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Abstract
The evolutionary puzzle of cooperation describes situations where cooperators provide a fitness
benefit to other individuals at some cost to themselves. Under Darwinian selection, the evolution of
cooperation is a conundrum, whereas non-cooperation (or defection) is not. In the absence of
supporting mechanisms, cooperators perform poorly and decrease in abundance. Evolutionary game
theory provides a powerful mathematical framework to address the problem of cooperation using
the prisoner’s dilemma. One well-studied possibility to maintain cooperation is to consider structured
populations, where each individual interacts only with a limited subset of the population. This enables
cooperators to form clusters such that they are more likely to interact with other cooperators instead
of being exploited by defectors. Here we present a detailed analysis of how a few cooperators invade
and expand in a world of defectors. If the invasion succeeds, the expansion process takes place in
two stages: first, cooperators and defectors quickly establish a local equilibrium and then they
uniformly expand in space. The second stage provides good estimates for the global equilibrium
frequencies of cooperators and defectors. Under hospitable conditions, cooperators typically form a
single, ever growing cluster interspersed with specks of defectors, whereas under more hostile
conditions, cooperators form isolated, compact clusters that minimize exploitation by defectors. We
provide the first quantitative assessment of the way cooperators arrange in space during invasion and
find that the macroscopic properties and the emerging spatial patterns reveal information about the
characteristics of the underlying microscopic interactions.
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1 Introduction
Cooperation is a fundamental principle of biological systems that organizes lower level entities
into higher level units – genes form chromosomes, cells form organisms, and individuals form
societies (Maynard Smith & Szathmáry, 1995). However, the emergence of cooperation poses
an enduring challenge to evolutionary biologists: If cooperation is costly to the individual and
benefits only the interaction partners, then Darwinian selection should favour non-cooperating
defectors and eliminate cooperation. In the absence of supporting mechanisms, this outcome
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is inevitable, despite the fact that mutual cooperation is preferred over mutual defection. The
most prominent mathematical metaphor to study such interactions is given by the prisoner’s
dilemma: in pairwise interactions, cooperation (C) provides a benefit b to the partner at some
cost c to the cooperator (b > c), while defection (D) neither bears any costs nor provides any
benefits. The net gains for the player’s joint behaviour can be written in the form of a payoff
matrix:

(1)

Strictly speaking the prisoner’s dilemma is defined in terms of the ranking of the four payoffs.
This particular parameterization in terms of b and c is biologically intuitive and mathematically
convenient. The crucial point is that defection pays more irrespective of the partner’s decision
and is thus the dominant strategy. Cooperators will therefore dwindle and eventually everybody
ends up with a payoff of zero instead of the more favourable reward for mutual cooperation
b - c. This characterizes the conflict of interest between individuals and the group, which defines
social dilemmas (Dawes, 1980, Hauert et al., 2006). Over the last decades, different
mechanisms have been proposed to promote and maintain cooperation (Hamilton, 1964, Hauert
et al., 2002, 2007, Nowak, 2006b, Nowak & Sigmund, 1998, Trivers, 1971, Wilson & Sober,
1994) including spatially structured populations with limited local interactions (Nowak & May,
1992). If individuals are arranged on a lattice and interact only with their nearest neighbours,
then cooperators may thrive by forming compact clusters, which increases interactions with
other cooperators while reducing exploitation by defectors.

Spatial structure affects the evolutionary process in general 2 × 2 games, i.e. in pairwise
interactions with two strategic options (Hauert, 2002, Ohtsuki & Nowak, 2006a), and notably
enables cooperators to survive in populations playing the prisoner’s dilemma. Considering the
equilibrium frequencies of cooperators and defectors in lattice populations demonstrates that
the clustering advantages are substantial for small cost-to-benefit ratios c/b, but are unable to
offset the exploitation by defectors above a threshold value, c/b > λ, such that cooperators
disappear (Szabó & T oke, 1998). For increasing c/b, the system undergoes a critical phase
transition, characterized by diverging fluctuations in the cooperator and defector frequencies
(Szabó & Hauert, 2002a). These results have led to the common belief that spatial structure is
necessarily beneficial for cooperation. While this holds for prisoner’s dilemma interactions, it
is not universally applicable. In fact, in the snowdrift game – a closely related social dilemma
with relaxed conditions such that cooperators and defectors can co-exist under conditions
where cooperators are doomed in the prisoner’s dilemma – spatial structure often turns out to
be detrimental to cooperation (Doebeli & Hauert, 2005, Hauert, 2006a, Hauert & Doebeli,
2004).

