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Abstract
We describe an account of lexically guided tuning of speech perception based on interactive
processing and Hebbian learning. Interactive feedback provides lexical information to prelexical
levels, and Hebbian learning uses that information to retune the mapping from auditory input to
prelexical representations of speech. Simulations of an extension of the TRACE model of speech
perception are presented that demonstrate the efficacy of this mechanism. Further simulations show
that acoustic similarity can account for the patterns of speaker generalization. This account addresses
the role of lexical information in guiding both perception and learning with a single set of principles
of information propagation.

Lexical knowledge can affect listeners’ categorization of speech sounds. For example, an
ambiguous /g/−/k/ sound—one that is classified about equally often as /g/ or /k/ when it occurs
in a lexically neutral context—tends to be classified as /g/ when preceding ift but as /k/ when
preceding iss (Ganong, 1980). Our focus here is on recent studies showing that lexical
knowledge can also guide tuning of the mapping from auditory input representations to speech
sound representations (Norris, McQueen, & Cutler, 2003; see also Davis, Johnsrude, Hervais-
Adelman, Taylor, & McGettigan, 2005; Eisner & McQueen, 2005; Kraljic & Samuel, 2005,
2006; Maye, Aslin, & Tanenhaus, 2003). In the basic paradigm (Norris et al., 2003), when
listeners hear a perceptually ambiguous /s/−/f/ sound at the end of an utterance that would be
a word if completed with /s/, they both identify the sound as /s/ and retune perception so that
ambiguous sounds tend to be identified subsequently as /s/, even in lexically neutral contexts.
Further studies employing this paradigm have revealed an interesting and complex pattern of
generalization of this effect.

Our goal in this report is to demonstrate that interactive processing, initially proposed to
account for lexical effects on perception (McClelland & Elman, 1986), provides the needed
information to prelexical levels to support lexically guided tuning effects. The principle of
interactive processing has been challenged by proponents of autonomous models (Norris,
McQueen, & Cutler, 2000), who attribute most lexical effects to postperceptual decision
processes rather than to interactive processing. However, to account for lexically guided tuning
of perception, these proponents allow feedback to guide tuning of perceptual mechanisms but
not to guide the perceptual mechanisms themselves. We propose instead that feedback is indeed
at work in perception and that this feedback has the right properties to successfully guide the
retuning process.

There are now several findings supporting the view that lexical factors can affect prelexical
processing, as predicted by the interactive approach and in contrast to the claims of autonomous
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models (for a full review, see McClelland, Mirman, & Holt, 2006). These effects of lexical
factors on prelexical processing include lexically guided compensation for coarticulation
(Elman & McClelland, 1988; Magnuson, McMurray, Tanenhaus, & Aslin, 2003; Samuel &
Pitt, 2003) and lexically guided selective adaptation (Samuel, 1997, 2001). When taken
together with these findings, lexically guided tuning of speech perception would simply be
another instance of a prelexical consequence of lexical feedback.

More broadly, the principle of interactive processing predicts that context will affect processing
at many levels, across many different domains and modalities, and that such effects should in
turn contribute to the guidance of tuning. For example, recent studies showing that visual
information can guide tuning of mappings from auditory to speech sound representations
(Bertelson, Vroomen, & de Gelder, 2003) are completely consistent with the perspective
presented here.

By introducing a simple learning algorithm into the existing structure of the interactive TRACE
model and showing that the model can then address many features of the interesting pattern of
lexically guided tuning effects, we demonstrate that the interactive processing mechanism can
provide the information needed to guide prelexical processing. The TRACE model was
developed within the parallel distributed processing framework, in which connection-based
learning plays a central role. Although the original formulation of TRACE did not include a
mechanism for learning, McClelland and Elman (1986) noted that learning could be
incorporated into TRACE as a means of tuning perception. The learning algorithm we propose
takes advantage of the interactive mechanism wherein activation of lexical representations
feeds back to the prelexical level and provides excitatory input to the lexically consistent units.
Although we rely on TRACE as a representative interactive model in this report, other
interactive models (e.g., that of Carpenter & Grossberg, 1991) are completely consistent with
the ideas described here.

