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Abstract
Mortality is U-shaped with age for many species, declining from birth to sexual maturity, then rising
in adulthood, sometimes with postreproductive survival. We show analytically why the optimal life
history of a species with determinate growth is likely to have this shape. An organism allocates energy
among somatic growth, fertility and maintenance/survival at each age. Adults may transfer energy
to juveniles, who can then use more energy than they produce. Optimal juvenile mortality declines
from birth to maturity, either to protect the increasingly valuable cumulative investments by adults
in juveniles or to exploit the compounding effects of early investment in somatic growth, since early
growth raises subsequent energy production, which in turn supports further growth. Optimal adult
mortality rises after maturity as expected future reproduction declines as in Hamilton, but
intergenerational transfers lead to postreproductive survival as in Lee. Here the Hamilton and transfer
effects are divided by probabilities of survival in contrast to the fitness impact measures, which are
relevant for mutation selection balance. If energetic efficiency rises strongly with adult experience,
then adult mortality could initially be flat or declining.
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1 Introduction
Age-specific mortality is U-shaped for many species, declining from birth to sexual maturity,
then rising in adulthood, possibly after some delay and sometimes with post-reproductive
survival (Finch, 1990; Caughley, 1966; Promislow, 1991; Sibly et al., 1997; Gage, 1998).
Although there are exceptions, this shape is sufficiently common to invite explanation. Here
we show why the optimal life history of a species with determinate growth is likely to have
this shape, building on a literature which showed these optimal patterns through numerical
simulation (Cichon, 1997; Cichon and Kozlowski, 2000), and including the possibility that
there are intergenerational transfers.

A seminal paper by Hamilton (1966), formalizing Williams (1957), argued that mortality must
inevitably rise with age after sexual maturity, because mortality at older ages has a diminishing
effect on reproductive fitness, and therefore deleterious mutations which raise mortality at these
ages will be selected out of the population less rapidly (this application of his argument to
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deleterious rather than beneficial mutations was a later development). Therefore mutations
affecting older ages will be present at a higher frequency in the population in mutation-selection
balance than mutations which affect younger ages (Charlesworth, 1994, 2001). Hamilton
recognized two problems with this theory. First, it predicted constant rather than declining
mortality from birth until sexual maturity; and second, it predicted a rapid increase in mortality
following cessation of reproduction, whereas some species, including humans, have substantial
postreproductive survival. The left arm of the U is therefore missing, and the right arm rises
too early and too fast.

Building on Hamilton’s approach, Lee (2003) extended and formalized an idea discussed by
Hamilton, Williams and others that parental care or, more generally, intergenerational transfers
could explain both these features of mortality. Following birth, older relatives transfer
resources to the juvenile, and survival will be selected to conserve the quantity of cumulated
transfers already made to a juvenile (which grows with age); or, equivalently, to conserve the
expected net transfers to be made by this individual to others in the future. Thus, mortality
declines from birth until sexual or economic maturity. At the same time, mortality in adult
years affects fitness not only directly through lost future reproduction, as Hamilton emphasized,
but also indirectly through lost future parental care or intergenerational transfers, an effect
which diminishes with age but can continue for many years after fertility ceases and may
include investment in grandoffspring. Both Hamilton’s and Lee’s analyses were based on
fitness impacts and the accumulation of deleterious mutations rather than on optimality,
tradeoffs and selection of beneficial mutations.

The mutation accumulation approach describes certain relationships that should hold among
life history traits in mutation-selection balance, but it cannot by itself tell us much about the
age schedules of the traits themselves. There is an inherent circularity: if we know the age
schedule of fertility under Hamilton’s theory, then we can infer some features of the shape of
the age schedule of mortality; and if we know the age schedule of mortality, then we can infer
something about the age schedule of fertility; but none of this enables us to construct or explain
actual life histories unconditionally. Furthermore, this approach assumes that mutations are
purely deleterious, ignoring tradeoffs and pleiotropic effects.

The optimality approach, by contrast, starts with assumptions about physiological and energetic
constraints and from these seeks to construct an optimal life history (Taylor et al., 1974;
Goodman, 1982; Schaffer, 1983; Stearns, 1992; Abrams and Ludwig, 1995; Cichon and
Kozlowski, 2000, Clark and Mangel, 2000, Robson and Kaplan, 2003, and Houston and
McNamara, 1999). It is constructive and intuitive. At the same time, it is not concerned with
genetic mechanisms, implicitly assuming that beneficial mutations will occur and be positively
selected whether their fitness impact is large or small. For the most part it ignores deleterious
mutations. (See Partridge and Barton, 1993, for the relation between the two approaches).
While pleiotropic effects of genes may reflect physiological tradeoffs, they may alternatively
reflect accidental linkages of different traits on the same gene. When effects occur through
genetic linkage, we would expect other mutations to occur and be selected so as to counteract
these effects and move the organism toward the efficient physiological tradeoff frontier
(Partridge and Sibley, 1991).