In finite populations, evolution is stochastic such that the combination of selection and random
drift eventually leads to the fixation of one or the other strategic type (Nowak, 2006a, Nowak
et al., 2004). In such situations, cooperation is favoured if the fixation probability of a single
cooperator, ρC, in a defector population exceeds the fixation probability of a neutral mutant
(ρC> 1/N where N is the population size). For weak selection, i.e. if payoff differences between
cooperators and defectors are small, ρC is analytically accessible for various types of
microscopic updating mechanisms (Ohtsuki et al., 2006, Taylor et al., 2007). In particular, for
the payoff matrix (1), the condition ρC> 1/N implies that the fixation probability of a single
defector, ρD, in a cooperator population is ρD < 1/N (Taylor et al., 2007, Wild & Traulsen,
2007). Hence, if mutations are rare, the population spends more time in the cooperator state
than in the defector state. In the prisoner’s dilemma, if the death of a randomly chosen
individual triggers a competition among its neighbours to repopulate the vacant site with a
success rate proportional to their payoffs, then a particularly simple condition is obtained:
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evolution favours cooperation whenever b > c · k holds, where k denotes the number of
interaction partners.

This work complements studies on prisoner’s dilemma games in structured populations by
investigating the process of cooperators invading a world of defectors. We demonstrate that
after an initial relaxation time, the number of cooperators always grows quadratically
irrespective of the cost-to-benefit ratio c/b, and we find that two distinct modes of growth exist:
(i) for small c/b, cooperators expand essentially as a single ever growing cluster whereas (ii)
for larger c/b, cooperators form an increasing number of small clusters with little variation in
size. Our simulations confirm that the probability of invasion is essentially independent of the
initial number of cooperators provided that they form at least a 3 × 3 cluster (Hauert, 2001,
Killingback et al., 1999, Page et al., 2000). In addition, our simulations show that behind the
invasion front, cooperators and defectors quickly reach a local equilibrium, which supports
analytical results based on pair approximation (Ellner et al., 1998, Le Gaillard et al., 2003,
Ohtsuki et al., 2006, van Baalen & Rand, 1998).

2 Model
In order to investigate the invasion dynamics of cooperators in detail, consider a square lattice
S × S where every site is occupied by a single individual. Initially, all individuals are defectors,
except for a s × s cluster of cooperators in the centre of the lattice (s = 1, 3, 5, . . ., 15 and 30).
Each individual engages in pairwise interactions within its Moore neighbourhood, i.e. with the
eight nearest neighbours reachable by a chess king’s move. The payoffs accrued in these
interactions determine the individual’s reproductive fitness (or its propensity to propagate its
strategy). Rescaling of the payoff matrix (1) reduces the prisoner’s dilemma to a single
parameter c/b:

(2)

The updating of the strategy of every individual as well as of the population can be implemented
in various ways as illustrated by the diversity of approaches in the literature (see e.g. Hauert,
2002, Nakamaru et al., 1997, 1998, Ohtsuki & Nowak, 2006a,b, Szabó & T oke, 1998). The
characteristic features of the invasion process that we present here, however, are essentially
independent of the detailed updating procedure. We verified this robustness using various
update rules of the individuals (fully deterministic to highly stochastic) and of the population
(synchronous updating or non-overlapping generations versus asynchronous updating or
continuous time). For the simulations presented in the following section, we chose
asynchronous updating of the population and an individual updating of intermediate
stochasticity, which can be interpreted as a spatial analogue of the replicator dynamics: (i) a
focal individual x is randomly selected to reassess and update its strategy; (ii) the payoff of x
and of all its neighbours are determined and (iii) the focal player x probabilistically compares
its payoff with the payoff of its neighbours. x adopts the strategy of neighbour y with a
probability wy = (Py - Px)/Δ provided that the payoff of y exceeds the payoff of x, and with
probability zero otherwise. Δ = Pmax –Pmin is a normalization constant to ensure wy ε [0, 1].
Given wy for all neighbours, x does not change strategy with probability px = Πy(1-wy) With
probability 1-px the focal player adopts the strategy of a neighbour with relative probability
wy/w where w = Σy wy This approach recovers the replicator dynamics (Hofbauer & Sigmund,
1998, Taylor & Jonker, 1978) in the limit of infinite population sizes and large neighbourhoods
where the focal individual compares its payoff to a single randomly chosen neighbour.

