
Detecting evolutionary relationships across existing
fold space, using sequence order-independent
profile–profile alignments
Lei Xie*† and Philip E. Bourne*†‡

*San Diego Supercomputer Center and ‡Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, 9500 Gilman Drive,
La Jolla, CA 92093

Edited by Barry H. Honig, Columbia University, New York, NY, and approved February 4, 2008 (received for review May 11, 2007)

Here, a scalable, accurate, reliable, and robust protein functional
site comparison algorithm is presented. The key components of the
algorithm consist of a reduced representation of the protein
structure and a sequence order-independent profile–profile align-
ment (SOIPPA). We show that SOIPPA is able to detect distant
evolutionary relationships in cases where both a global sequence
and structure relationship remains obscure. Results suggest evo-
lutionary relationships across several previously evolutionary dis-
tinct protein structure superfamilies. SOIPPA, along with an in-
creased coverage of protein fold space afforded by the structural
genomics initiative, can be used to further test the notion that fold
space is continuous rather than discrete.

functional site � structure

The evolutionary relationship between protein sequences,
protein structures, and their associated function(s) remains

a central topic of molecular biology and one resulting in the
development of many computational methods (1–3). A central
question is: What were the early protein folds and how did these
folds change over long evolutionary time scales (4–7)? Compar-
ative genomics studies and structural and phylogenetic analyses
(8–10) have established that a subset of proteins, dominated by
the structure classification of proteins (SCOP) (11) �/� class,
were likely present in the last universal common ancestor (12,
13). Concurrently, growing evidence suggests that recurring
substructures, that is, 3D fragments of noncontiguous sequence
shared between different folds, may be clues that protein fold
space is more continuous than discreet (14, 15). The sequence/
structure similarity of such substructures correlates well with the
similarity of function found between the different folds contain-
ing these substructures (16). The notion that protein fold space
is a continuum is further supported by recent studies that show
that protein domains can adopt different topologies through
combination, swapping, deletion (4, 17, 18), and cyclic permu-
tation (19, 20) of subdomains. Likewise, new folds can emerge
from accretion (21) or embellishment (22) of substructures
around a core of conserved secondary structures. Given these
findings concerning the dynamic nature of protein structure and
the possible continuous nature of protein fold space, it is
important to distinguish proteins that share a common ancestor
(divergent evolution) from those that have adopted common
structural constraints (convergent evolution).

Typically, evolutionary relationships between protein se-
quence, structure, and function are deduced from the respective
comparisons among known genes and their products. These
comparisons are made at various levels, from genome sequences
to protein domains and motifs to biochemical pathways. Such
comparisons may miss important relationships because sequence
relationships may be too weak to detect, and/or fail to identify
complex evolutionary events such as domain swapping and cyclic
permutation. Likewise, differences in global protein structure
may disguise a true evolutionary relationship that exists between
substructures. One approach, which involves the comparative

analysis of substructures, including functional sites between
proteins (1, 23–26), has been successful in detecting evolutionary
relationships between different fold superfamilies and has been
applied mostly to enzyme families. One study of 31 diverse
enzyme superfamilies revealed that functional diversity during
evolution is achieved by local sequence variation and domain
shuffling (24). Such functional diversity can also be observed
within a single SCOP superfamily. For example, within the
protein kinase-like superfamily, it has been suggested that
atypical kinases diverged early in evolution from protein kinases
(26). In doing so, the overall catalytic mechanism is retained
through a high level of conservation associated with the ATP
binding cassette, thus preserving phosphorylation, yet the sub-
strate binding motif exhibits significant diversity. In the case of
mechanistically diverse enzymes, whose members catalyze dif-
ferent overall reactions but share a partial reaction, it has been
found that these enzymes use a similar active site to generate a
common intermediate, then direct the intermediate to different
products in different active sites (25). Beyond these case studies,
the global evolutionary relationship of functional sites across
fold space has not been systematically studied and remains
elusive. Global functional site comparison has been thwarted by
the lack of efficient and accurate computational tools to under-
take such a large scale comparison and a lack of rigorous
statistics to test their similarity. The work described herein is a
step toward accurate and efficient functional site comparison
and analysis and is subsequently applied to seek out new
evolutionary relationships.