Because of these differences in assumed genetic mechanism (removal of deleterious mutations
versus positive selection of beneficial ones), mathematical results from the optimal life history
approach and from that of fitness impacts can be different, and their qualitative conclusions
can be different as well. Hamilton, and many after him, believed he had proven that senescence
was universal and inevitable. With some qualification (Baudisch, 2005; Lee, 2003), his
conclusion would be broadly correct if the only genetic mechanism driving life history
evolution were mutation accumulation. But his theory is not about the optimal life history, it
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is instead about the force of selection by age, which is a different matter. Vaupel et al.
(2004), following Williams (1957) and others (reviewed by Heino and Kaitala, 1999), show
that for a species with indeterminate growth (continuing to grow significantly after sexual
maturity), an optimal life cycle can exhibit flat or even declining adult mortality (“negative
senescence”). Vaupel et al. note that real world organisms exhibiting indeterminate growth
may have this mortality pattern, including some plants and fish. For species with determinate
growth (that is, reaching a mature size before reproducing and then switching to reproduction
with little or no further growth) Vaupel et al. are unable to derive negative senescence. The
Vaupel et al. result on optimal negative senescence need not conflict with the positive
senescence result of Hamilton under mutation accumulation. A comprehensive theory would
include both effects, and either could dominate in theory or in nature, depending on the
frequency and impact of beneficial and deleterious mutations and other details.

Here, taking the optimality approach, we find anew the central features of the Hamilton and
Lee results, but now they are conditional on survival to each age (i.e., divided by lx) in contrast
to mutation accumulation results. Hamilton criticized Fisher (1930) on this point, since terms
in Fisher’s Reproductive Value are divided by lx at each age, unlike Hamilton’s fitness impact.
Both can be right, depending on the genetic mechanism under consideration. We also find other
forces at work shaping the age schedule of mortality, including the greater advantage of early
investment in somatic growth within the juvenile stage versus less or no advantage to early
scheduling of investment in survival.

In this paper, we will concentrate specifically on the case of determinate growth, which, for
example, characterizes mammals and birds. We set up a model of optimal life history
combining the effects of fertility, growth, survival and transfers and analyze the optimal pattern
of age-specific mortality that maximizes fitness. We explicitly derive the benefits and costs of
a change in age-specific mortality, identifying the conventional Hamilton effect, the
compounded growth effect, the intergenerational transfer effect and the cost-benefit tradeoff.
We show why juvenile mortality will optimally decline and adult mortality will optimally rise,
yielding a U-shape, and how for species that make transfers, the accumulated value of transfers
affects optimal mortality in youth and old age. We compare our results with Robson and Kaplan
(2003), who also derive a U-shaped mortality schedule.

Mangel and Munch (2005) developed a model of compensatory growth which included a
tradeoff between the advantages of larger size for survival and reproduction and the costs of
more rapid growth due to damage at the cellular level. They found that within a
“nonreproductive period in the life history” a U-shaped mortality schedule was optimal for
some parameter settings. Within such a period, remaining reproduction does not change, so
Hamilton’s theory cannot explain mortality increase, and, because transfers are not included
in the model, the transfer theory does not explain either initial mortality decline or subsequent
increase. The forces at work here are not incorporated in our theory, and conversely.

The remainder of this paper is arranged as follows. Section 2 presents the model of optimal
life history which we use to study the determination and change of age-specific vital rates. The
third and fourth sections analyze the mortality schedules for juvenile and adult ages
respectively and compare our results with the literature. The final section concludes.

2 A Model of Optimal Life History
2.1 The Autarchic Case: No Intergenerational Transfers

To avoid the complications of mating and sexual reproduction, we consider a population
reproducing asexually. Let μa be the instantaneous mortality rate at age a. The probability that
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an individual survives from birth to age a is denoted ℓa. By definition,ℓa is given by

. The fertility rate of an individual at age a is denoted ma.

At age a, a typical individual expects to have energy or resources which, following much of
the literature (Partridge and Sibly, 1991; Abrams and Ludwig, 1995; Cichon, 1997; and Vaupel
et al., 2004) she allocates to fertility (ma), maintenance (μa) and growth (za). The disposable
food or energy acquired by an individual aged a depends on her body size, denoted wa.

