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The internal mechanism of cilia is among the most ancient biological
motors on an evolutionary scale. It produces beat patterns that
consist of two phases: during the effective stroke, the cilium moves
approximately as a straight rod, and during the recovery stroke, it
rolls close to the surface in a tangential motion. It is commonly agreed
that these two phases are designed for efficient functioning: the
effective stroke encounters strong viscous resistance and generates
thrust, whereas the recovery stroke returns the cilium to starting
position while avoiding viscous resistance. Metachronal coordination
between cilia, which occurs when many of them beat close to each
other, is believed to be an autonomous result of the hydrodynamical
interactions in the system. Qualitatively, metachronism is perceived
as a way for reducing the energy expenditure required for beating.
This paper presents a quantitative study of the energy expenditure of
beating cilia, and of the energetic significance of metachronism. We
develop a method for computing the work done by model cilia that
beat in a viscous fluid. We demonstrate that for a single cilium,
beating in water, the mechanical work done during the effective
stroke is approximately five times the amount of work done during
the recovery stroke. Investigation of multicilia configurations shows
that having neighboring cilia beat metachronally is energetically
advantageous and perhaps even crucial for multiciliary functioning.
Finally, the model is used to approximate the number of dynein arm
attachments that are likely to occur during the effective and recovery
strokes of a beat cycle, predicting that almost all of the available
dynein arms should participate in generating the motion.

1. Introduction

On an evolutionary scale, cilia are among the oldest and most
frequently occurring locomotion organelles. Powered by a

sliding filaments mechanism, they beat in periodical two-phase
patterns. During the effective stroke they move approximately as a
straight rod and during the recovery stroke they bend, roll close to
the cell surface in a mostly tangential direction, and return to a
ready position to initiate the next beat cycle. The primary function
of cilia is to generate fluid flow in a preferred direction. Such flow
can be utilized for propelling a cell through a fluid medium, for
moving particles in a desired direction, or for moving mucus layers
(see ref. 1 for a detailed description).

Cilia operate in a low Reynolds number environment where
inertia is negligible. The evolution of asymmetrical beat patterns
can thus be explained by the reversal property of Stokes flows, i.e.,
symmetrical beats create a zero average flow. Qualitative under-
standing of the two phases of the ciliary beats suggests [e.g., Sleigh
(1)] that for optimal functioning they are designed to (i) take
advantage of the large viscous resistance during the effective stroke
to generate maximal thrust and (ii) minimize viscous resistance
during the return to a ‘‘ready position’’ by using a relatively slow and
mainly tangential recovery stroke.

In this report we introduce a method for computing the work
done (hereafter referred to as energy expenditure) against viscous
forces by a model cilium as an additional feature of our recently
developed modeling framework [Gueron et al. (2) and Gueron and
Levit-Gurevich (3)]. This model accounts for three-dimensional
fluid dynamics, including interactions with fixed and moving bound-

aries, although the actual motion of the cilia is restricted to one
plane.

Metachronal coordination between cilia is a situation where they
beat with a constant phase difference between adjacent rows in such
a way that their tips form a moving wave pattern. The reason why
and how arrays of cilia beat in a metachronal pattern is not fully
understood [Machemer (4); Tamm (5); Gheber et al. (6)], but there
is evidence that metachronism may occur in part as the result of
hydrodynamic coupling. Because our model accounts for the in-
teractions between cilia in multiciliary configurations, we can assess
the energetic cost of such interactions, and thus provide answers to
the following questions. (i) How much work is done by the cilia
against the viscous forces during a beat cycle? In particular, what
portion of this energy is spent during the effective stroke (Eeff) and
the recovery (Erec) stroke? (ii) How does energy expenditure
depend on the hydrodynamic interactions between neighboring
cilia? Does it pay energetically for one cilium to synchronize with
an adjacent cilium? Does metachronal coordination save energy in
a multiciliary configuration, and, if so, to what extent?