The learning rule we consider is a variant of Hebbian learning. By the term Hebbian we mean
that the learning algorithm relies on Hebb’s postulate, which we paraphrase as follows: When
a sending unit s participates in firing a receiving unit r, the strength of the connection
determining the influence of s on r will be increased (Hebb, 1949). Models incorporating this
type of learning have been used to account for a broad range of data in the domains of speech
and visual perception (e.g., Carpenter & Grossberg, 1991; Grossberg, 1976), including initial
acquisition of speech sound representations through statistical learning (e.g., Guenther & Gjaja,
1996) and successes and failures of adults learning nonnative speech sound contrasts (e.g.,
McCandliss, Fiez, Protopapas, Conway, & McClelland, 2002).

The Hebb-TRACE Model of Speech Perception1

The Hebb-TRACE model of speech perception, introduced here, integrates a form of Hebbian
learning into the version of the TRACE model presented by McClelland and Elman (1986).
The TRACE model consists of three layers: an acoustic/articulatory feature layer, where input
is represented in seven banks of units corresponding to values along each feature dimension
(e.g., voicing); a phoneme layer, where each unit corresponds to a particular phoneme; and a
lexical layer, where each unit corresponds to a particular word. When TRACE is presented
with an ambiguous input, feedback from the lexical layer gives lexically consistent phoneme
interpretations an advantage over lexically inconsistent ones, and this advantage is increased
through competitive lateral inhibition among phoneme units. At this point in processing, a
Hebbian learning algorithm can associate the ambiguous feature input with the lexically

1The model code, including parameter and lexicon files and an example script file, is available at magnuson.psy.uconn.edu/mirman/
research.htm or by contacting the first author.

MIRMAN et al. Page 2

Psychon Bull Rev. Author manuscript; available in PMC 2008 April 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



consistent phoneme. Following this learning, the ambiguous input will come to activate the
lexically consistent phoneme, even in the absence of lexical feedback (i.e., in lexically neutral
contexts).

A specific learning rule consistent with Hebb’s principle and often used for unsupervised
category learning is the competitive learning rule (Grossberg, 1976; Oja, 1982; Rumelhart &
Zipser, 1985; von der Malsburg, 1973):

Here, Ws→r is the weight from the sending unit s to the receiving unit r, ar and as are the
activations of units s and r, and λ is the learning rate. In the weight change equation, the product
of ar and as embodies the Hebbian principle that when a sending unit s participates in firing a
receiving unit r, the strength of connection determining the influence of s on r will be increased.
The subtraction of the existing value of the weight from as causes the algorithm to align the
weights to the receiving units with the pattern of incoming activation (the weights stop
changing when they match the pattern of incoming activation). Following Rumelhart and
Zipser, weights and feature activations were normalized within each feature dimension:

where Ss is the sum of all feature unit activations within a given feature bank and Sw is the sum
of all weights from a given feature bank to the receiving phoneme unit (r). The normalization
keeps the sum of the weights to a receiver from all the units in a feature bank stable, even as
changing inputs adjust the distribution of the weights.

