic spindle
depends on the activities of numerous motor and non-motor microtubule-associated proteins.
Motor proteins have received significant attention because they generate force on microtubules
during spindle formation and are potential drug targets for cancer therapy. Indeed, some models
for spindle assembly and function are based exclusively on the interactions of different motors
with microtubules [1]. However, these models overlook the essential functional roles played
by non-motor proteins in the organization and function of mitotic spindles. Non-motor proteins
promote the formation and maintenance of mitotic spindles through diverse mechanisms
including the nucleation and organization of microtubules, influence on motor function, and
regulation of cell cycle control. This diversity may explain why the expression of non-motor
spindle proteins is frequently altered in cancer cells. Here we summarize recent data on how
the major non-motor spindle proteins contribute to the structural integrity of the mitotic spindle.
We also discuss how non-motor spindle proteins participate in cell cycle regulation with
implications on cancer.
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Cross-linking influence on microtubule stabilization and organization
The salient features of major non-motor spindle proteins are summarized in Table 1. In general,
these proteins are relatively large, and many are only expressed during G2/M phase of the cell
cycle. Many of these proteins also display substantial phosphorylation during mitosis [2]. These
proteins show diverse localization on mitotic spindles including centrosomes, spindle poles,
spindle body, central spindle, and kinetochores (Figure 1) where they participate in both
microtubule organization and nucleation. Complicating the understanding of these functions,
many of these proteins cooperate or interact with each other in some activities.

Loss of function studies combined with in vitro biochemical experiments demonstrate that
many non-motor spindle proteins mechanically cross link microtubules to provide structural
support to the mitotic spindle. For example, NuMA binds microtubules directly, and localizes
to microtubule minus ends at spindle poles (Figure 1A) [3]. Perturbation of NuMA function
leads to splaying of microtubule minus ends at spindle poles indicating that NuMA combines
self-association and microtubule binding activities to mechanically cross link microtubules at
spindle poles [4]. TPX2 also localizes to the spindle poles (Figure 1B) and binds and bundles
microtubules directly. Perturbation of TPX2 function results in poorly focused spindle poles
and decreased centrosomal integrity leading to multipolar spindles [5, 6]. The microtubule
cross linking activity of NuMA is dominant to that of TPX2, but TPX2 becomes essential for
spindle pole organization under conditions where NuMA function is perturbed [7]. HURP also
binds microtubules directly, and localizes on the subset of spindle microtubules attached to
kinetochores in a unique position adjacent to kinetochores (Figure 1C) [8, 9, 10]. Perturbation
of HURP activity decreases the density of microtubules bound to kinetochores suggesting that
it may promote kinetochore microtubule stability through microtubule cross linking activity
[10]. Finally, PRC1 binds and bundles antiparallel microtubules in the central spindle where
it is required for microtubule organization during anaphase/telophase [11, 12]. The strength of
microtubule crosslinking formed by each protein and the influence this has on spindle structure
appears varied. The turnover of NuMA at spindle poles is relatively slow [3], but that of TPX2
is reported to be relatively fast [13]. Turnover rates for other non-motor spindle proteins have
not been reported, but represent an important goal because that will improve understanding of
how those cross links contribute to spindle formation and maintenance.

Microtubule nucleation and stabilization
Many non-motor spindle proteins also control the density of microtubules within spindles by
regulating microtubule nucleation and/or stability. In some cases, non-motor spindle proteins
merely stabilize microtubules against depolymerization akin to conventional microtubule-
associated proteins. For example, NuSAP interacts directly with both chromatin and
microtubules and most likely promotes spindle formation by selectively stabilizing
microtubules associated with chromatin [14,15,16]. Similarly, the density of microtubules
bound to kinetochores in astrin-deficient cells is reduced [17]. Astrin localizes to kinetochores
of bi-oriented chromosomes (Figure 1D) indicating that it may selectively stabilize
microtubules bound to kinetochores [18].