Up to the present, one could not consider these questions
quantitatively because an appropriate model that takes into account
the effects of the hydrodynamic interactions between the cilia and
the flat surface from which they emerge, and generates realistic
beat patterns that may evolve dynamically as the result of external
effects, has become available only recently.

Perhaps the first model indicating that synchrony is energetically
efficient is early work of Taylor (7), who showed that when a pair
of two-dimensional infinite sheets move in a sinusoidal pattern in
a viscous fluid, minimal energy dissipation occurs when they are in
synchrony. Beside the obvious fact that cilia are not two-
dimensional infinite sheets, Taylor’s result cannot be directly re-
lated to cilia for another reason: the model did not discuss dynam-
ical motions, because the wave patterns were assumed to be fixed
a priori and were not allowed to change as a result of hydrody-
namical coupling, as the case is for real cilia. A more recent study
[Fauci (8)] used the Immersed Boundary Method for simulating the
motion of waving two-dimensional infinite sheets. The results
indicate that phase locking may occur. However, this particular
implementation of the Immersed Boundary Method requires a
great deal of computations (performed at that time on a super-
computer), and is restricted to investigating only two-dimensional
infinitely long objects. The Immersed Boundary Method has been
applied for simulations of a variety of problems such as three
dimensional heart motion [Peskin and McQueen (9, 10)], sperm
motility [Fauci and McDonald (11)], and ciliary motion [Dillon and
Fauci (12)]. Because of the involved computational burden, only
two-dimensional implementations and thus infinite objects were
considered in most implementations, in particular the two latter
works mentioned above.

Another approach for modeling the motion of slender bodies,
called often the Resistive Force Theory, pioneered by Gray and
Hancock (see ref. 2), is based on an asymptotic linear relation
between the local drag forces and the local velocity. It is simple to
implement and has been used extensively for modeling (planar)
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flagellar motion [e.g., Brokaw (13)], but it is not applicable for
modeling multicilia configurations, as discussed in ref. 3.

2. The Modeling Framework for Simulation of Ciliary Motion
The modeling framework that we use here was introduced in ref.
2 and an updated version of this model was published in ref. 3.
The latter report includes all the model’s equations, discusses
their derivation, and provides the numerical procedures neces-
sary for implementing it. We thus provide here only a brief
description.

Our ciliary modeling framework consists of three building blocks
that are linked together: (a) the hydrodynamic description of the
ciliary system; (b) the geometric equations for the motion of the
cilia; and (c) the internal bend-generating mechanism which we call
here the ‘‘engine.’’ We outline each of these building blocks below.

(a) The hydrodynamic equations are based on a refined slender
body theory for cilia moving in Stokes flow, which were developed
by Gueron and Liron (14). Their equations relate the drag force
exerted on the cilium by the surrounding fluid to its local velocity.
These equations account for three-dimensional flow fields and are
suitable for modeling three-dimensional cilia. This was the first
proposed modeling tool that enabled simulations of multicilia
configurations while taking the hydrodynamic interactions into
account. Further details are provided in Section 2.1.

(b) The geometric equations describe the motion of the inex-
tensible ciliary centerline as a function of its local velocity. When the
motion is restricted to be planar, these dynamic equations can be
solved numerically in a rather straightforward manner. To that end,
we assume that the cilia (i.e., their centerlines) are initially found in
one plane, aligned in a row. We also assume that the internal forces
act in that plane—that is, the internal engine does not generate
twist. This assumption guarantees that the motions remains planar,
and we can therefore use the two-dimensional geometric equations
to describe them (see Section 2.2 for details).

(c) Gueron et al. (2) and Gueron and Levit-Gurevich (3) devel-
oped a simple model for the internal bend-generating mechanism
of cilia, whose parameters were obtained from analyzing ciliary beat
data. The transitions between the two phases of the motion are
controlled by a ‘‘geometric switch’’ that depends on the momentary
shape of the cilia. This eliminated the need for using a biologically
unmotivated ‘‘internal clock’’ in the model. The model was shown
to capture the essential features of the motion, including properties
that are not built in explicitly. Multicilia configurations consisting of
rows of cilia were investigated with this model, and it was shown that
when two adjacent model cilia start beating at different phases, they
tend to synchronize within two cycles, as observed in experiments.
Also, antiplectic metachronal patterns evolve autonomously in
these multicilia configurations. These results provided the first
modeling evidence in support of the conjecture that metachronism
may occur autonomously, due to hydrodynamical interactions be-
tween the cilia.