In TRACE, activation is propagated in a cascading fashion; as a result, the temporal patterns
of activation of feature and phoneme units are overlapping, but they tend to be offset from each
other in time. That is, feature unit activations build up and begin to activate phoneme units,
but by the time phoneme unit competition has been resolved and activation has built up to near-
peak levels, feature unit activations are already decaying toward their rest values. This temporal
asynchrony poses a problem for the learning algorithm, because the algorithm requires the
sending and receiving units to be active simultaneously. The normalization of feature
activations counteracts this temporal asynchrony to some extent, but it is ineffective when the
activations of all feature units have decayed to 0. One solution to this problem would be to
introduce a temporal offset into the learning rule (see, e.g., Bi & Poo, 2001). However, in the
interest of simplicity, this was not implemented in the present simulations. Instead, the learning
was turned off when there was no activity in the feature layer (i.e., when Ss ≤ 0). We see this
approach as a simplification of the biological learning algorithm that maintains the basic
principles of Hebbian learning, thus allowing a comparatively simple investigation of
perceptual tuning by lexical feedback. Also, consistent with the principles of competitive
learning and interactive processing, learning was applied only to those phoneme units that were
active above their interactive threshold (0).

When input is presented to the TRACE model, it is processed in a series of time steps. On each
time step, net inputs (excitatory inputs from units at adjacent levels and inhibitory inputs from
units at the same level) are computed for each level, and activations are updated. In Hebb-
TRACE, an additional weight update step (the learning rule described above) is also performed
on every time step on the basis of the current activations and weights. The learning rule is
applied to all phoneme units in all time slices, and it affects feature-to-phoneme as well as
phoneme-to-feature weights (which are symmetric with respect to each other).
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SIMULATION 1
Lexically Guided Tuning of Speech Perception

Materials and Method—Simulation 1 was designed to test whether Hebb-TRACE could
account for the basic findings of Norris et al. (2003). To this end, the simulation procedure
mimicked their experimental procedure. A pretest simulation was conducted to assess baseline
perception of an ambiguous fricative (/s/ or /∫/) in a lexically neutral context. The key
simulations consisted of an exposure phase, in which the model was presented with a sequence
of fricative-final words, followed by an identification phase identical to the pretest. There were
two types of exposure phases: In one, the /s/ in all the /s/-containing words was replaced with
the ambiguous fricative (“[?s] [∫] words”); in the other, the /∫/ in all the /∫/-containing words
was replaced with the ambiguous fricative (“[s] [?∫] words”). The word contexts for these
simulations are in the Appendix. For these simulations, the learning rate (λ) was set to 0.001
during the exposure phases and 0.0 during the test phases (i.e., learning was turned off during
the test phases). Otherwise, the standard TRACE parameter values were used2 (McClelland
& Elman, 1986; Mirman, McClelland, & Holt, 2005).

Results and Discussion—Luce choice probabilities for the ambiguous fricative (top row)
and the two unambiguous fricatives (middle and bottom rows) are shown in Figure 1. At pretest
(top left panel), the ambiguous fricative was equally likely to be perceived as /s/ or /∫/;
following /s/-biased exposure (middle), the sound was perceived as /s/; following /∫/-biased
exposure (right), the sound was perceived as /∫/. The middle and bottom rows demonstrate that
tuning had no effect on perception of unambiguous sounds.

Tuning of the voicing boundary between /d/ and /t/ generalizes to the voicing boundary
between /b/ and /p/ (Kraljic & Samuel, 2006). The localist phoneme representation of TRACE
precludes this type of generalization, because the similarity between the /d/−/t/ distinction and
the /b/−/p/ distinction is not represented at the phoneme layer. An interactive Hebbian learning
model in which phonemes are represented in terms of sets of contrastive or distinctive features,
however, might capture this similarity and consequently produce this type of generalization.
In future work, detailed patterns of generalization could be used to constrain and inform the
details of representations.

To test generalization to novel lexical contexts, simulations of minimal pairs (which were not
presented during the exposure phase) were carried out. For these simulations, an ambiguous
fricative replaced the distinguishing phoneme in two /s/−/∫/ minimal-pair words (parcel/
partial, police/polish).3 Lexical unit activations4 for the words are shown in Figure 2 and
illustrate that learning from the exposure phase generalizes to novel lexical contexts. Following
[?s]+[∫] exposure (left panel), the model interpreted the presented word as containing an /s/
(i.e., parcel or police), and following [s]+[?∫] exposure (right panel), the model interpreted the
same presented word as containing a /∫/ (i.e., partial or polish). This type of generalization
arises because phonemes are represented as abstract units independent of lexical or acoustic
content; thus, the changes to feature-to-phoneme weights generalize across lexical contexts.
These results are consistent with recent behavioral experiments that have shown generalization
in perception of minimal-pair words that were not part of the training set (McQueen, Cutler,
& Norris, 2006).