Most animals neither store food outside their bodies nor invest in external productive capital,
although there are exceptions.2 Some degree of intertemporal reallocation can be accomplished
by storing energy somatically as body fat, but our model will ignore this possibility for
simplicity. Credit markets do not exist in nature, although in some social species reciprocal
altruism may permit some temporal exchange.3 Intergenerational transfers, and particularly
parental care, are sometimes very important, and we will explicitly model them in the next
section. Here, we will begin with the case in which there are no transfers and therefore assume
that an animal’s energy budget at a given time is constrained by the energy it acquires at that
time. Specifically, the energy constraint at age a is written as

(1)

Let fa,μ, fa,m and fa,z denote the partial derivatives of fa w.r.t. μa, ma and za, respectively. These
coefficients express the rate at which energy can be used to effect marginal changes in the
levels of mortality, fertility or growth. The derivative  is a production coefficient
linking the marginal effect of body size to the net acquisition of disposable energy through
foraging. The body size of an individual grows according to the rule: dwa/da = za.

Mortality μa is the instantaneous hazard of death (the force of mortality), defined as d
lnla=da where la is the probability of surviving from birth to age a, bounded between 0 and
1.0. μa is bounded between 0 and infinity. Evidently fa,μ < 0; that is, it is costly to reduce the
risk of death. As μa approaches 0 (or perhaps some finite small level) we expect fa,μ to increase
rapidly in absolute value, since eliminating all risk of death is impossible. Note that in this
specification, current expenditures to reduce mortality have no lasting effect, they affect only
current mortality. Some of our results depend on this feature, as we will explain when
discussing them. We expect that fa,m eventually increases with m, and similarly for fa,z.

We expect that natural selection will maximize reproductive fitness, measured as the future
representation of an individual’s genes at some distant time point, subject to the constraints in
(1). This optimal life history problem can be solved by dynamic programming (McNamara,
1991 and Chu and Lee, 2006), and the solution is characterized by

(2)

subject to the constraints in (1), where ρ is the intrinsic growth rate of the population, and θx
≡ (μx; mx; zx). Chu and Lee (2006) show that the optimal solution corresponding to a discrete
version of (2) does characterize the trajectory of an optimal life history.

2Many rodents store seeds and nuts, for example, and breeding groups of acorn woodpeckers store thousands of acorns. Nests, burrows,
termite mounds and hives, as well as the tools and weapons of human hunter gatherers are all examples of important external capital
goods.
3Reciprocal altruism refers to apparently altruistic acts of giving which in fact are conditional on having received a gift from the recipient
in the past. This conditionality can be interpreted either as a kind of risk sharing or as a kind of borrowing and lending, or both. Such
patterns have been studied extensively in humans (Gurven and Kaplan, 2006) and other primates. At best they appear to facilitate a
temporally local reallocation which would not affect the broad shape of the life history, as it spans a much greater temporal range.
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Many species exhibit “determinate growth,” that is, they first grow without reproducing and
then largely cease growth and become fertile once they have reached their adult size. Our main
interest is in species that have intergenerational interactions after birth, such as mammals or
birds, and these exhibit determinate growth. Various authors have shown that in models with
linear constraints, ma and za cannot be interior solutions at the same time, so the determinate
growth pattern is optimal (Taylor et al., 1974; Vaupel et al., 2004; Chu and Lee, 2006). If the
switch occurs at age r, then in our notation the organism would have ma = 0 (no fertility) for
a ≤ r, and would have za = 0 (no somatic growth) when a ≥ r.

2.2 Optimal Life History With Intergenerational Transfers
Many animals, including nearly all mammals and birds, make extensive intergenerational
transfers of energy and various kinds of care. Examples are lactation and the feeding of
nestlings, as well as the more extended provision of food for human children continuing until
around age 20 among hunter gatherers (Kaplan, 1994). In cooperatively breeding species, these
transfers are made by other members of the group in addition to the parents. Intergenerational
transfers alter the budget constraint in ways we now consider.

For most relevant cases, transfers are from a mature adult to an immature juvenile. We consider
a transfer from a particular adult age t > r to juvenile individuals age s ≤ r. Later we will consider
transfers made and received at more than one age. An intergenerational transfer necessarily
involves more than one generation, so our model of optimal life history explicitly characterizes
the lineage of a species. Details can be found in Chu and Lee (2006); here we only provide a
sketch.