2.1. The Hydrodynamical Equations of the Ciliary Model. We use here
the equations and notations that were introduced by Gueron and
Liron (14). The cilium is considered as a slender cylindrical filament
of length L and radius a. The variable s denotes the centerline’s
arclength parameter measured from the anchor, and t denotes time.
The subscripts t and s denote differentiation with respect to time and
arclength s, respectively. The subscripts T and N denote the tan-
gential and normal components of vectors, respectively. We denote
the drag force per unit length, exerted by the cilium on the
surrounding fluid by f(s, t), the fluid viscosity by m, and the cilium’s
velocity by V(s, t). The following relations between the drag force
and the velocity were derived in ref. 14:

fT~s, t! 5 2CTVT~s, t! 1 gT~s, t!

fN~s, t! 5 2CNVN~s, t! 1 gN~s, t!, [1]

where gT 5 CTGT, gN 5 CNGN and the vector G 5 (GN, GT)
denotes the velocity field induced at s by ‘‘far segments’’ of the
cilium, neighboring cilia, or external f low. For three-dimensional
models, a binormal component, fB(s, t) 5 2CBVB(s, t) 1 gB(s,
t) is added, and CB 5 CN. The components of G are expressed
in terms of appropriate singular solutions of the Stokes equa-
tions. The expressions for the tangential (CT) and the normal
(CN) resistance coefficients are

CT 5
8pm

22 1 4 ln~2q/a!
, CN 5

8pm

1 1 2 ln~2q/a!
[2]

for any q such that a ,, q and q ,, L. These coefficients are
not the well known Gray–Hancock resistance coefficients and
the ratio CN/CT ' 1.43 is lower than the value of 2 used in the
GH approximation and lower than the value of 1.8 which was
used for modeling flagella [Brokaw (13)]. Further discussion on
the difference between the resistive force and the slender body
theories is presented in ref. 14 and in ref. 3. The expression for
G at the point s0 along the centerline and at time t is

G~s0, t! 5 E
us2s0u.q

Us~r~s0, t!, r~s, t!, 2f~s, t!!ds

1 E
0#s#L

$Vsi~r~s0, t!, r~s, t!, 2f~s, t!!

1 Vdi~r~s0, t!, r~s, t!, 2~a2/4m!f~s, t!!%ds

1 E
0#s#L

neighboring cilia

Us~r~s0, t!, r~s, t!, 2f~s, t!!ds,

[3]

where Us(r, r0, f) is the velocity induced at r by a Stokeslet with
intensity f located at r0, Vsi(r, r0, f) is the velocity induced by the
image system of the Stokeslet alone, and Vdi is the velocity
induced by the image system of the Doublet alone. Note that, as
expected, the particular choice of the parameter q determines
the value of the resistance coefficients CT and CN and, corre-
spondingly, affects G.

2.2. Dynamic Equations and the Model for the Internal Engine.
Because we restrict the motion of the cilia to one plane, we consider
only the two-dimensional time evolution of their centerlines. For
each cilium, we denote the angle between its tangent and the
horizontal axis of a fixed coordinate system by a(s, t), and if k
denotes the curvature of the centerline, then k(s, t) 5 as(s, t). With
this parametrization it is easy to satisfy inextensibility requirements,
relate the normal and tangential components of the velocity, and
derive appropriate equations for propagating the curve in time (see
ref. 14).

The normal component FN of the shear force induced within the
cilium is modeled (in nondimensional form) by

FN 5
Eb

S0L2 ass 1 S. [4]

An equation for the tangential component FT, obtained from
inextensibility condition, is

FTss
5 ~1 1 CTN!FNs

as 1 CTNFT~as!
2 1 FNass 2 CTNgNas 1 gTs

.