2The default phoneme-to-feature feedback value is 0.0. Changes to this value did not affect model performance as long as feature unit
decay and phoneme–phoneme inhibition parameters were also changed to maintain the dynamics of unit activation and decay.
3Although police and polish are not a minimal pair in English, their representations in TRACE were distinguished solely by the final
fricative.
4Note that lexical unit activations peak later than phoneme unit activations. Generalization to novel lexical contexts is presented in terms
of lexical activation rather than phoneme response probability in order to provide a more direct account of behavioral priming data
(McQueen, Cutler, & Norris, 2006).
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SIMULATION 2
Speaker Generalization

Studies building on the initial findings of lexically guided tuning have examined whether the
tuning is speaker specific or generalizes to novel speakers. Eisner and McQueen (2005) found
that lexically guided tuning for fricatives (/s/−/f/) did not generalize to a novel speaker. Kraljic
and Samuel (2005) also tested fricatives (/s/−/∫/) and found that tuning did not generalize across
speakers and that speaker-specific exposure was required to undo the effects of lexically guided
tuning. When a male voice was heard during the exposure phase, at posttest the tuning effect
was reliable for male-produced tokens but not for female-produced tokens, and in this context
posttuning exposure to male-produced unambiguous tokens reduced the tuning effect, but
posttuning exposure to female-produced unambiguous tokens did not. That is, untuning
displayed the same pattern of speaker specificity as tuning. In contrast, Kraljic and Samuel
(2006) tested stop consonants (/d/−/t/) and found that tuning did generalize to a novel speaker.

Kraljic and Samuel (2005) suggested that the patterns of generalization may be due to acoustic
similarity among the different exposure and test tokens. They argued that the acoustic cues that
distinguish the test fricatives are more variable between speakers than the voicing cue that
distinguishes the test stops. Thus, tuning of auditory-to-speech-sound mappings may
generalize to acoustically similar sounds but not to acoustically dissimilar sounds. In a more
detailed analysis, Kraljic and Samuel (2005) then showed that tuning generalized for fricatives
when the spectral mean (one cue to fricative identity) of the exposure fricative fell within the
range of the test (i.e., the new speaker’s) fricatives (their female→male condition), but not
when the spectral mean of the exposure fricative fell outside the range of the test fricatives
(their male→female condition). Eisner and McQueen’s (2005) data are also consistent with
this perspective: The tuning effect on fricative identification was strongest when the test and
exposure vowel–fricative stimuli were produced by the same speaker, weaker when the
stimulus consisted of the exposure fricative spliced with a vowel produced by a different
speaker, and weakest when the vowel and fricative at test were both produced by a different
speaker. In the following simulations, we show that the Hebb-TRACE model can capture these
hypothesized effects of acoustic similarity.

Materials and Method—The lexical contexts and simulation parameters were the same as
those in Simulation 1. To model speaker similarity, we created “male” and “female” versions
of ambiguous stop consonant (/d/ or /t/) and ambiguous fricative (/s/ or /∫/) input patterns. The
two versions of the ambiguous stop differed not with respect to the features that distinguish /
d/ and /t/, but instead on a feature that was irrelevant to stop identity. The two versions of the
ambiguous fricative had different values on the features that distinguish /s/ and /∫/ (see the
Appendix for more details). Note that although the “male” and “female” versions of the
ambiguous inputs were different at the feature level, they were the same at the phoneme level.
This was because their feature values were balanced such that their phonetic interpretations
(before tuning) would be identical. It is important to stress that our implementation was not
intended as a veridical representation of the acoustic differences between male and female
versions of stops and fricatives. Rather, our goal was to investigate the effect of acoustic
similarity between speakers on generalization of lexically guided tuning as a result of Hebbian
learning in an interactive model of speech perception.