2.2.1 The Demographic Constraint on Intergenerational Transfers—Suppose the
average adult at age t gives away Tt units of energy and the average juvenile at age s receives
Rs units of usable energy, which may be 0 for some s. Since no growth occurs after age r (as
per earlier discussion) the energy of an age t adult net of transfers is all allocated between pt
and mt. Thus her budget constraint, building on (1), can be written as

(3)

At a juvenile age s, all energy is allocated between μs and zs, so the budget constraint can be
written as

(4)

Within each cooperatively breeding group, the transfers made by adults at age t must equal the
sum of transfers received by juveniles of all ages from all adults at age t. Thus the sum over
s of the transfer received at s from an adult age t, Rst, weighted by the number of age-s juveniles
in the group must be equal to the transfer made by an age-t adult, Tt, times the number of age
t adults in the group, as in the “balance equation” of Lee (2003). But to formulate the balance
equation, we must know the relative numbers of individuals at different ages.

While the lineage descended from the original optimizer can properly be viewed as reaching
a stable population age distribution, the individual members of this lineage live and share
resources in smaller groups ranging from parent-offspring sets to larger cooperative breeding
groups for species such as humans (Mace and Sear, 2005), pilot whales (Carey and Gruenfelder,
1997; Mann et al, 2000), African wild dogs (Creel and Creel, 2002) or acorn woodpeckers
(Koenig and Mumme, 1987). It is within these groups that the transfer identity is expected to
hold, rather than in the lineage as a whole. These individual groups may not have stable age
distributions, but their average age distributions across groups or across time will be
approximately stable. For this reason, we use stable population weights (e−ρsℓs) as a useful
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approximation for the balance equation, which can be viewed as holding for this average age
distribution, as in Lee (2003).

(6)

When more than one age makes transfers, the balance equation should hold for each t, and (4)
should be rewritten as

(4′)

3 Juvenile Mortality Trajectories
Recall that at each juvenile age s, body weight accumulates according to dws=ds = zs. If an
age-s juvenile receives a transfer of an additional unit of energy, then using (4) iteratively we
see that the compound effect on her mature body size (wr) would be

(5)

The first term 1/fs,z tells us the amount of the increase in body size that can be achieved with
one unit of energy received at age s. Inspection of the exponentiated factor shows us that Ks is
decreasing in s, since the integrand ζx,w/fx,z is positive, and hence the integral decreases as s
rises. This means that it is more efficient to invest in somatic capital (body size) early than late,
for the increased capital raises the output from foraging, which in turn leads to faster future
growth. Here ζx,w/fx,z is the instantaneous growth rate in body size at age x. Alternatively, if
Ks refers to neural capital or brain size, the compound factor Ks can be understood as an effect
of learning by doing (see Robson and Kaplan, 2003).

3.1 The First Order Condition for μa

Now we solve the problem in (2). Let  ∀a denote the optimal life history that solves

(2). The optimal survival probability  is given by . Let

 be the value function for the dynamic problem. We obtain
the Bellman equation as follows:

where ∂Va/∂a is defined as limh→0[(Va+h −Va)/h]. The state variables for the dynamic problem
are ℓa and wa. Let ηℓ(a) and ηw(a) be the corresponding adjoint variables. By solving the adjoint
equations,4 we obtain

4The adjoint equation for ηℓ(a) is , in which ∂ma/∂Ta = −1/fa,m ∀a and

 if a ≤ r or −Ta/ℓa if a > r. The initial condition for the differential equation is

. It is then easy to verify that ηℓ (a) specified here is indeed the solution to the adjoint equation. For
ηw (a), specified here is indeed the solution to the adjoint equation For ηw (a), the adjoint equation is

, for which the solution is  for a ≤ r. Further, ηw

(r) can be derived by noting that ηw (r) = ∂(ℓVr)/∂wr and that . The solution results by applying

.
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and

The superscript (*) for the partial derivatives (ζx,w, fx,z, and fx,m) represents the fact that they
are evaluated at the optimal life history.

Substituting mt in (3) for t > r and zs in (4′) for s ≤ r, we can derive the first order condition for
age-specific mortality μa. We shall first present our discussion for the case of immature ages
in this section.

Consider the most general case, in which adults of all ages provide some non-negative transfers
to juveniles of all ages. For a juvenile aged a ≤ r to maximize fitness, the first order condition
for the optimal μa, after factoring out a constant, is the following:

(7)

where Δ is the partial derivative of the right hand side of the Bellman equation with respect to
μa, Ka is given in (5),

and

The interpretation of M and N will be given as we proceed.5

When we totally differentiate the growth rate ρ with respect to μa, we are considering a
movement of μa along the efficient (maximal) trait surface, possibly away from the optimum
position on this surface where it is tangent to a fitness contour (Partridge and Barton, 1993;
Partridge and Sibly, 1991). Because the movement is along the surface, the increase or decrease
in μa absorbs or releases energy and thereby affects growth, fertility or transfers, depending
on whether a is before or after sexual maturity. If this movement is evaluated at the optimum,
as in (7), these tradeoff effects must exactly counterbalance each other, so that the derivative
is zero.