The above microscopic update procedure refers to a mechanism where individuals
preferentially imitate the strategy of more successful neighbours. An equivalent interpretation
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in terms of replication can be obtained by translating the different probabilities into propensities
that each neighbour succeeds in placing clonal offspring on the focal site.

3 Results
3.1 Cooperator Survival

Cooperation is inherently prone to exploitation by defectors and thus the survival probability
of cooperators, σC, hinges on the cooperator’s ability to offset the costs of cooperation with
benefits accrued from interactions with other cooperators. A single cooperator in a sea of
defectors performs poorly, and its only hope is to propagate its strategy through random drift.
Since players never adopt worse performing strategies in our setup, single cooperators never
survive and readily disappear. For other, more stochastic update rules the odds of survival are
not zero but the chances remain slim. For example, even if evolution favours cooperation in
the Moran process under weak selection, the survival probability of a single cooperator is only
of the order of 1/N and hence only for small population sizes reliable results can be achieved
through individual based simulations. Moreover, under weak selection random drift dominates,
which makes it much harder to extract characteristic features of the evolutionary process. In
contrast, our approach based on strong selection facilitates clear-cut conclusions.

For c/b < λ ≈ 0.15 the survival probability σC of an initial cluster of s × s cooperators (s ≥ 3)
is very high and only marginally affected by the cost-to-benefit ratio c/b (see Fig. 1a). The
pivotal role of 3 × 3 clusters in determining whether cooperators thrive has been recognized
earlier (Hauert, 2001,Killingback et al., 1999,Nowak & May, 1993,Page et al., 2000) and is
confirmed by our results. For c/b < λ, cooperators can survive by forming compact clusters
and thereby minimizing exploitation by defectors. For c/b > λ however, the clustering
advantage provided by the spatial setting is insufficient, and cooperators invariably go extinct
irrespective of their initial abundance.

3.2 Cooperator Expansion
A close inspection of the invasion process of cooperators reveals two distinct dynamical
regimes: an initial phase of slower growth giving way to a phase of significantly faster
expansion (see Fig. 1b). The invasion dynamics in both phases follows a power function, i.e.
the number of cooperators nc increases as a function of time t according to nc(t) = ai tdI where
ai indicates the growth rate of cooperators in each phase (i = 1, 2) and the exponents di
characterize their spreading in space. Estimates of the parameters ai, di were obtained by two
separate fits: the first fit up to time T1, which marks the end of the first phase, and the second
fit after T2, which indicates the beginning of the second phase. The transient phase between
T1 and T2 is ade- quately described by a superposition of the two power functions:nc(t) = a1
td1 + a2 td2 (see Fig. 1b).