To test the effect of speaker similarity on the generalization of learning, the model was trained
using one version of the ambiguous phoneme, and the tuning effect was evaluated for the two
versions of that ambiguous phoneme. The tuning effect was calculated as the difference
between (1)/ d/ (or /s/) response likelihood following /d/-biased (or /s/-biased) exposure and
(2)the response likelihood for the same phoneme following /t/-biased (or /∫/-biased) exposure
[i.e., p(/d/|/d/-biased exposure) − p(/d/|/t/-biased exposure)].5 Stops were used for the similar
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condition; fricatives were used for the dissimilar condition. If the acoustic similarity account
is correct, tuning would generalize for the similar sounds (i.e., the tuning effect would be of
approximately equal size for both versions), but not for the dissimilar sounds (i.e., there would
be a large difference in tuning effect size between the two versions). To test the speaker
specificity of untuning following tuning to one version of the ambiguous fricative, the model
was exposed to unambiguous inputs based on either the same version of the ambiguous
phoneme used in the tuning phase or the other version. If the acoustic similarity account is
correct, the tuning effect should be reduced following exposure to unambiguous inputs based
on the same version but not following exposure to unambiguous sounds based on the different
version.

Results and Discussion—Figure 3 shows the results of the tuning and untuning
simulations. When the two versions of an ambiguous phoneme were similar (left panel), tuning
generalized from the exposure version (“Same”) to the generalization version (“Diff ”). In
contrast, when the two versions of the ambiguous phoneme were dissimilar (middle panel),
tuning showed weak generalization across versions. The untuning results (right panel) also
matched the behavioral data (Kraljic & Samuel, 2005): Presentation of unambiguous sounds
in the same “voice” as in the exposure phase caused a reduction in the lexically guided tuning
effect (although it did not eliminate it), and presentation of unambiguous sounds in a different
“voice” did not dampen the tuning effect.

Recently, Kraljic and Samuel (in press) provided yet another important piece of data on the
speaker specificity of tuning effects. They found that when both voices were presented during
exposure in opposite lexical contexts (e.g., a male ambiguous stop in /d/ lexical contexts and
a female ambiguous stop in /t/ lexical contexts, or a male ambiguous fricative in /s/ lexical
contexts and a female ambiguous fricative in /∫/ lexical contexts), there was no net tuning for
stops, but there was speaker-specific tuning for fricatives. That is, the data suggest that when
the male and female versions are acoustically similar (ambiguous stops), tuning affects the
same representations; thus, the male /d/-bias is undone by the female /t/-bias. In contrast, when
the male and female versions are acoustically different (ambiguous fricatives), tuning is
speaker specific (e.g., in the example above, the male ambiguous fricative was perceived as /
s/ and the female ambiguous fricative as /∫/). Figure 4 shows that Hebb-TRACE produced
exactly the same pattern. When the two versions of the ambiguous fricative were presented in
different lexical contexts, the tuning effect was restricted to the same version only (filled
symbols). As demonstrated above, tuning for similar phonemes (i.e., stops) generalized across
ambiguous phoneme versions; as a result, Kraljic and Samuel’s (in press) multiple-speaker
similar-phoneme exposure condition necessarily led to zero net tuning, since generalization
from one speaker undid any tuning from the other speaker (open symbols; the /d/ lexical
contexts were slightly stronger, and thus there is a small /d/ bias across all exposure and input
conditions).