This is different from the situation considered by Hamilton (1966) or Lee (2003), in which a
mortality perturbation is purely inefficient and deleterious, raising mortality with no offsetting
release of energy. Such a movement is toward the origin from the efficient trait surface, not
along it, so the cost (last) term in (7) is not considered. Alternatively, Hamilton and Lee consider

5If we totally differentiate (2) and arrange terms, we find Δρdρ + Δμadμa = 0. This equation gives us dρ/dμa, the marginal impact of
change in age-specific mortality μa on the fitness parameter ρ Note that Δρ is a normalization term that is independent of a, involving
some average ages, and therefore does not concern us here.
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a costless improvement in survival, opposite to the deleterious case just described. That is why
the derivative in (7) equals zero, while the derivative in the Hamilton or Lee analysis indicates
a non-zero fitness impact. Real mutations could be of either sort or of intermediate kinds, and
their consequences would vary accordingly.

In (7), M is the weighted expected lifetime fertility (NRR or R0). This is closely related to
Hamilton’s fitness impact for a mortality perturbation at some juvenile age a < r. It expresses
the direct effect on fitness of the mortality change but does not include the offsetting changes
in other variables. Since M is independent of the juvenile age a in question, Hamilton concluded
that the force of selection against a mortality increase is the same for all immature ages. For
this reason, as he noted, his theory cannot explain the high infant mortality and declining
juvenile mortality of many species.

The second term in (7) gives the cumulated transfers received per individual that attains age
a, including the transfers wasted on other juveniles who died before reaching age a, in the inner
integral, which is expressed by the outer integral in units of births foregone by the adults making
the transfers. This amount, which increases in age a, captures Lee’s (2003) accumulated
transfer effect. In particular, when a is smaller, the fitness cost of “sunk” transfers up to age
a is smaller, hence an increase in mortality for age a is less costly. Alternatively, because
weighted transfers made and received must integrate to zero over the life cycle, the sunk costs
up to some age equal the net transfers to be made in the future by an individual this age. Yet
another way to think of this is that the death of a young individual releases the future resources
that would have been transferred to it, thereby allowing for other uses such as investment in
siblings or better nutrition for the adults, offsetting the loss.6 This offset is smaller at older
juvenile ages, and therefore mortality at these ages is more costly. Selection therefore will be
stronger against the mortality of the elder juveniles relative to that of infants, and optimal
mortality will be lower at these older juvenile ages.

The first two terms in (7) capture the two benefits of a mutation that exogenously lowers μa.
In the context of beneficial mutations and optimal life history, as opposed to deleterious
mutations and mutation accumulation theory, the decrease in μa has an opportunity cost, as
described by (4′). This tradeoff cost is ignored under the mutation accumulation approach,
because deleterious mutations are assumed to be inefficient, yielding no benefits elsewhere,
as discussed earlier. But varying μa along the efficient trait surface entails offsetting costs or
benefits. For a juvenile to increase her survival probability slightly at age a by −dμa, she must
decrease the energy allocated to the accumulation of her body weight by −fa,μ · dμa. This
reduction in energy for growth will in turn shrink her mature size (wr) by Ka according to (5),
which we discussed earlier. For each unit of reduction in mature size wr, the impact on fitness
(force of selection) is the expected reduction in weighted lifetime fertility, and that is in fact
the N term in (7):

3.2 The Optimal Juvenile Mortality Trajectory
Equating Δμa to zero, we get the first order condition for μa, as in (7). It is easily shown that
the second order condition for maximization is satisfied. Simultaneously solving for μa
explicitly would be tedious, but for the purpose of finding the shape of the μa across different
ages a, we can change the variable by setting ξa ≡ exp(μa) and rewriting Δξa = 0 as follows:

6This kind of effect on sibling survival has been studied experimentally for birds, by adding or removing eggs in a brood, and later
observing the numbers of hatchlings and fledglings. In humans, the lactation interruption effect, in which the death of a lactating infant
shortens the interval to the next birth, illustrates the same effect.
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(8)

where fa,ξ ≡ ∂fa(In ξa, ma, za)/∂ξa. Note that (8) is not an explicit reduced-form solution for
ξa, for the right-hand side of (8) still has ξa in it. However, it helps us understand how ξa varies
with age a. We know from the above discussion that the numerator of (8) is increasing in a
due to the increasing transfer effect, but what about the denominator?