In the first phase, both parameters a1 and d1 decrease with increasing cost-to-benefit ratios c/
b, which indicates slower growth under less favourable conditions for cooperators. The factor
a1 also depends on the size of the initial cluster of cooperators. The small exponents, d1 < 1,
are remarkable because an arbitrary but uniform spatial expansion process yields an exponent
of 2 (or, more generally, an exponent of D in D-dimensional space). The reason for the observed
small d1 is that cooperators expand during the first phase, but defectors simultaneously invade
the cooperator’s initial territory. This indicates that a local equilibration process among
cooperators and defectors is taking place behind the invasion front. In line with this, the
relaxation time T1 of this initial phase increases with the size of the initial cluster and also
increases for larger cost-to-benefit ratios c/b, because higher costs or smaller benefits hinder
the propagation of cooperation.
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In the second phase, the growth rate of cooperators a2 again decreases with increasing c/b-
ratios, but the growth exponent remains essentially constant at d2 ≈ 2, which confirms the
theoretical expectations of a uniform spatial expansion process. Note that d2 shows small
variations around 2 because the rate of growth is not locally uniform and depends on the cluster
shape: cooperators along smooth edges have higher propensities to proliferate than cooperators
sitting on corners. However, as the expansion progresses and the number of cooperators
increases, such effects become less important and are averaged out, which suggests that limt →∞
d2 → 2 holds.

The growth exponents d1, d2 not only characterize the spreading of cooperators in space, but
also determine the growth of the region exposed to the invasion of cooperators or, equivalently,
determine the information propagation speed. Thus, in the second phase, the number of
individuals that are aware of the invading cooperators grows approximately as N2(t) = α2 td2

≈ α2 t2 Note that N2(t) essentially corresponds to the area enveloping the not necessarily
contiguous cluster(s) of cooperators. The equilibrium frequency of cooperators is therefore
given by fc = limt →∞ nc(t)/N2(t). Note that nc(t)/N2(t) = a2/α2, which is independent of time.
Thus, if nc(t) and N2(t) are known at some particular times (they do not need to be measured
simultaneously) good estimates of the equilibrium frequencies of cooperators and defectors
can be obtained. In simulations, a convenient time T is defined by the first cooperator reaching
the boundary of the lattice. At this time, N2(T ) = S2π/4 provides a good approximation with
S2 representing the lattice or population size. Note that this tends to systematically overestimate
N2(T) because (i) the centre of the area covered by cooperators may have shifted over time and
(ii) only a single cooperator reached the boundary at time T. A conservative estimation of the
equilibrium fraction of cooperators fc is therefore given by

(3)

For good estimates, T should lie well in the second regime of the invasion process. The
estimation of fc is not applicable to the first growth phase because it relies on the fact that
cooperators and defectors behind the invasion front have reached a local equilibrium, and this
is violated in early stages of the invasion process. A summary of the fit data and equilibrium
estimates is given in Table 1. Since N2(t) relates to the area affected by the invasion of
cooperators, it indicates an accessible quantity for experimental approaches, for example
experiments of growing microbial populations on plates.

3.3 Cluster Size
The fraction of cooperators fc depicted in Fig. 1b is linked to the spatial arrangement of
cooperators, which in turn is determined by the geometry, the updating and the payoff matrix.
Macroscopic features such as the number of contiguous clusters of cooperators, their typical
size as well as their shape during cooperator expansion reveal therefore interesting
characteristics of the underlying microscopic interactions. Fig. 2 shows typical snapshots of
the distinct spatial patterns for two different values of the cost-to-benefit ratio c/b at time T,
i.e. when the first cooperator reaches the boundary of the necessarily finite lattice in our
simulations. Under benign conditions for cooperation (small c/b), usually a single large
contiguous cluster of cooperators grows with small embedded specks of defectors. Only along
the invasion front, several isolated cooperators and tiny separated cooperator formations are
found. A contiguous cluster consists of cooperators that have at least one other cooperator
among their neighbours. In contrast, under more hostile conditions for cooperation (larger c/
b), cooperators form numerous small compact clusters. Typically, none of these clusters host
specks of defectors because they would readily split the cluster into smaller ones.
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For increasing c/b-ratios, the cluster size decreases, while the number of clusters increases (see
Fig. 3a). Note that for small c/b, the tiny cooperator formations along the invasion front lead
to a bimodal distribution of the cluster size. In order to determine the typical average cluster
size and eliminate the effects of isolated cooperators without introducing an arbitrary threshold
size, the average cluster size is weighted such that the weight of each cluster corresponds to
its size. The cluster size and cluster count delineate two distinct regimes: for c/b < 0.1 (cf. Fig.
2a), few rather big clusters dominate the expansion process whereas for 0.1 < c/b < λ ≈ 0.15
(cf. Fig. 2b), numerous compact clusters minimize exploitation by defectors. As noted before
(cf. Fig. 1), λ marks the extinction threshold of cooperators such that for c/b > λ the clustering
advantages of cooperators are no longer sufficient to offset exploitation by defectors.