[5]

Here, S 5 S(s, t) is the active shear force due to the internal
sliding filaments mechanism and the radial spokes system. S0 is
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a typical fixed magnitude of the internal shear force (used for
scaling), Eb is its elastic bending resistance, CTN 5 CT/CN, and
CNT 5 CN/CT. Propagation in time is implemented by

FNss
1 ~1 1 CNT!FTs

as 1 FTass

5 2~CNvL2/S0!at 1 CNTFN~as!
2 1 CNTgTas 1 gNs

. [6]

The part of our modeling framework that represents S(s, t), the
active shear force (engine) that is generated within the cilium,
was developed in refs. 2 and 3, and the equation for S(s, t) reads

Seff/rec~s, t! 5 ~61!zHC# Nveff/rec

~s2 2 1!

2

z FA1 1 A2Sa~0, t! 2
p

2D
2G1 Beff/reczk~s, t!J . [7]

Here, veff/rec is a typical velocity during the effective and the
recovery strokes, respectively. The parameters C# N [ CNL2/S0,
A1, A2 and Beff/rec attain different values during the effective and
the recovery strokes (see the Appendix). The coefficient 61
indicates the direction of S during the effective and recovery
strokes, respectively. The transitions between these strokes are
modeled by our geometric switch hypothesis which, for the
effective stroke, depends on reaching a desired inclination angle
(aleft 5 130°, aright 5 20° with respect to the flat surface).

2.3. Computation of Energy Expenditure During a Beat Cycle. To
compute the mechanical energy that is being spent during any
desired time interval, we add a new feature to our model. The power
exerted by the cilium at any moment in time is given by

H~t! 5 E
0

L

~f~s, t!zV~s, t!!ds. [8]

The scalar product in Eq. 8 can be expressed by

fzV 5 2CTVT
2 2 CNVN

2 1 CTGTVT 1 CNGNVN.

Thus, the energy spent (mechanical work done) by the cilium
during the time interval [t1, t2] can be written as

E~t1, t2! 5 E
t1

t2

H~t!dt 5 E
t1

t2 HE
0

L

~f~s, t!zV~s, t!!dsJdt

5 E
t1

t2 HE
0

L

~2CTVT
2 ~s, t! 2 CNVN

2 ~s, t!

1 CTGT~s, t!VT~s, t! 1 CNGN~s, t!VN~s, t!!dsJdt .

[9]

It is important to note that the expression for E(t1, t2) depends
only on the velocity of the cilium (though in a complicated
manner) since G is implicitly a function of this velocity. This
relation can be used in two different ways: (i) Observed positions
of a cilium at different stages of its beat cycle yield an approx-
imation of its velocity, which can then be used in Eq. 9 to
compute E(t1, t2). Note that Eq. 1 approximate the drag force
directly from the observed velocities and the ciliary shape [i.e.,
a(s, t)]. It thus follows that E(t1, t2) can be computed indepen-
dently of any model for the ciliary engine. (ii) An equation for
S(s, t) can be used for modeling the internal shear forces. These

translate to appropriate drag forces F, then to velocities
(through Eq. 1) and to the resulting motion. The energetic cost
of this motion can be computed concurrently by Eq. 9. This
procedure allows us to simulate different multicilia configura-
tions at varied viscosities.

3. Results
3.1. Energy Expenditure Calculated from Observed Beats. We used the
positions of the cilium of Paramecium during a beat cycle [Sleigh
(15)] to compute the drag forces induced on the cilium. The work
done by the cilium against the viscous resistance during parts of the
beat cycle was then obtained by using Eq. 9. Our model enables us
to compute the energy expenditure at any desired time interval,
whenever the ciliary positions are given. This can therefore provide
additional information which is not available from experiments. We
computed that the energy expenditure is '9z10216 Joules during the
effective stroke and '2z10216 Joules during the recovery stroke.
The ratio of the work done during the reconstructed effective and
the recovery strokes, for an isolated cilium, is Erec/Eeff ' 0.22. This
roughly 5-fold difference highlights the gain in energy expenditure
that is achieved by having the recovery stroke occur more slowly
than the effective stroke and close to the cell’s surface.