In view of (5) the denominator of (8) can be written as

Evidently, the integral, and hence its exponential in the above expression, is non-increasing in
a, for the compounded effect of accumulating size becomes smaller as age increases, since
compounding operates over a shorter period.7 Note that this important effect, which we have
not found in the existing literature, does not depend on transfers and therefore helps to explain
why mortality declines following birth in species that do not have parental care. Here is a
different way to think about it. Reproductive success depends on both mature size and survival
to maturity. Survival from birth to maturity is the product of the survival probabilities at each
age, and the order of multiplication is irrelevant. But in the case of body size, early growth is
more beneficial, because larger size permits more production of energy, leading to more growth
or higher survival, and so on. This is the compounding effect.

The optimal strategy, therefore, will involve sacrificing some early survival for more rapid
growth and then improving survival later when doing so has a lower opportunity cost. Gaining
weight, like receiving transfers, has a cumulative effect, but compounding of growth applies
to the cost side whereas the compounding of transfers applies to the benefit side. Of course, if
the juvenile simply cannot forage or hunt (with ζa,w = 0 ∀a ≤ r), then the compounding effect
of growth disappears for the ages in question. In this case, however, the juvenile must be
receiving transfers of energy from adults, so that declining mortality is assured through the
transfer effect. One or the other or both must be present.

Note that this argument depends on our assumption that energy expenditures on survival only
reduce current mortality and have no lasting beneficial effect, a common assumption in the
literature, implicitly or explicitly (Williams, 1966; Schaffer, 1974; Taylor et al., 1974).
Examples of this kind of expenditure include food consumption to avoid starvation and
maintain adequate function and energetic costs of evading predators or operating the immune
system. Some other expenditures on survival are long term investments, such as building an
immune system, as some analysts emphasize (Abrams and Ludwig, 1995). So long as there is
an important component of survival expenditure that yields only transitory survival benefits,
our argument will hold.

We can view the process of gaining weight as a production process, transforming energy into
tissue and flesh, with an efficiency that may vary with age. The energy cost of achieving a
given weight gain per unit time might at first be high, since the organism is initially small, so
the proportional increase would be great. When it becomes larger, the proportional increase is
smaller and therefore might be achieved more efficiently. But as the individual approaches its

7The exponential term can be approximated in discrete form, which illuminates the underlying effect of compounding. Let J be the
number of periods before maturity, and δ ≡ r/J be the length of a period. For convenience of exposition, suppose k ≡ a/δ is an integer.

When δ is small, .
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mature size, adding weight might again become more costly. Such considerations suggest an
S-shaped pattern for weight-gaining efficiency. However, since the correspondence between
age, size and maturity is not known until the optimization problem is solved, it is not appropriate
to posit any non-monotonic age variations in any of the parameters. Likewise, it is difficult to
draw any conclusions about the age pattern of the efficiency of allocations to maintenance and
survival, fa,ξ. Body size will grow with age until age r, but r is not known until the optimization
is solved. Larger body sizes may have lower costs of avoiding predation but larger maintenance
costs due to the increased number of cells and cell replications. For this reason, for the time
being we will not consider variation in (fa,ξ, fa,z) as an influence on the age pattern of juvenile
mortality.

3.3 The Forces Shaping Juvenile Mortality
Now let us pause to take stock and interpret what we have learned. From (7) or (8) we have
identified four forces that influence the shape of ξa for immature ages.

1. The Hamilton Effect: the term M representing expected future reproduction which is
independent of a and so does not affect the shape of juvenile mortality.

2.
The Transfer Effect: , which is increasing in a and therefore
provides a reason to expect that juvenile mortality will decline with age, in species
with parental care or other intergenerational transfers.

3.
The Compounded Effect of Growth: , which is increasing in a and
leads us to expect declining juvenile mortality whether or not species have parental
care and intergenerational transfers.

4. Unknown variations with age of the energetic costs of growth and/or survival.
However, there seems no clear reason to expect these to vary in one way or another,
so we set them aside.

Now we will consider these results in relation to the literature. The first effect was emphasized
by Hamilton (1966), as discussed earlier. The second effect was emphasized by Lee (2003).
The third effect we believe is new and important. Others have linked mortality risks to size
and therefore found that mortality declines with growth, but our argument is more subtle.
Because energy production is usually proportional to body size, earlier investments in body
growth expand the feasible range of energy allocations at these older ages. The effects
considered fourth are unknown, but unless powerful, would be overwhelmed by the others.

