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A
s adaptor molecules linking
the codons in a mRNA to the
amino acids that they specify,
aminoacyl-tRNAs (AA-

tRNAs) play a central role in protein
biosynthesis. In addition to this critical
role, AA-tRNAs are also involved in
several other less well known but still
important biochemical reactions (Fig.
1). For example, AA-tRNAs are used
as substrates for transfer of a single
amino acid to the N termini of pro-
teins in a reaction catalyzed by the
AA-tRNA-protein transferases (1, 2).
The newly attached N-terminal amino
acid then acts as a signal for degrada-
tion of the protein (3). In another ex-
ample, the amino acid attached to the
tRNA is reduced; glutamyl-tRNA re-
ductase (4) converts the glutamyl resi-
due of glutamyl-tRNA to glutamate
1-semialdehyde, the first precursor in
the C5-pathway of porphyrin biosynthe-
sis (5). Two other important uses of
AA-tRNA that affect the properties of
the cell envelope are (i) the aminoacy-
lation of phospholipids in the cell
membrane and (ii) the crosslinking of
the peptidoglycan in the cell walls of
Gram-positive pathogens. Two recent
papers (6, 7), including the one by Roy
and Ibba in a recent issue of PNAS
(6), focus on these last two reactions
by highlighting the role of AA-tRNA
in the biosynthesis of the bacterial cell
envelope that affects how the cell
interacts with antibiotics and
antimicrobial peptides.

The presence of a variety of amino-
acyl-phosphatidylglycerol (AA-PG)
compounds in bacteria was first de-
scribed over four decades ago (8). The
amino acids identified included lysine,
alanine, arginine, and ornithine. Cell-
free studies on the enzymes involved in
the synthesis of these various AA-PG
compounds led to the discovery that
lysyl-tRNA is the donor of the amino
acid (9) that is esterified to one of the
3�-hydroxyl groups of the glycerol moi-
ety in lysyl-phosphatidylglycerol (lysyl-
PG) (10). A biochemical survey
showed that lysyl-PG was formed by
cell extracts of Staphylococcus aureus,
Bacillus megaterium, Bacillus cereus,
and Clostridium welchii, an organism
that also synthesizes alanyl-PG from
alanyl-tRNA. Furthermore, arginyl-PG

was shown to be synthesized by ex-
tracts of Enterococcus faecalis (previ-
ously called Streptococcus faecalis) (11,
12), and ornithyl-PG was found in B.
cereus (13). These studies suggested the
existence of different enzymes for syn-
thesis of alanyl-PG, lysyl-PG, and pos-
sibly other AA-PGs. The enzymes
displayed some specificity for tRNA
recognition, because Ala-tRNACys (ala-
nine attached to cysteine tRNA) was
reported not to be a substrate for
alanyl-PG formation (12). In addition,
aminoethylcysteinyl-tRNALys, an ana-
logue of lysyl-tRNALys, supported
aminoethylcysteinyl-PG synthesis,
whereas aminoethylcysteinyl-tRNACys

did not (14). The enzymes were not
further characterized.

The next advance came 30 years later
during studies of bacterial immune es-
cape mechanisms, which are directed
against antimicrobial peptides of the
innate immune system such as defensins
and which are conserved in several
pathogens. Many compounds that affect
bacteria (e.g., bacteriolytic enzymes or
antimicrobial peptides) are cationic and
bind to the bacterial cell membrane,
which is mostly anionic. Bacteria can,
however, modulate the net charge of
their anionic cell membrane polymers
(e.g., phospholipids) by introducing posi-
tively charged groups, which would lead
to reduced binding and permeability of
the cationic peptides. Examination of S.
aureus resistance to defensins uncovered
a new gene, mprF, of unknown function
conserved in many pathogens (15). A
staphylococcal mprF mutant strain was
much more sensitive to defensins than
was the wild-type strain. The gene prod-
uct was named ‘‘multiple peptide resis-

tance factor’’ (MprF) and was suggested
to be a new virulence factor. Also,
membrane lipid analysis revealed that
the mprF mutant strain did not synthe-
size lysyl-PG. These findings led to the
notion that lysyl-PG is important for
pathogenicity of S. aureus, because its
presence leads to reduced binding and
cellular permeability of cationic antimi-
crobial peptides, leading to increased
resistance to defensins. Another S.
aureus mprF mutation sensitized the
cells to vancomycin and other antibiot-
ics, suggesting a role for lysyl-PG in
the multidrug resistance of methicillin-
resistant S. aureus (16), a growing prob-
lem in staphylococcal infections, and
highlighting the important role of MprF.