Note that for small c/b, the cluster size keeps increasing as invasion progresses, but this is not
true for larger c/b-ratios, where cooperators break up into smaller clusters of similar size. As
c/b increases and approaches λ, the cluster size steadily decreases, but it cannot become
arbitrarily small. In our case, cluster sizes of at least 50 cooperators seem to be required to
sustain cooperation. The decrease in cluster size is accompanied by an increase in the cluster
count. Interestingly, the cluster count exhibits a peak near c/b = 0.13. For larger c/b, the cluster
size keeps decreasing at a slow rate, while the cluster count drops quickly, which leads to an
increase in the distance between adjacent clusters. This repulsion between clusters of
cooperators arises from those fortunate defectors that are able to exploit several clusters
simultaneously. Their high payoffs increase their chances to invade and usually destroy some
clusters. Increasing the typical distance between clusters reduces this risk.

The small variance in the size of contiguous clusters indicates that a typical cluster size exists
as c/b approaches λ. This is remarkable because in closely related equilibrium systems, this
limit leads to diverging fluctuations in the frequency of cooperators (Szabó & Hauert,
2002a,b). Hence, the fluctuations are caused by variations in the number of clusters rather than
their sizes. For c/b < 0.1 no typical cluster size exists and cooperators usually expand as a single
large cluster. The cluster size distribution is bi-modal due to a number of tiny runaway clusters
along the periphery (see Fig. 2a).

For 0.1 < c/b < λ a typical cluster size exists, which defines the relevant spatial scale for local
processes. This means that as the invasion progresses, the typical cluster size becomes much
smaller than the overall area covered by the invading cooperators (see Fig. 2b). In this case,
the system can approach local equilibrium in areas behind the invasion front. This is supported
by the conditional probability that a neighbour of a cooperator is another cooperator, qc\c, which
quickly reaches its equilibrium value during the first growth phase (not shown). In contrast, if
cooperators expand as a single cluster with embedded specks of defectors (see Fig. 2a), these
specks are not in proper equilibrium because their background keeps expanding. Nevertheless,
qc\c rapidly changes during the first phase and increases only slowly during the second phase
(not shown). The time when qc\c ceases to change rapidly coincides with the transition from
the first to the second growth phase; this further supports that the first phase constitutes a local
equilibration process.

3.4 Cluster Shape
Under increasingly hostile conditions for cooperators (larger c/b-values), the cluster shape
becomes more and more important. Compact and convex cluster shapes maximize interactions
with other cooperators and minimize exploitation by defectors. The shape of a single cluster
γs can be defined as the ratio of interactions within the cluster, A, to interactions with the
surrounding defectors, P. Thus, γs is reminiscent of an area-to-periphery ratio (A/P ). In
continuous two dimensional space the ratio A/P2 is invariant with respect to the cluster size.
Unfortunately, this invariance no longer holds in discrete lattice space. In order to take this
into account, the shape γn of each cluster is normalized such that a single line of cooperators
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(minimal A, maximal P) yields γn = 0 whereas a square of cooperators (close to the maximum
for A and minimum for P) returns γn = 1, irrespective of the cluster size. The mean (normalized)
cluster shape γ is weighted by the cluster size to eliminate distortions due to renegade
cooperators along the invasion front (see Fig. 3b). γ exhibits the same two distinct dynamical
regimes as the cluster size and count (cf. Fig. 3a). For c/b < 0.1, γ is surprisingly small due to
the embedded specks of defectors and exhibits large variations because of their variable
numbers. For c/b > 0.1, γ quickly increases as numerous small compact clusters of cooperators
form.