Although the concept of functional site matching is not new, and
a variety of approaches have been attempted (27–47), it has not
proven an easy task to design and implement a practical software
solution with performance that is close to that of routine sequence
comparison. These site comparison algorithms usually consist of
three interrelated components; the representation of the functional
site, an algorithm to superimpose two sites and a method to score
their similarity. The functional site is usually represented either by
a coordinate set with certain physicochemical or evolutionary
properties, or by 3D shape descriptors that define pockets within the
protein (44). The coordinate set can consist of atoms (28), chemical
groups (34) or surface points (33, 41). The optimum superimposi-
tion between two sites is achieved with geometric hashing (33, 42),
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graph theory (28, 30, 40), or other ad hoc algorithms (39, 43).
Finally, the similarity between two sites is measured by using
geometric criteria, such as RMSD (31), spherical harmonic expan-
sion (44), residue conservation (29, 38), or physicochemical prop-
erty similarity (28, 30, 34). With their inherent advantages and
limitations, these algorithms have achieved considerable success.
However, to perform protein functional site comparison on a large
scale requires a scalable approach that remains accurate, reliable,
and robust. Few, if any, of the current algorithms meet all these
requirements, and hence a new algorithm is presented. We use this
algorithm here to confirm or propose hitherto unseen evolutionary
relationships and note that a larger scale study is underway. The
algorithm proposed is different from previous algorithms in several
respects. First, our algorithm searches for similar functional sites by
scanning whole proteins in the spirit of local sequence alignments,
i.e., it is not necessary to predefine functional sites during the
search. Second, most of the available algorithms score similarities
between whole functional sites. However, the complete ATP and
NAD binding sites may look different overall, but they may share
a similar subpocket for binding chemically and conformationally
similar fragments, adenine in this case. This subsite similarity would
be missed by most current algorithms. Our algorithm is designed to
detect similar subsites across all of fold space. Third, we proposed
a sequence order-independent profile–profile alignment (SOIPPA)
algorithm, which is more general and sensitive than others (29, 38,
48), because the sequence order of amino acid residues in the
functional site is not necessarily conserved. Fourth, with the aim of
applying our approach to homology models and low resolution
structures, the algorithm was purposely designed and tested with a
C� only representation of the protein structure. Finally, the statis-
tical significance of the similarity is evaluated by using a nonpara-
metric statistical method based on a fold distribution model. The
algorithm is evaluated on a benchmark set and a control group that
includes 247 and 101 nonredundant protein chains of diverse folds
with and without adenine binding pockets, respectively. Our results
show that SOIPPA is suitable for application on a large-scale. For
example, in studies reported elsewhere, we have successfully ap-
plied SOIPPA to identify off-targets for pharmaceuticals for which
the primary drug-receptor complex is present in the Protein Data
Bank (PDB). Searching by using the primary site information, we
have identified off-targets for selective estrogen receptor modula-
tors (49) and have been able to repurpose an existing drug for
treatment of drug resistant tuberculosis (S. Kinnings, L.X., and
P.E.B., unpublished data). In both cases the primary and secondary
targets are in different gene families. Here, we focus on a few
examples that support the notion that fold and functional space may
be continuous rather than discrete.

Results
Comparison of Functional Site Superposition Algorithms. Two data-
sets were used in the comparison study. The 247-benchmark
consisted of 247 nonredundant protein chains known to bind an
adenine containing ligand. The 101-control consisted of 101
nonredundant protein chains believed not to bind an adenine
containing moiety. From the 247-benchmark, 30,381 benchmark
pairs were generated, and, from the 101-control, 24,947 control
pairs were generated in an all-by-all pairwise comparison (see
Methods). All benchmark and control pairs were used to evaluate
the performance of the sequence order-independent profile–
profile alignment (SOIPPA) algorithm [see Methods and sup-
porting information (SI) Text]. We further implemented several
existing functional site comparison algorithms that employ max-
imum cliques (28, 30, 40) and similarity measures, using substi-
tution matrices (29, 38), physiochemical properties, and amino
acid grouping (40, 43). Using the benchmark and control data,
their performance was compared with SOIPPA with respect to
alignment quality and sensitivity/specificity during site searches.
We also include results from PSI-BLAST (50) and CE (51) in our

comparisons to relate functional site similarity to more tradi-
tional sequence and structural similarity, respectively.