Note that our result is appreciably larger than Sleigh’s (15)
estimate for the energy expenditure of the cilia of Paramecium
during the effective stroke. Sleigh estimated that if the cilium exerts
a bending couple of 5 3 10217 Nzm to overcome the viscous
resistance during the effective stroke, and sweeps an angle of '90°
within '0.008 sec during this phase, then work is done at a rate of
'1.25 3 10214 Joules/cilium/sec. The overall work (per cilium)
during the effective stroke is therefore approximately 10216 Joules.
Sleigh’s simplistic approximation is based on a rough estimate of the
bending couple and does not take into account the effects of the flat
surface from which the cilia emerge. Further, this estimate can be
made only for the effective stroke. We emphasize at this point that
the discussion of an isolated cilium is merely theoretical, because
what we see in nature is already of the overall result of the
interaction of this cilium with many neighboring cilia.

3.2. Energy Expenditure Obtained with a Model Internal Engine. The
computations performed in Section 3.1 used data obtained from
observations on a cilium during its beat cycle and are independent
of any model for its internal engine. We now repeat these compu-
tations, but this time we use the model engine equations presented
in refs. 2 and 3. Fig. 1 (top left panel) shows the beat pattern
produced by this model engine. The computation of energy expen-
diture by this model cilium in water agreed within a few percent with
the energy expenditure computed by using the observed ciliary
velocities (which were initially used to estimating the engine’s
parameters). Thus, this model engine is suitable for investigating
the energy expenditure in multiciliary configurations and at differ-
ent fluid viscosities.

3.2.1. Effects of increased viscosity on energy expenditure. Using
our model engine we found that the overall energy, as well as the
ratio Erec/Eeff, hardly change in the viscosity range mwater # m #
5mwater (see Fig. 1, top line, for the beat patterns in different
viscosities). This robust behavior occurs because of the particular
changes in the beat pattern and frequency that result from the
changed external conditions. It is important to point out that this
robust behavior is actually the result of the modeling paradigm that
underlies our model engine. The forces that generate the motion
are quite accurately reconstructed by our hydrodynamic equations.
However, there are various ways to model their control, which affect
the response of the engine to external load. Our modeling assump-
tion is that the internal mechanism does not change its properties
because of a changed load. Therefore, the load dependence is
reflected here only implicitly, through the geometric switches
between the effective and the recovery strokes.

A different modeling approach would be, for example, to replace
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our configuration-dependent engine with a velocity-dependent one,
such as Brokaw’s (16) model engine, which includes an assumption
as to how the dyneins generate more force when the viscous drag
is increased [see also ref. (13)]. Such an approach is likely to produce
a different response to changes in viscosity than the present
configuration-dependent engine.

3.2.2. The effects of cilia interactions. Beat patterns of model
multicilia configurations having 2, 5, 10, and 100 cilia in a row are
shown in Fig. 1. The intercilia spacing is 0.3 ciliary length (3.6 mm).
Computation of the energy expenditure per cilium per cycle shows
that as the number of the cilia in the row increases there is an
approximately 3-fold decrease in the energetic cost of a beat cycle,
the maximum decrease being attained for a row of ten cilia (Fig. 2a).
Similar results with different intercilia spacings of 0.5 and 0.7 ciliary
length, are also displayed in Fig. 2a. Obviously, as the intercilia
spacing is increased, the interactions between the cilia weaken. Our
computations show that, as a result, the savings in the average
energy expenditure per cilium per cycle decreases.