The work of Roy and Ibba (6) pre-
sents a thorough analysis of two differ-
ent Clostridium perfringens proteins,
MprF1 and MprF2, as AA-PG syn-
thases. C. perfringens MprF2 is an
851-aa protein with a membrane-
inserted hydrophobic N-terminal domain
and a hydrophilic C-terminal domain.
MprF homologues are present in a large
number of bacteria and even in some
archaea. Using a special Escherichia coli
strain that allows high expression of
membrane proteins, Roy and Ibba char-
acterized the C. perfringens mprF1 and
mprF2 gene products in vivo and in vitro.
Each enzyme was shown to have distinct
amino acid specificity; MprF1 catalyzes
alanyl-PG formation, whereas MprF2
catalyzes lysyl-PG formation. A careful
analysis showed that, under physiological
conditions, the affinity of MprF2 pro-
tein for Lys-tRNALys was comparable to
that of the elongation factor EF-Tu, the
carrier of AA-tRNAs to the ribosome
during protein synthesis. Studies with
different tRNAs and a tRNA minihelix
indicated that the primary determinant
for AA-tRNA recognition by MprF1
and MprF2 was the amino acid moiety
attached to the tRNA. In view of early
studies suggesting some tRNA specificity
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Fig. 1. Cellular processes that use AA-tRNA. The
individual processes are shown in green, the en-
zymes/carrier proteins are shown in blue, and some
relevant genes are shown in red.
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in recognition of AA-tRNA by the
AA-PG synthases (12, 14) and by en-
zymes involved in peptidoglycan synthe-
sis (17), further work—particularly on
the role of the tRNA acceptor stem nu-
cleotides and the discriminator base—
may, however, be desirable.

The paper by Lloyd et al. (7) focuses
on the biosynthesis and properties of
peptidoglycan. This essential cell wall
component, located outside the cyto-
plasmic membrane, gives the bacterial
cell wall strength and shape. The pepti-
doglycan layer is a linear carbohydrate
polymer of alternating N-acetylmuramic
acid and N-acetylglucosamine residues
with an appended stem peptide of 4–5
aa linked to each of the N-acetylmu-
ramic acid residues. The stem peptides
are cross-linked either directly or
through interpeptide bridges between
the lysine of one chain and alanine of
the other chain. The structure of the
interpeptide bridges is to some degree
genus-specific, and amino acids in the
interpeptide bridges are inserted by AA-
transferases using AA-tRNA as sub-
strates (e.g., see refs. 18 and 19).

In S. aureus, including the methicillin-
resistant strains, a pentaglycine bridge
cross-links the peptidoglycan stem pep-
tides (18, 20). Inhibition of pentaglycine
bridge formation reduces methicillin resis-
tance, leading to �-lactam hypersuscepti-
bility (21). The enzyme catalyzing the first
step in the synthesis of the pentaglycine
bridge in S. aureus peptidoglycan was

shown to be encoded by fmhB (also called
femX), an essential gene (20). Similar
work carried out in Streptococcus pneu-
moniae (7) has also shown that high-level
penicillin resistance is associated with
modifications in the structure of the pepti-
doglycan (22). Penicillin-resistant pneumo-
coccal strains contained mostly abnormal
branched stem peptides with Ala-Ala or
Ser-Ala dipeptides linking the �-amino
group of the lysine residue in one stem
peptide to alanine in the other stem
peptide (22). In contrast, the penicillin-
sensitive Pneumococcus strains had pri-
marily linear stem peptides. Based on
work done in S. aureus, the pneumo-
coccal murM gene was identified from
its sequence similarity with S. aureus
FemX (23). A murM gene disruption in
penicillin-resistant S. pneumoniae gener-
ated a penicillin-sensitive strain that con-
tained mainly linear stem peptides. Thus,
the presence of branched stem peptides in
S. pneumoniae is critical for penicillin re-
sistance. The recent work by Lloyd et al.
(7) characterizes the S. pneumoniae
MurM protein (406 aa) from penicillin-
resistant and -sensitive clinical isolates.
This enzyme catalyzes the first step in the
synthesis of the branched stem peptide by
attaching either alanine or serine to the
�-amino group of the stem peptide’s lysine
residue. The MurM enzyme from a peni-
cillin-resistant strain was shown to have a
much higher alanylation activity compared
with one from the sensitive strain.

It is worth noting that peptidoglycan
is covalently linked to wall teichoic acid,
another class of polyanionic molecules
in the cell walls of Gram-positive bacte-
ria (24). Interestingly, D-alanine, co-
valently attached through ester linkages
to teichoic acids (25), is also thought to
modulate the net anionic charge of the
teichoic acids. Furthermore, there is a
good correlation between the D-alanyl
ester content of teichoic acids and resis-
tance of the bacteria to peptides of the
innate immune system such as defensins
and antibiotics such as vancomycin (26).
Because it is D-alanine and not
L-alanine that is linked to the teichoic
acids, transfer of D-alanine does not
involve AA-tRNA but involves a
D-alanine carrier protein in which
D-alanine is covalently linked to the 4�-
phosphopantetheine prosthetic group of
the carrier protein through a thioester
bond (24).

In summary, recent studies on
AA-PG synthases and the peptidoglycan
related AA-transferases and the genes
encoding them have highlighted the ver-
satility of AA-tRNA in donating acti-
vated amino acids to very different
acceptors in the cell. In addition, knowl-
edge of the properties and important
role of these enzymes and the genes en-
coding them has led to suggestions that
inhibitors of these enzymes would in-
crease the sensitivity of many bacterial
pathogens to proteins of the innate im-
munity system and extend the action
range of currently used
antibiotics (27).
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