To measure the alignment quality, we use the root mean
square deviation (RMSD) between ligands bound to the aligned
functional sites. In our 247-benchmark, all proteins bind to
ligands containing a chemically identical and conformationally
rigid adenine plus a chemical and/or conformational variable
component. Although the complete functional sites may be
different as a result of binding to ligands with different compo-
sitions or conformations, they may share similar subsites that
bind to similar ligand fragments. Our purpose is to detect such
similar subsites. More specifically, the RMSD between common
molecular moieties from diverse ligands is used to measure the
alignment quality of the functional site comparison algorithm.
SOIPPA provides the best performance when compared with
other methods. As shown in Fig. 1, using SOIPPA, 6.5% and
25.9% of pairs are aligned with RMSD values of �2.0 and �5.0
Å, respectively. Lists of these pairs are given in Dataset S1 and
Dataset S2. Using a BLOSUM45 substitution matrix (52), the
percentage of aligned pairs drops to 5.3% and 22.3%, respec-
tively. Using a chemical similarity-based method (53), only 4.2%
and 18.1% of pairs are aligned with RMSD values of �2.0 and
�5.0 Å, respectively. Using a maximum size clique method based
on amino acid grouping (40), only 3.1% and 15.7% pairs are
aligned with RMSD values of �2.0 and �5.0 Å, respectively.
Moreover, the frequency of aligned ligands when performing
global structure similarity, using CE, is significantly lower than
that achieved with SOIPPA. Specifically, for pairs of proteins
where the RMSD values of aligned ligands are �2.0 and �5.0 Å,
the percentage of dissimilar structures (defined by a CE Z score
�3.5) are �40% and �60%, respectively (Fig. S1). These results
indicate that the functional site is more structurally conserved
than the global protein structure. Although similar functional
sites may arise from convergent evolution (69), the high occur-
rence among dissimilar structures raises the possibility of very
significant divergent evolution. It is noteworthy that SOIPPA
uses the whole-protein structure when performing the ligand site
search and comparison and does not require that the ligand or
functional site be known a priori. SOIPPA detects local similarity
between two proteins by aligning two global structures in a
manner that is independent of sequence order, important be-
cause sequence order is not always conserved (4) (Fig. S2, Fig.
S3, Fig. S4, and Fig. S5). Beyond identifying similar subsites that
bind to common molecular fragments with rigid conformations
from different ligands, SOIPPA also detects similar subsites that
bind flexible molecular fragments that adopt similar conforma-
tions (Fig. S3 and Fig. S5).
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Fig. 1. RMSD distribution of the aligned common fragments of ligands from
the 247-benchmark, using maximum size clique with amino acid grouping
(Amino Acid Grouping), maximum weight common subgraph with chemical
similarity (Chemical Similarity), substitution matrix, SOIPPA, and CE.
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To evaluate the performance of SOIPPA in detecting evolu-
tionary relationships, we first see whether the algorithm can
identify known sequence and structural homologous within the
same SCOP superfamily. Among the 247-benchmark pairs, �5%
of them (1,230 pairs) are from the same SCOP superfamily. If
only these 1,230 pairs are considered as true positives, Fig. 2a
illustrates the performance of PSI-BLAST (50), CE (51), and
SOIPPA in detecting remote homologous that belong to the
same SCOP superfamily. For a false-positive ratio of 0.05, the
coverage of PSI-BLAST, CE, and SOIPPA is 0.55, 0.60, and 0.75,
respectively. If SCOP superfamilies are taken as the gold stan-
dard for defining remote evolutionary relationships, these results
illustrate the well known fact that structure is more conserved
than sequence. However, global structure comparison falls sig-
nificantly short of SOIPPA, which takes both evolutionary
profiles and structural constraints within the functional site into
account. Consequently, it is more sensitive in detecting remote
evolutional relationships than either PSI-BLAST or CE. The
question then becomes, can SOIPPA detect functional similar-
ities missed by SCOP, that is, relationships across superfamilies?
In the 247-benchmark, there are 15,058 pairs aligned from
different known SCOP superfamilies, and �30% of them are
identified by SOIPPA with a false-positive ratio of 0.05 (Fig. 2b).
Fig. 2b also shows that the sequence and structural similarity of
these cross-superfamily pairs is not significant.