In addition to ascertaining that increasing the number of the cilia
in a row decreases the overall energy expenditure, it was of interest
to determine the effect of row length on the energy expenditure
during the effective stroke as compared to the recovery stroke. As
shown in Fig. 2b, the energy used during the recovery stroke
decreases by approximately a factor of two as the number of cilia

in a row increases. We point out that the position of the cilium
within the row has a relatively small effect on the energy expen-
diture during the recovery stroke. The energy expenditure during
the effective stroke, however, decreases by a factor of four with
increasing row length, and the cilia at the leading edge of the row
(i.e., if the effective stroke is toward the left, then cilium number 1
is at the left end of the row) expend more energy during their
effective stroke than do the cilia further inside. The ratio Erec/Eeff

varies between 0.18 and 0.3, depending on the number of cilia in the
row and their spacing.

As noted earlier (2, 3) multicilia configurations reach their
steady-state beat patterns within a few cycles from their initial
resting state. When two closely spaced cilia start beating, they
synchronize completely within two cycles, and when many cilia are
aligned in a row a beat pattern resembling a metachronal wave
rapidly evolves autonomously, as shown in Fig. 1. Our results
indicate that the energy expended per cilium decreases very rapidly
during this transition from a resting state to an actively beating state.
As suggested in the next section, this decrease in energy expenditure
per cilium may be crucial for enabling motion.

3.2.3. Does interciliary coupling increase the overall efficiency of
the ciliary system? It is interesting to investigate the energetic effect
of the hydrodynamic coupling between the cilia, and in particular,
to assess efficacy of metachronal coordination that the cilia inter-

Fig. 1. Ciliarybeats indifferent
cilia configurations. The top
line displays three isolated cilia
beating in different viscosities
(mwater, 2mwater and 3mwater, cor-
respondingly, fromleft toright).
The solid and dashed lines rep-
resent the recovery and effec-
tive stroke, respectively. The
time interval between snap-
shots is 3 msec. The middle line
displays one snapshot of the 2-,
5-, and 10-cilia configurations in
the viscosity of water. The bot-
tom line displays eight snap-
shots of the 100-cilia configura-
tion. Note that coordination
similar to metachronism occurs
in the multicilia configurations.
The axes are in units of ciliary
length. These figures are repro-
duced from Gueron and Levit-
Gurevich (3).
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actions develop autonomously. It was already shown (3) that the
beats that emerge in multicilia configurations change in pattern and
frequency as a function of the number of cilia in the row (e.g., from
29.5 Hz for a single cilium in water to 42 Hz for a 10-cilia
configuration). Further, our current computations show that the
energy required per cilium per cycle decreases when the number of

cilia is increased. However, this result alone does not reflect directly
on the efficiency of the system, and a target quantity must first be
defined. When the swimming of Paramecium is considered, for
instance, the energy required for swimming a unit distance would
be a most appropriate measure of efficiency. However, such
computation is currently beyond the capability of the present
model, and we settle with a more modest attempt. Recalling that the
primary function of cilia is to generate fluid flow in a preferred
direction, we compute the net fluid mass moving in the direction of
the effective stroke through a test area near the beating ciliary array,
per unit of spent energy. If this quantity increases with the number
of cilia in the row configuration, it would give some indication that
the interactions between the cilia are beneficial. To that end, we
take advantage of the fact that our model allows us to compute the
velocity of the fluid at any point in space.

We now define the test area that we use for this presentation.
Suppose that the cilia are located along the line y 5 0 in the x 2 y
plane, the effective stroke is in the positive direction of the x axis,
the anchor of the leftmost cilium is at the origin, and that of the
rightmost cilium is at (d 3 (ncilia 2 1), 0, 0), where ncilia is the number
of cilia in the configuration and d is the interciliary spacing. For the
present study, we define our test area as the rectangle R of
dimensions 2d 3 1.5 (in units of ciliary length), whose vertices have
the coordinates (D, 0, 2d), (D, 0, d), (D, 1.5, d), (D, 1.5, 2d), where
D 5 d 3 (ncilia 2 1) 1 1.

Fig. 2c displays the result of the calculation of the fluid mass per
energy spent for different ciliary row configurations. It demon-
strates that the ciliary interactions that evolve contribute to an
appreciable increase in the fluid propulsion per unit of energy
spent, for rows of cilia with more than about 10 cilia per row.