In a different setting, Robson and Kaplan (2003) also derived a declining mortality schedule
at young ages for species having a “learning-by-doing” property in their age-specific
production profile. Specifically, they assumed that the age-output profile is hump-shaped
(assumption 5), which in turn implies an energy deficit during childhood and old age and an
energy surplus during middle ages. The corresponding Fisher’s reproductive value is therefore
hump-shaped. This leads to U-shaped mortality, for an optimal life history must secure high
reproductive value through low mortality. The model they presented, however, does not
explicitly have a biological immature period prior to reproduction and hence cannot be
compared with the Hamilton result directly. For the case of primates and human beings in
particular, Robson and Kaplan (2003, 160) did assume a pattern of neural capital accumulation
similar to the scenario of determinate growth. Our results, evidently, do not depend on any
assumptions about a hump shape for age-specific output (ζa(wa)). For instance, it may be the
case that the species in question is not productive at all at immature ages, so that ζa,w = 0 ∀a
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≤ r. Even in this case without any hump, we are able to generate a declining age-specific
mortality result as long as the juveniles receive a sufficient amount of transfers.

4 Mature Mortality Trajectories
Now we consider the μa trajectory for mature (adult) ages a > r. Using identity (6), we see that
the first order condition for maximizing (2), after factoring out a constant, is the following:

where

Term Ma is the weighted fertility effect, similar to the Hamilton effect M in (7) but varying
with a, and Tx is the transfer made at age x. Once having reached age a, only later ages (x
greater than a) can possibly contribute to the benefit of surviving past age a, hence the
integrations in (9) start at x = a. All these future fertility and transfer effects have to be added
up as we consider the benefit of a change in μa.

The integral in (9) gives the total benefit which an individual protects by sustaining survival.
The last term is the opportunity cost of μa. As one can see from (3), reducing μa can be achieved
only at the cost of reducing ma. The ratio |fa,μ/fa,m| characterizes the tradeoff costs of μa relative
to ma. The cost term is multiplied by e−ρaℓa because we have done so for terms associated with
the benefit. Note that the cost term is also decreasing in a, partly offsetting the declining pattern
on the benefit side.

4.1 Optimal Adult Mortality
Changing the variable to ξa ≡exp(μa) and equating Δξa to zero, we derive the following
characterization of ξa, which is not a reduced form but is nonetheless helpful:

(10)

A principle difficulty in drawing a firm conclusion about whether survival falls with age and
mortality rises is that ℓa is decreasing in a. Optimization at each age is forward looking and
conditional on survival to that age, which is why ℓa appears in (10). We will now consider
whether the Hamilton and transfer effects are declining faster or slower with age than ℓa.

Recall that the dynamic maximization problem in (2) for mature ages is to find θx ∀x > r that
solves

(11)

where the set Ωx is the feasible set for age x, as described in (3): Ωx ≡ {θx : fx(μx; mx; 0) ≤
ζx(wr) − Tx}. The maximal value obtained from the optimization problem in (11) starting from
any age a is denoted B(a):

In what follows, we shall study the pattern of B(a).
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We note from (11) that the a-forward problem is symmetric for each a except: 1) the terms to
be integrated in the maximand decrease when a increases, and 2) the feasible set Ωx may be
different across x. The first factor certainly causes the maximum value of the a-forward problem
to decline as a increases. Thus, we can conclude that B(a) is decreasing in a, provided that the
feasible set Ωa does not increase as a increases. The constraint in (3) can be approximated
using a Taylor expansion: . Therefore, we know
that the condition of a contracting Ωa is met if either the cost of maintaining survival and
reproducing (− fa,μ, fa,m) is not decreasing, or ζa(wr) − Ta is not increasing, or both. In Vaupel
et al. (2004), there is indeterminate growth, so that wa may increase even after maturity. This
would expand the feasible set Ωa, and hence “negative senescence” could occur. A similar
expansion in Ωa with age could occur if productivity rises with experience. Male hunting
productivity rises in young adulthood for humans and peaks in the early 40s, for example
(Gurven and Kaplan, 2006).

There are various reasons to expect −fa,μ and fa,m to increase in a: wear and tear on the organism
as it ages, the accumulation of somatic mutations with age and the accumulation of mutations
in the germ line that lead to less efficient physiology in old age, that is mutation accumulation.
Can we say something about the pattern of ζa(wr) − Ta?

There are two interesting cases we can consider for the age shape of this disposable energy.
First, suppose there are no transfers or transfers are small in the relevant range of a. Then
ζa(wr) − Ta ≈ ζa(wr). In this case, B(a) is indeed decreasing in a. It is easy to see that when
Tx = 0 ∀x, the integral in the numerator of (10) is exactly B(a). Thus, as long as ζa,w is not
increasing in a, the survival probability would decrease with age in the case without transfers,
a conclusion the same as in Hamilton.

Second, if the transfer at age a is close to a fixed proportion of the energy produced at this age,
Ta ≈ γζa(wr), where γ is a constant, then ζa(wr) − Ta ≈ (1 − γ) ζa(wr). Then we can simply
reparameterize wr, and the conclusion would be the same as that of the first case.