To illustrate that the sensitivity and specificity of functional
site comparison, using SOIPPA, is improved over other methods,
we define all of the 30,381 247-benchmark pairs to be true
positives (Fig. 3). The false-positive rate for SOIPPA is �30%

lower than that for a weighted method using an amino acid
substitution matrix or chemical similarity at a 15% true-positive
ratio. In the low false-positive region, the weighted methods
(SOIPPA, substitution matrix, and chemical similarity) perform
better than nonweighted amino acid grouping methods. How-
ever, if high false positives are tolerated, amino acid grouping
performs best. As a baseline, the performance of CE is also
included in the comparison. Clearly, a global structural com-
parison algorithm, such as CE, cannot detect the similarity
between proteins when the overall structures have changed. For
the 5,917 structurally related pairs (�20% of 247-benchmark
pairs) that have the same CATH topology, the coverage by CE
is lower than SOIPPA at a false-positive ratio �0.05 (Fig. S6a).
Moreover, the frequency of well aligned ligands from global
alignment by CE is also lower than from SOIPPA (Fig. S7). For
those cross-CATH topology pairs, it is not surprising that the
coverage by CE is reduced to �10%. However, the coverage of
SOIPPA is only slightly lower than that of the same CATH
topology pairs (Fig. S6b). These results suggest that SOIPPA is
not sensitive to overall structural changes, implying that local
functional sites are more conserved than global sequence or
structure. This then leads us to the question: Can evolutionary
relationships be detected that are not defined by SCOP?

Evolutionary Linkage Across Fold and Functional Space. Using
SOIPPA to scan a nonredundant set of protein structures from
the complete PDB (7,644 chains including both apo and holo
structures) against several functional sites, we have detected
statistically significant similarities between fold families whose
global structures are very different yet whose local functional
sites appear invariant over evolutionary time scales. Due to lack
of structural and/or functional annotations on the whole set of
structures, the true and false positives cannot be defined con-
ventionally. However, the false-positive rate of the predication
can be approximated by the P value from the fold distribution
score (see SI Text).

One example is the relationship identified between the protein
kinase-like, the SAICAR-synthesase-like, and the ATP grasp
superfamilies after scanning the 7,644 proteins against ATP
(PDB ID code 1ODB, SAICAR synthase-like) and ADP (PDB
ID code 2HGS, ATP-grasp) binding sites. These three super-
families show significant binding site similarities with each other
(Fig. S8 and Fig. S9). Their evolutionary relationship has been
proposed by others through manual analysis of structure (26, 54),
even though their global structural similarities cannot be de-
tected by structural comparison methods. For example, the CE
similarity Z score and RMSD are 2.3 and 5.17 Å between PDB
structure 1WBP (protein kinase-like) and 2HGS (ATP-grasp),
respectively. Given that such remote evolutionary relationships
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can be established automatically by SOIPPA with high statistical
significance we have a tool with the potential to discover unseen
evolutionary relationships throughout protein fold space. We
explore this notion further with some specific findings.

By searching against the 7,644 proteins, using the ATP binding
site of PEP carboxykinase (PCK) (PDB ID code 1AYL), besides
two top ranked PCK structures, a protein annotated as a P loop
nucleotide triphosphate hydrolase (NTH) is ranked as the
second most significant cross-superfamily hit (PDB ID code
1LS1; P � 8.4 � 10�5). Although there is no structural anno-
tation for the most significant cross-superfamily hit (PDB ID
code 1YRB; P � 8.4 � 10�5), its structure is similar to PDB 1LS1
(CE z score, 4.9; RMSD, 2.99 Å). Other high ranked hits with
P � 2.0 � 10�3 are also similar to the P loop NTH fold (Table
S1 and Table S2). The functional site alignment revealed by
SOIPPA further suggests that these two superfamilies are evo-
lutionarily related even though there is no observable global
structure similarity. Besides the conserved Walker motif A (55)
(GXXXXGKT/S) that is the common site for binding nucleo-
tides in many proteins, several residues important for ATP
binding and catalytic activity are also conserved. The N-terminal
histidine residue (His-232) in PCK contacts the �-phosphate of
ATP and contributes to either activation of the substrate or
stabilization of the transition state (56, 57). H232 of PCK can be
superimposed onto H248 of NTPase, although the sequence
order is switched to the C terminus. Likewise, residues D268 and
D269 in PCK play roles in stabilizing a Mg2�–Mn2� bimetal
cluster at the active site (56, 58). An evolutionary linkage tree
and multiple functional site alignment (Fig. S4 and Fig. S10)
indicate that these two residues are strictly conserved in several
other enzymes containing a P loop NTH fold. It is noteworthy
that the overall conformation of the ATP molecule bound to
these two classes of proteins is different, with an almost 180° flip
in the adenine fragment. However, the conformations of the
triphosphate tails are quite similar (Fig. S5). Our predication
based on only a subsite similarity is consistent with previous
speculation based on detailed structure analysis (59). However,
both SCOP (11) and CATH (60) classify them differently
missing an apparent evolutionary relationship.