4. Estimating the Rate of Dynein Arm Attachments
Satir et al. (17) proposed a stochastic model relating the present
understanding of the internal ciliary structure to the formation
and propagation of bends along a cilium. They concluded from
their model that only a small proportion (about 1%) of the
dynein arms need to be active at any one moment to generate
ciliary motion. From an evolutionary perspective, it would be
surprising if evolution conserved such a redundant structure.
However, their conclusions are possibly the result of the fact that
they do not take into account the hydrodynamic interactions of
the each cilium with its neighbors and the surrounding fluid. Our
model, which includes these considerations, can be used to
obtain some insight into the number of dynein arms that must be
activated per beat to obtain the observed ciliary beats. We
therefore propose the following computations.

The hydrolysis of ATP by the dynein arms located along the
length of the cilium provides the energy for ciliary motility. The
sequence of attachments along individual doublets generates fila-
ment sliding and hence bend formation. Although the precise
details of bend formation and propagation are not fully understood,
one can nevertheless use the present model to estimate, indirectly,
the number of dynein arms required for motion generation.

Let EATP 5 6.02z104 Joule be the energy produced by the
hydrolysis of one mole of ATP [Brokaw and Johnson (18)]. The
number of molecules in one mole is given by Avogadro’s constant
Nav 5 6.022z1023. Thus, the hydrolysis of one ATP molecule releases
EATP/Nav ' 10219 Joule/molecule. We now consider the cilium of
Paramecium whose typical length is L 5 12 mm. The distance
between two adjacent dyneins is approximately d 5 24 nm [Satir
(19)], and therefore the number of dynein arms along one doublet
is L/d 5 500, or 2L/d 5 1,000 dyneins if we count inner and outer
arms. We assume here that during the effective stroke, filaments
1–4 are actively sliding and filaments 5–9 are passive, and that
during the recovery stroke, filaments 6–9 are active and filaments
1–5 are passive [Sleigh and Barlow (20); Satir (19)]. Therefore, only
2,000 dynein pairs (i.e., 4,000 dynein arms) can be reactivated
during each phase. Satir (19) estimated that the duty phase of the

Fig. 2. (a) The average per-cilium energy expenditure during the beat cycle, as
a function of the number of cilia in multicilia configurations. The interciliary
spacing is 0.3, 0.5, and 0.7 ciliary length. The horizontal axis is a logarithmic scale.
The computations are done for the viscosity of water. (b) The average energy
spent per cilium per cycle in multicilia configurations. Results for configurations
of 1, 2, 3, 5, 10, and 100 cilia are shown. The interciliary spacing is 0.3 ciliary
lengths. The computations are done for the viscosity of water. The horizontal axis
displayed is a logarithmic scale. The diamond, plus, and square symbols represent
the effective stroke, the recovery stroke, and the whole beat cycle, respectively.
The average number of moles of ATP hydrolyzed, and of the number of dynein
arm attachments are indicated by the same symbols, but the units of the ordinate
would be 0–16220 moles and 0–10,000 attachments, respectively. (c) The relative
efficiency of fluid propulsion, as a function of the number of the cilia in the row.
Efficiency is defined here as the net fluid mass moved in the direction of the
effective stroke through a test area near the ciliary array, per unit of spent energy
(see explanation in text). The results are scaled with respect to those obtained for
a single cilium. The horizontal axis displayed is a logarithmic scale.
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dynein mechanochemical cycle is about 1–2 msec, whereas the
whole cycle is about 33–34 msec. Since the beat duration of the cilia
of Paramecium is '35 msec (beat frequency is '28 Hz), it follows
that each dynein arm can be reactivated at most once during the
beat cycle.