4 Conclusions
Under favourable conditions, i.e. for low costs and high benefits, cooperators are able to invade
a spatially extended world of defectors. The ability to form clusters enables cooperators to
persist, because spatial aggregation enables more frequent interactions with other cooperators
while reducing exploitation by defectors. The invasion of cooperators occurs in two phases:
During the first phase, the number of cooperators increases slowly because the expansion of
cooperators is partly offset by defectors invading the initial cluster of cooperators. The first
phase thus establishes a local equilibrium between cooperators and defectors. Consequently,
the duration of this phase depends on the size of the initial cluster and can be neglected if the
invasion was initiated by few cooperators. During the second phase, cooperators uniformly
expand into defector territory. Under increasingly hostile conditions (larger c/b), the expansion
speed decreases but the number of cooperators always increases according to a quadratic
function. Interestingly, cooperators and defectors readily find themselves in a local equilibrium
in the wake of the invasion front. Such local equilibration is a fast process compared to the
invasion dynamics (or in contrast to global equilibration), a finding that has also been
recognized in analytical studies using the technique of pair approximation (Le Gaillard et al.,
2003, Matsuda et al., 1992, van Baalen & Rand, 1998). Due to the fast equilibration, good
estimates of the equilibrium frequencies of cooperators and defectors can be obtained already
from the invasion process (see Table 1). In fact, the dynamics in early stages already predicts
the evolutionary fate of cooperators and defectors.

The difference between local and global dynamics suggests a natural separation of time scales.
This is used to calculate the fixation probability of cooperators, ρC, in the limit of weak selection
(Ohtsuki et al., 2006). Note that for the update rule chosen here, ρC < 1/S2always holds
(S2denotes the population size). Thus, the probability that a single cooperator takes over is
always less than that of a neutral mutant. This remains true if several cooperators attempt to
invade as compared to an equal number of neutral mutants. However, even though evolutionary
dynamics never favours cooperation, cooperators and defectors may co-exist for an
exceedingly long time. In the absence of mutations, any finite system with a stochastic update
rule must eventually reach a homogeneous absorbing state with all defectors or all cooperators,
but whether these states can be reached within reasonable time is a rather different question
(Taylor et al., 2006, Traulsen et al., 2007). The outcome not only strongly depends on the
population size, but also on the existence and stability of (local) equilibria where cooperators
and defectors can co-exist (Traulsen et al., 2006a,b). Thus, whether cooperators manage to
invade a population of defectors is largely independent of whether they take over the population
and displace defectors.

The invasion of cooperators can essentially unfold according to two distinct scenarios: under
benign conditions (small c/b-ratios), cooperators expand and form a single large contiguous
and continuously growing cluster interspersed with little specks of defectors (see Fig. 2a). In
contrast, under hostile conditions (large c/b-values), cooperators split up and form numerous
smaller compact clusters of a typical size and the embedded specks disappear (see Fig. 2b).
The typical size decreases with increasing values of c/b, but once it drops below a threshold
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size, cooperation can no longer be sustained and disappears. Under hostile conditions,
cooperators break up and form numerous isolated clusters of increasingly convex shape (see
Fig. 3b), which reduces interactions with defectors and thus minimizes exploitation.

Spatial structures, or limited local interactions, lead to assortment. The strength and type of
assortment depends on the geometry, the payoffs as well as on the update rules. In the spatial
prisoner’s dilemma, the formation of clusters generates positive assortment of cooperator-
cooperator interactions, which is crucial for their survival. Under harsher conditions (larger
c/b), positive assortment becomes more important, as reflected in the increasingly convex
shapes. At some point (c/b > λ), the assortment required to offset exploitation by defectors can
be no longer achieved and cooperators disappear. Pair approximation deals analytically with
assortment up to first order, but cannot be easily extended to account for macroscopic features
such as cluster count, size and shape. The present study provides a first numerical attempt to
link macroscopic features and microscopic mechanisms.

The characteristics of the invasion process are robust with respect to variations of the system
size or modifications of the update rules. Changing from asynchronous to synchronous
population updates (overlapping versus non-overlapping generations) and adopting different
rules for strategy propagation – e.g. based on the Moran process (Moran, 1962, Nowak et al.,
2004) or referring to situations where errors or uncertainties may lead to the adoption of worse
performing strategies (Hauert & Szabó, 2005, Szabó & T oke, 1998) – introduce only minor
corrections to quantitative features such as the invasion speed, equilibrium estimates or the
maximum c/b-ratio for which cooperators can persist.