Other non-motor spindle proteins contribute to the density of microtubules in spindles directly
by regulating microtubule nucleation or polymerization. For example, TOGp (XMAP215)
promotes the assembly of microtubules by ushering tubulin subunits into the growing
microtubule end and antagonizing the depolymerizing activity of the kinesin-13 protein MCAK
[19,20,21]. It is unknown if this activity accounts for the disruption of spindle pole and
centrosome integrity in TOGp-deficient cells [21]. Furthermore, addition of excess quantities
of TPX2 to frog egg extracts (in excess of importin alpha levels) induces microtubule nucleation
suggesting that TPX2 can promote microtubule nucleation. This accounts for the reduced
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microtubule density of spindles in TPX2-deficient cells and/or extracts [5,6]. Whether it does
so directly or through activation of other microtubule nucleating complexes is not known.
Finally, TACC family members stabilize microtubules and contribute to spindle microtubule
density [22,23,24,25,26]. Some TACC proteins interact with TOGp to promote the targeting
of the drosophila TOGp homologue minispindles (Msps) to centrosomes in an Aurora A kinase-
dependent manner [23,27]. A mutant form of D-TACC that cannot be phosphorylated by
Aurora A continues to interact with Msps but no longer localizes to centrosomes and
microtubule minus ends. Cells expressing this mutant show significant reduction of astral
microtubules due to loss of D-TACC/Msps stabilizing activities at centrosomes [23]. Finally,
the acidic coiled coil protein RHAMM associates with the microtubule nucleating gamma-
tubulin ring complex as well as with TPX2. These interactions permit RHAMM to directly
induce microtubule nucleation and contribute to spindle microtubule density [26,28].

Influences on microtubule motor function
Many non-motor proteins participate in spindle organization by interacting with microtubule
motor proteins that exert force on spindle microtubules. In some circumstances, the interaction
is direct and the non-motor protein controls the function of the motor protein. This phenomenon
is exemplified by the recent demonstration of a heterodimeric complex between the budding
yeast Kar3 motor and the non-motor protein Vik1 [29]. Similar direct interactions between
motor and non-motor proteins have been documented in mitotic spindles in vertebrate cells.
For example, TPX2 binds directly to kinesin XKLP2 and targets that motor to spindle poles
where it can perform its mitotic activity [30]. Furthermore, the ability of the minus end-directed
motor cytoplasmic dynein to focus microtubule minus ends at spindle poles depends on its
association with its activating complex dynactin and the non-motor protein NuMA [4].

Other direct interactions between motor and non-motor proteins have the converse effect with
motor activity determining the localization and function of the non-motor spindle protein. For
example, whereas PRC1 has been shown to associate with a variety of motors including MKLP,
MCAK, and CENP-E in the central spindle, kinesin Kif4 is required to move it to that location
to provide the necessary microtubule cross links at anaphase onset [31,32]. In addition, the
minus end-directed kinesin Ncd (HSET) has been shown to drive the non-motor drosophila
TOGp homologue minispindles to spindle poles where it participates in regulating spindle
microtubule dynamics [27]. Finally, RHAMM is targeted to spindle poles through an
interaction with dynein, where, utilizing its role in promoting microtubule nucleation it
contributes to both the generation of microtubules and focusing of microtubule minus ends at
spindle poles in the presence and absence of centrosomes [28].

In addition to these direct interactions between motor and non-motor spindle proteins, non-
motor proteins can influence motor protein function indirectly. This relationship relies upon
the ability of non-motor proteins to cross link spindle microtubules. Microtubule cross links
generated by non-motor proteins create a load (static friction) that can oppose sliding between
adjacent microtubules. If the cross links are sufficiently stable and numerous, they will create
a load that exceeds the force exerted by the motor, thereby influencing the activity of the motor
without directly contacting the motor. This idea has been borne out experimentally in two
systems. First, in fission yeast, microtubule cross links generated by the non-motor Ase1
(PRC1) in the central spindle oppose the ability of the kinesin Klp2p to slide microtubules
apart to support spindle bipolarity [33]. Second, in mammalian mitotic extracts, exaggerated
motor activity can be overcome with additional microtubule cross linking activity contributed
by NuMA [34]. The breadth of this indirect mode of influence of non-motor proteins on motors
is currently unknown because of the dearth of studies examining both motors and non-motor
contributions simultaneously. This indirect mode of regulation may be quite widespread or
fairly rare if it requires motors and non-motor proteins with unique biophysical properties
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(motor: dwell time, force-velocity relationship, and processivity; non-motor: microtubule on/
off kinetics and cross link stiffness).