The attachment of one dynein arm ‘‘costs’’ one ATP molecule
(two molecules for a pair, assuming only one active ATPase per
dynein arm). If we denote the energy spent during some time
interval by E, the amount of ATP consumed at the same interval
by A, and the number of dynein arms attachments by Natt, we have:

A 5
E

EATP
moles, Natt 5 AzNav 5

EzNav

EATP
. [10]

We use the relations in 10, together with the results concerning
ciliary energy expenditure. Fig. 2b displays the average amount
of energy spent, the average amount of hydrolyzed moles of
ATP, and the average number of dynein arms attachments,
during the effective and the recovery strokes for several multi-
cilia configurations.

Under the assumptions made here, an interesting interpretation
arises when we compare our results for an isolated cilium to the
results for a 100-cilia configuration. For the isolated cilium, our
computations show that roughly 7,500 attachments are required
during the effective stroke, which implies that each arm (of doublets
1–4) should attach twice during the effective stroke that lasts '8
msec. The conclusion is that this theoretical isolated cilium cannot
beat—at least not at the observed pattern and frequency—unless it has
neighboring cilia. On the other hand, note that in the 100-cilia
configuration, which is energy-wise less costly (per cycle), only
'2,000 arm attachments are required during the effective stroke.
This number is feasible as it requires only one attachment per arm
of doublets 1–4 during this phase. Note also that to achieve '2,000
arm attachments, practically all of the available dynein arms must
participate.

We point out that our crude computations assume perfect
mechanical efficiency, whereas the actual efficiency must be
smaller. Indeed, Rikmenspoel (21) speculated that the efficiency of
the energy conversion is roughly 20%. Taking into account imper-
fect efficiency, this would require that there are either more dynein
arm attachments per beat (which, as argued above, is physically
impossible) or that cilia interactions that would occur in closely
packed two-dimensional arrays decrease the required energy.

We thus speculate that activity of most of the dynein arms is likely
to be required to generate the observed motions. Moreover,
according to the model, ciliary interactions and metachronal co-
ordination markedly reduce the energy expenditure per beat cycle,
and in this sense appear to play an important role in the functioning
of large arrays of cilia.

5. Discussion
We have used our model to examine various aspects of the ciliary
beating, to make several observations concerning the efficiency

of the interciliary interactions and of the internal ciliary engine.
However, we re-emphasize that part of our results depend on our
modeling assumption of the internal control mechanism, in
particular, on the geometric switch hypothesis. Further, the
estimated number of the reactivated dynein arms may change in
case there is more than one dynein per arm, if the dynein arms
do not cycle from filaments 1–5 during the effective stroke to 6–9
during the recovery stroke [see e.g., Wolczak and Nelson (22)],
or if one considers the inner and outer arms to have different
mechanical functions [e.g., Brokaw (23)]. Finally, we point out
that although our modeling framework is currently the most
advanced one, the present study is still restricted to planar ciliary
motion (with three-dimensional f luid dynamics). However, we
are currently developing a suitable mathematical representation
and feasible computational procedure that will allow us to model
ciliary motion in three dimensions. This would the subject of
future studies.

Appendix
Boundary and Initial Conditions. The boundary conditions used in
the model correspond to a cilium that is pinned at its basal end and
free at its distal end:

as~0, t! 5 as~1, t! 5 ass~1, t! 5 0,

asss~0, t! 5 2
S0L2

Eb
Ss~0, t!, [A.1]

FTs
~0, t! 5 FNs

~0, t! 5 0, FN~1, t! 5 FT~1, t! 5 0. [A.2]

The initial conditions correspond to an erect cilium is a(s, 0) 5
p/2 for all 0 # s # 1.

Parameter Values. The values of the parameters used in our model
are: S0 5 10212 Newton, L 5 12 mm, Eb 5 25z10224 Newton m2,
CN 5 0.0035 kg/mzsec, CT 5 0.0025 kg/mzsec.

The parameters of model engine are: veff 5 11,000°/sec, vrec 5
2,290°/sec, aleft 5 130° and aright 5 20°. During the effective stroke
A1 5 0.26, A2 5 20.17, and during the recovery stroke A1 5 2 for
0 # s # 0.1L and A1 5 1 for 0.1L # s # L, A2 5 22, and Beff 5
0, Brec 5 2.
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