Our simulations show that the different patterns of speaker generalization of lexically guided
tuning for stops and fricatives can be captured under the assumption that the acoustic
realizations of stop voicing cues are more similar across speakers than are the acoustic
realizations of fricative place cues. This assumption can also account for other differences in
the tuning effect between stops and fricatives. In particular, the persistence of the fricative
tuning effect relative to the stop tuning effect could be simply a product of the speaker
specificity of fricative tuning and untuning: An effect that can be undone only by a specific
speaker should last longer than an effect that can be undone by any speaker. Similarly, since
tuning of the boundary between one pair of stops (/d/ vs. /t/) generalizes to other stop pairs

5This data format was chosen for simplicity of presentation and to match the Kraljic and Samuel (2005) data representation.
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with the same voicing contrast (e.g., /b/ vs. /p/; Kraljic & Samuel, 2006), Kraljic and Samuel’s
(2006) inclusion of unambiguous /g/ and /k/ stimuli during exposure intended to tune the /d/
−/t/ boundary would be expected to attenuate the magnitude of the tuning effect. This would
account for the observation that fricatives (Kraljic & Samuel, 2005) produce much larger
effects than stops do (Kraljic & Samuel, 2006), though this effect size difference could also be
due to a number of possible stimulus factors.

GENERAL DISCUSSION
The present simulations demonstrate that an interactive model with Hebbian learning provides
a simple and integrated account of a complex pattern of data. In this model, lexical feedback
enhances activation of units corresponding to prelexical representations that are consistent with
lexical information. These activations in turn allow Hebbian learning to tune mappings from
units participating in auditory input representations to prelexical speech sound representations.
It is a straightforward consequence of the architecture of the model that this tuning generalizes
to words that were not presented during the exposure phase, since the prelexical units mediate
between the input and lexical levels. In the model, as in experimental data, the acoustic
similarity of cues across speakers determines when tuning will generalize from one speaker to
another and determines whether posttuning exposure to a different speaker will counteract the
tuning effect. We suggest that the combined principles of interactive activation and Hebbian
learning may have wide applicability, offering accounts for learning due to audio–visual
interactions (Bertelson et al., 2003) and evidence of interactive effects in other modalities (e.g.,
figure–ground perception; Lee & Nguyen, 2001).

The development of cognitive theories depends on an understanding of the principles of
cognitive processing. One controversial principle is interactive processing: the bidirectional
information flow that allows multiple levels to work in tandem to develop and constrain a
percept. Proponents of the autonomous view (Norris et al., 2000) propose that feedback exists
for learning but not for perception (Norris etal., 2003). We see several drawbacks to this
approach. First, the autonomous proposal requires what seems to us an arbitrary distinction
between the information propagation principles governing perception and learning. Second, it
requires either the dismissal or separate treatment of other findings pointing to the idea that
lexical context can affect prelexical speech representations. These other findings include
lexically mediated compensation for coarticulation (Elman & McClelland, 1988; Magnuson
et al., 2003; Samuel & Pitt, 2003) and lexically mediated selective adaptation of speech
perception (Samuel, 1997, 2001). Third, we note that the separate propagation of feedback for
the sake of learning introduces complexities that are not needed if such propagation is a natural
part of processing itself. Algorithms such as back propagation that employ such separate signals
are often viewed as biologically implausible (Grossberg, 1987). We share with Grossberg
(1987), O’Reilly (1996), and others the view that the necessary signals for learning in
multilayer perceptual systems arise through the process of interactive activation. The present
simulations of interactive Hebbian tuning of speech perception demonstrate the power and
parsimony of interactive processing in accounting for lexical effects on both perceptual
processing and learning.
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APPENDIX