The NAD-binding Rossmann fold is one of the most common
protein folds and observed in a large number of enzyme families
(61) and believed to have evolved early (8). Evidence suggests
that significant structural changes were accumulated from the
original Rossmann fold (11, 61). By scanning structures against
a NAD-binding site (PDB ID code 2C5A), SOIPPA detected
similar functional sites from different SCOP superfamilies that
have not been observed before. Except for the nicotinamide
adenine dinucleotide (FAD) binding site from the FAD/NAD
binding fold (P � 5.8 � 10�5), all other hits with a P � 2.0 � 10�3

contain the Rossmann fold, but with versatile domain insertions
and/or sequence permutations (Table 1). Although their cofac-
tor binding sites may bind different ligands, they share conserved
sequence motifs (Fig. 4). Structural superimposition of the
ligands indicates that the common adenine moiety from these
cofactors is well aligned (Fig. S11, Fig. S12, and Fig. S13). Given
that these proteins all adopt the same Rossmann fold topology,
divergent evolution would seem the most likely scenario (62).

Among the hits (Table 1), structures with SIS and glycerate
kinase I domains do not have cocrystallized ligands. Their
aligned residues are both located in deep pockets, indicating that
they are potential ligand binding sites (Fig. S14). Moreover, their
functions suggest that they can bind to nucleotides. For example,
glycerate kinase catalyses the phosphorylation of (R)-glycerate
to 3-phospho-(R)-glycerate in the presence of ATP (63).

Discussion
Functional Sites as a Linkage to Trace Distant Evolutionary Relation-
ships Across Fold Space. It has been found that convergent evo-
lution to achieve similar enzyme active sites is a common event
(64). However, divergent evolution retaining only a ligand
binding site cannot be discounted in some case given that the
percentage of similar ligand binding motifs is high among
dissimilar structures. Unlike enzyme active sites that typically
only involve three or less spatially distinct and noncontiguous
residues, many of the similar ligand binding motifs found here
contain a number of conserved consecutive residues. We hy-
pothesize that it is more efficient for nature to reuse such local
features to bind the same or similar molecular moiety, but to
modify other structural components to achieve different func-
tions than to reinvent the whole structure from scratch. This is
particularly true for adenine-binding folds studied here. They are
found throughout fold space and have been predicated among
the most ancient folds by several studies (12, 13, 65–68). It is
possible that a small molecule containing an adenine fragment
was the first ligand recognized by a protein (69).

Gross topology of protein can change dramatically in cases
already attributed to divergent evolution, using mechanisms of
structure drift, segment swapping, the insertion of additional
structures, and fusion or permutation by duplication events (4,
70, 71).

Such events imply that the sequence order of conserved motifs
may change. Thus, it is difficult to detect evolutionary relation-
ships between different fold and functional families with overall
sequence or structural similarity, although several studies have
revealed that evolutionary relationships can be established
within superfolds, using profile-profile comparison (72), or
between different folds with similar short sequence motifs (73).
Here, we assume that the functional site carries the evolutionary
fingerprint, because it is one of the most important parts of the

Table 1. List of proteins from different superfamilies shown by SOIPPA to have statistically significant similarity to the SCOP
NAD(P)-binding Rossmann fold

SCOP superfamily PDB ID Ligand in PDB SOIPPA P value CE Z score (RMSD) Sequence identity, %

Urocanase 1UWK NAD 1 � 10�5 4.2 (3.68) 7.4
SAM-dependent methyltransferase 1DUS SAM 2.7 � 10�5 4.6 (3.14) 9.7
Sugar isomerase (SIS) domain 1NRI — 1.1 � 10�4 3.7 (4.64) 11.7
Glycerate kinase I 1TO6 — 1.5 � 10�3 3.1 (3.90) 2.2

 