Cell Cycle Regulation
Recent data are uncovering important mechanisms through which non-motor spindle proteins
regulate cell cycle progression. The Aurora kinase family has important roles in regulating
mitotic spindle assembly and accurate chromosome segregation. Aurora A is a key regulator
of centrosome maturation and spindle assembly, and its activity and localization are regulated
by non-motor spindle proteins. For example, TPX2 is a potent activator of Aurora A kinase
activity [35] and may serve to locally activate the kinase within the spindle [35,36,37]. TACC
proteins also interact with Aurora A, and that interaction helps Aurora A regulate microtubule
nucleation and stabilization at centrosomes [25]. Similarly, PRC1 is required to localize Aurora
A to the central spindle [11]. Cyclin B1 localization and, presumably, cdk1 activity are also
associated with non-motor spindle proteins. For example, TOGp interacts directly with Cyclin
B1 [38] and RHAMM induces cell cycle delay in G2/M phase by suppressing Cyclin B1 activity
when it is either over-expressed or depleted [39].

Timely mitotic exit also requires the action of the non-motor spindle proteins astrin and NuMA.
Cells deficient in astrin are delayed in progression through mitosis and frequently display
multipolar spindles. However, after extended mitotic delay, sister chromatids begin to separate
without overtly transitioning to anaphase. Separase appears to become activated in these cells
indicating that astrin may participate in the regulation of Separase activation [17]. Other recent
data shows that NuMA associates with the anaphase promoting complex/cyclosome (APC/C)
inhibitor Emi1 in addition to dynactin and cytoplasmic dynein [40]. This complex appears to
inhibit APC/C at spindle poles, thereby preventing spindle-associated Cyclin B degradation
until all chromosomes are properly attached to spindle microtubules. NuMA’s primary function
is to maintain spindle pole organization in response to strong forces generated by kinetochores
[7] raising the possibility that NuMA may react to changes in force at the spindle pole in
response to chromosome biorientation.

Cancer
Most non-motor spindle proteins have been reported as highly expressed in human tumors.
Indeed, many non-motor spindle proteins were identified and originally named based on their
expression profiles in cancer (HURP, Hepatoma upregulated protein; TACC, tumor-associated
coiled-coil protein; ch-TOGp, colonic and hepatic tumor overexpressed gene). HURP, NuMA,
PRC1, TACC, RHAMM and TPX2 are all highly expressed in some cancers [41,42,43,44,
45,46,47]. In fact, TPX2 and PRC1 are proteins whose over-expression is most highly
correlated with the cancer phenotype of chromosomal instability [47]. Also, the NuMA1 gene
maps to one of the most frequently amplified chromosomal segments in cancer cells [42] and
a unique allele shows strong genetic linkage to heritable breast cancer [48]. Further, both up-
regulation and down-regulation of TACC family members has been linked to breast cancer,
while TACC gene rearrangements are seen in multiple myelomas [43]. The correlation between
expression of non-motor spindle proteins and cancer is beginning to be confirmed through
direct experimentation. For example, over-expression of HURP in 393T cells causes enhanced
cell growth under low serum conditions [41], and depletion of Prc1 has been shown to slow
the growth of several breast cancer cell lines [49]. In addition, depletion of TPX2 reduces the
survival of tumor cells expressing the activated K-Ras oncogene, but not cells expressing wild-
type K-Ras [50].
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Summary
Non-motor spindle proteins fulfill diverse functions during mitosis, and emerging evidence
indicates that each protein plays multiple roles in mitosis, often combining both structural and
regulatory functions. Such multi-tasking represents an experimental challenge to
unequivocally deciphering the functional contribution that each non-motor spindle protein
makes to spindle organization and function. However, these combined activities most likely
hold the key toward understanding why non-motor spindle proteins are commonly over
expressed in human tumors. Interestingly, motor proteins are not highly over expressed in
tumors indicating that motors are present in concentrations greater than necessary for their
cellular roles, and that non-motor spindle proteins are limiting for proper spindle formation.
Questions remaining open relate to the determination of the kinetics of microtubule binding
for each non-motor protein and how that binding is regulated, the identification of binding and
or catalytic sites of action of each protein, and understanding the interrelationship between
microtubule binding and cell cycle regulatory properties. Answering these questions will
generate significant insight into spindle assembly mechanisms and will pave the way toward
targeting these proteins for chemotherapy.
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Figure 1.
Localization of different non-motor microtubule associated proteins during mitosis in human
cells. Microtubules (green), DNA (blue) and either NuMA (A), TPX2 (B), HURP (C), or astrin
(D) are shown in red.
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