Word Contexts used for Simulations
Fricative

/s/-bias: decrease, produce, carcass, glorious

/∫/-bias: abolish, brackish, publish, galosh

Stop
/t/-bias: abrupt, carpet, secret, biscuit, product

/d/-bias: crooked, regard, placid, solid, garbled

Specification of Male and Female Versions of Ambiguous Speech Sounds
The TRACE model feature input consists of seven banks of units that represent the value along
each of seven acoustic/articulatory features. The phonemes /s/ and /∫/ are defined as having
identical preferred values on five of the dimensions and different preferred values on the other
two (“diffuse” and “acute”). The standard ambiguous fricative (used in Simulation 1 and in
previous studies using the TRACE model; e.g., McClelland & Elman, 1986; Mirman et al.,
2005) was created by setting five of the feature values to match both /s/ and /∫/ and the feature
values for “diffuse” and “acute” to intermediate values that would be equally consistent with /
s/ and /∫/. To create featurally different versions of an ambiguous fricative, an ambiguous value
of “diffuse” and no value of “acute” were specified for the “male” version, and an ambiguous
value of “acute” and no value of “diffuse” were specified for the “female” version. Thus, each
ambiguous fricative was equally consistent with /s/ and /∫/, but their featural specifications
were different with respect to the cues that distinguish /s/ and /∫/. This approach also allowed
for the creation of unambiguous speaker-specific phonemes for the untuning simulations. As
stated in the main text, this approach should not be interpreted as our view of the acoustic
differences between male and female fricatives. Rather, this approach is a simple
implementation of acoustically distinct ambiguous phonemes to allow straightforward testing
of the acoustic similarity hypothesis.

The phonemes /d/ and /t/ differ in their values on the “voiced” and “burst” features, and the
standard ambiguous coronal stop is defined by intermediate values on those features. To create
featurally similar, but not identical, ambiguous coronal stops, the value along a different,
nondistinctive feature (“power”) was slightly changed: The “male” version had a slightly
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higher value, and the “female” version had a slightly lower value. The key aspect of this
implementation was that the two versions of the ambiguous coronal stop were not identical but
also did not differ with respect to the distinguishing features. As a result, lexically guided tuning
that affected the distinction between /d/ and /t/ would generalize across the acoustic difference
between the two versions. As with the fricatives, this implementation was designed to test the
consequences of assuming that male and female versions of /d/ and /t/ do not differ with respect
to the voicing feature, and it should not be taken as a statement about the acoustic difference
between male and female /stop consonants.

MIRMAN et al. Page 10

Psychon Bull Rev. Author manuscript; available in PMC 2008 April 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Top row: Response likelihood for the two interpretations of an ambiguous fricative at pretest,
after /s/-biased exposure, and after /∫/-biased exposure. At pretest (left), the sound was perfectly
ambiguous between the two interpretations; following /s/-biased exposure (middle), the sound
was perceived as /s/; following /∫/-biased exposure (right), the sound was perceived as /∫/.
Middle and bottom rows: These demonstrate that tuning had no effect on perception of
unambiguous sounds.
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Figure 2.
lexical activations of the two possible interpretations of /s/−/∫/ minimal-pair words after the
fricative has been replaced by an ambiguous fricative. The left panel shows the pattern of
activation following /s/-biased exposure, the right panel the pattern of activation following /∫/-
biased exposure.
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Figure 3.
Speaker specificity of lexically guided tuning. left panel: Tuning effect size for exposure
version (“Same”) and generalization version (“Diff”) for similar sounds (/d/−/t/). Middle panel:
Tuning effect size for exposure version and generalization version for dissimilar sounds (/s/−/
∫/). The tuning effect generalizes for similar sounds but not for dissimilar sounds. Right panel:
Tuning effect size following an untuning phase in which unambiguous fricatives were
presented in the exposure “voice” or in a different “voice.” The tuning effect size is reduced
only when the stimuli in the untuning phase were in the exposure “voice.”
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Figure 4.
Simultaneous speaker-specific tuning following multiple-speaker exposure. Filled symbols:
“Male” and “female” versions are different (i.e., fricatives). open symbols: “Male” and
“female” versions are similar (i.e., stops). Top row: Response likelihood for two interpretations
of ambiguous “male” speech sound. Bottom row: Response likelihood for two interpretations
of ambiguous “female” speech sound.
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