Fig. 4. Multiple functional site alignment of a Rossmann NAD-binding
protein (PDB ID code 2C5A) with four other proteins having the Rossmann
topology but different SCOP superfamilies. The three conserved motifs are
marked motif 1–3. The most conserved residues are labeled as red; and
partially conserved residues are labeled as blue. Their corresponding SCOP
superfamilies are listed in Table 1. The multiple functional site alignment is
generated from pairwise SOIPPA alignments.
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structure that must be conserved. Indeed, our results suggest that
functional site residues and their spatial arrangements are
conserved even when the global structure has changed. As such,
the functional site can be used as a common linkage from which
to potentially trace the evolutionary transition of the protein
topology and discover underlying genetic events (15) and phys-
ical rules (17, 74) that govern structural changes.

A number of in silico and in vitro evolutionary studies have
suggested that the sequence or profile similarity between pro-
teins is a strong indication of divergent evolution (5, 6, 72, 73,
75–78). Moreover, it is necessary to establish the structural
relationships based on a rigorous statistical test (79). By com-
bining sensitive profile–profile alignment, structural constraints
independent on the sequence order, and a rigorous statistics test,
it is possible for us to propose divergent evolutionary relation-
ships across fold space. Our results are consistent with existing
observations, namely that convergent evolution of domain ar-
chitectures is rare (62). However, to date, only a small percent-
age of such divergent structural relationships have been identi-
fied across fold space. Beyond new methods, structural
genomics, because it strives to fill in gaps in the coverage of
protein fold space (80), will also provide new clues as to the
evolution and continuity of this space.

Conclusions
A new algorithm is introduced for functional site comparison
that is based on a reduced protein structure representation and
a sequence order independent profile-profile alignment. Using a
well defined adenine-binding pocket from various folds as a
benchmark, it has been shown that the proposed algorithm
outperforms both nonweighted and sequence-weighted meth-
ods. Although there is still room for significant improvement in
the performance of the current implementation, it provides a
framework for developing a robust, reliable, accurate, and
scalable functional site comparison algorithm. We show that the
algorithm has the ability to detect new evolutionary relationships
across existing current discreet descriptions of fold and func-
tional space opening the door to tracing fold changes during
evolution.

Methods
Benchmark and Control Data. From the Research Collaboratory for Structural
Bioinformatics Protein Data Bank (81), a set of 247 protein monomer chains,

which are bound to the following ligands, ATP, ADP, NAD, FAD, S-
adenosylmethionine (SAM), and SAH, were selected to use as a benchmark
(247-benchmark). All of these ligands include adenine as a common molecular
fragment. Structures with multiple heteromeric chains were not considered.
The sequence identity between any pair of chains was �30%. These chains
cover 106 SCOP superfamilies and 152 enzyme classifications (EC). In addition,
81 and 70 chains were yet to be given SCOP and EC assignments. As a control,
a set of proteins not bound to a ligand containing ribose, adenine, flavin, and
nicotinamide were extracted from the PDB. Subsequently, redundant chains
were removed by using a 30% sequence identity cutoff against each other and
with the 247-benchmark. The final control contained 101 protein chains
(101-control).

The chains from the 247-benchmark were aligned against each other in a
pairwise fashion to generate 247 � (247 � 1)/2 � 30,381 benchmark pairs.
Among them, �5% of the pairs shared the same SCOP superfamily. The 247 �
101 � 24,847 control pairs were obtained by aligning the 247-benchmark
against the 101 chains in the 101-control set.

Sequence Order Independent Profile–Profile Alignment of Functional Sites.
Protein structures are represented by Delaunay tessellation of C� atoms and
characterized with geometric potentials as described fully in ref. 82. Each C�

atom is assigned a probability distribution and position specific score matrix of
20 aa. The regular tessellation of the protein structure can be considered a
graph representation in 3D space. The protein is scanned and aligned to the
functional site by finding the maximum-weight common subgraph between
two encoded protein graphs (83). Full details of the algorithm are provided in
the SI Text.

Performance Evaluation. The alignment quality between the functional sites of
two protein structures is evaluated by the RMSD between the common
molecular moieties associated with the ligands. In addition, search perfor-
mance is evaluated by a true and false-positive rate defined as follows:

True positive rate � true positives/(true positives � false negatives),

False positive rate � false positives/(false positives � true negatives).
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