The macroscopic spatio-temporal patterns emerging through the invasion of cooperators in a
spatially extended world of defectors reveal characteristic features of the underlying
microscopic interactions and provide an outlook on the long-term behaviour of the system. The
cluster size of cooperators reflects the cost-to-benefit ratio of cooperation, and the local
equilibrium of cooperators and defectors behind the invasion front provides good estimates for
the global equilibrium frequencies of the two strategies at a much later evolutionary stage.
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Figure 1.
Survival probability σC and growth characteristics of invading cooperators. a For initial cluster
sizes of s × s with s ≥ 3, the survival probability is close to 1 and essentially independent of s
(Δ, s = 3; ⋄, s = 5; •, s = 15) and the cost-to-benefit ratio c/b up to the extinction threshold λ ≈
0.15, where cooperators can no longer survive irrespective of their initial abundance. σC is
determined over 1000 runs on a 115 × 115 lattice and cooperators are assumed to survive if
they reached the boundary. b The growth of the number of cooperators nc(t) displays two
distinct regimes: A first phase of slow growth that corresponds to a local equilibration process
of the initial cluster, followed by a second phase representing the expansion of cooperators.
Both regimes follow a power function of the form nc(t) = aitdI but with distinct growth
exponents (d1 < 1 in the first phase and d2 ≈ 2 in the second phase; see Table 1). The dashed
line shows the superposition of the two fits nc(t) = a1td1 + a2td2. Vertical lines mark the end of
the first (T1)and the beginning of the second growth phase (T2) as used for fitting the power
function. The expansion process is shown for a 30 × 30 cluster on a 10002 lattice averaged
over 100 runs.
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Figure 2.
Typical snapshots of the invasion of cooperators (blue) in a world of defectors (red) for a small
cost-to-benefit ratio (c/b = 0.02) and b for c/b closer to the extinction threshold (c/b = 0.12).
Along the interface separating cooperators and defectors, some individuals recently switched
from defection to cooperation (green) or vice versa (yellow). a Cooperators expand as a single
contiguous cluster with embedded specks of defectors, and a few isolated tiny cooperator
formations along the invasion front. In this snapshot there is one large cluster of size 23187
accompanied by 14 single, isolated cooperators and the average weighted cluster shape is γ =
0.078. The fraction of cooperators is fc = 0.58 and qc\c = 0.89. b Cooperators form numerous
small compact clusters. There are 143 clusters ranging from a single cooperator to a cluster of
size 1987, with a weighted average size of 537 and shape γ = 0.356. The fraction of cooperators
is fc = 0.37 and qc\c = 0.76. The snapshots are shown for an initial 15 × 15 cluster on a 2002

lattice and can be reproduced using the VirtualLabs (Hauert, 2006b).
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Figure 3.
Macroscopic features of the invasion of cooperators: a cluster size (•) and count (⋄) as well as
b cluster shape γ for increasing cost-to-benefit ratios c/b. a As suggested by the snapshots in
Fig. 2, the cluster size decreases with c/b, while the number of clusters increases. For c/b <
0.1, few sizeable clusters dominate the expansion, which means that the cluster size keeps
increasing as invasion continues. In contrast, the big clusters break up and numerous small
clusters are formed for c/b > 0.1. b The same two distinct regimes are reflected in the mean
cluster shape γ weighted by the cluster size. For c/b < 0.1, γ is very low because of numerous
embedded specks of defectors but displays a large variance due to their variable numbers. In
contrast, compact clusters with convex shapes form for c/b > 0.1 such as to minimize
interactions with defectors. For an initial cluster of 15 × 15 cooperators, the cluster size, count
and shape are determined when cooperators reach the boundary of a 1152 lattice and averaged
over 1000 runs. Cluster size and shape are weighted by the cluster size (see text). Vertical bars
indicate the standard deviation (the standard error lies within the size of the symbols).
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