In the most general case, when Ta may vary in other ways, one does not know the exact pattern
of Ωa, and hence the shape of ξa, for adult ages. However, as a → ∞, terms to be summed in
(11) go to zero. Thus, unless the ratio −fa,μ/fa,m in the denominator decreases more slowly than
the numerator due to a decline in the energy efficiency of fertility that is more rapid than that
of survival, we can conclude that ξa should increase with age and therefore that mortality
eventually rises with age. We have no reason to expect any particular trend in the ratio −fa,μ/
fa,m, let alone a strong one. Note, however, that the pace of the increase of optimal mortality
with age is slower than the pace under mutation accumulation, due to the factor 1/ℓa which can
account for a period of slow senescence in adults.

Some researchers have noted a delay between maturity and the onset of rising adult mortality,
and sometimes even a period of declining adult mortality, although this is uncertain due to data
issues (Promislow, 1991; Sibly et al., 1997). Promislow offers several possible explanations.
One is heterogeneity and selection, so that the robustness of surviving adults rises with age.
Heterogeneity and selection would be entirely consistent with our analysis here, since each
genotype could experience rising mortality risks from maturity, even if the aggregate
population showed initially stable or declining mortality following maturity. Promislow also
suggests that, following maturity, adults may continue to learn to forage and evade predators
more efficiently, as we mentioned earlier. In our theory, this would lead to increasing foraging
efficiency ζa,w and decreasing energetic costs of survival |fa,μ|, either of which could lead to
stable or declining mortality as discussed in the preceding paragraph.
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A recent study (Baudisch, 2008) develops a model of an organism which allocates resources
among maintenance, vitality, and fertility, and finds that one possible optimal outcome is that
the organism grows to maturity and then allocates energy so as to achieve sustenance, a steady
state without senescence. This appears to be inconsistent with our conclusion of U-shaped
mortality with determinate growth, but in fact comparison is not straightforward.

As with most treatments in the literature, we do not include vitality as a variable, but our weight
variable has some of vitality’s features. In the Baudisch model, there is a single choice: how
to allocate energy between growth/maintenance on the one hand and fertility on the other, with
vitality increasing only if more than enough energy is allocated for maintenance. In our model,
total energy can be allocated for four purposes (fertility, maintenance, growth and transfers)
so there are three independent choices rather than one. Another key difference is that in our
model, production is always positively related to weight, but in the Baudisch model energy
production is first increasing and then decreasing in vitality (her equation 5.2). The models are
not nested, so we cannot say that one is a special case of the other. Getting different results
does not imply that one of the models is wrong.

4.2 The Forces Shaping Adult Mortality
Again we will pause to consider the forces at work, which are closely related to those for
juvenile mortality but with quite different implications. Surviving to adult age a has the
following effects:

1. The Hamilton Effect: the term Ma evaluates expected net fertility after age a. But,
unlike for juveniles, here Ma necessarily declines monotonically toward 0 as age
increases, indicating that it is progressively less beneficial to allocate resources to
survival. The original Hamilton fitness impact effect is not divided by ℓa, but in this
optimization context it is, as discussed earlier.

2. The Transfer Effect: the total expected transfers that remain after age a (survival
weighted and discounted by population growth). This necessarily declines
monotonically toward 0 as age increases, provided that adults are not net receivers of
transfers at any age (see Lee 2003). Unlike the Hamilton Effect, this may remain
positive after cessation of reproduction, providing continuing benefits to
postreproductive survival. It is divided by the cost of fertility at each age (fx,m) to
convert the energy involved in the transfers into units of fertility. Conditioning on
survival to a (division by ℓa) is due to the optimization context.

3. The Fertility Cost of Reducing Mortality: The energy tradeoff is |fa,μ/fa,m|, which is
survival-weighted and discounted. The energetic cost of reducing mortality expressed
in units of foregone fertility is |fa,μ/fa,m|. There is no clear reason to expect this ratio
to vary in one way or another. Unless very large, such variations will be overwhelmed
by the other factors.

5 Conclusions
We have considered the characteristic U-shape of mortality. First, why does mortality decline
at the start of life? Second, why does mortality rise in adulthood? Third, why is there
postreproductive survival? Hamilton (1966) provided an answer to the second question, now
understood to be based on the genetic mechanism of mutation accumulation. However, his
approach failed to explain either declining juvenile mortality or postreproductive survival, it
did not apply to species that make intergenerational transfers and it did not take into account
tradeoffs among life history traits. Even his apparently definitive answer to the second question
has been shown to fail when the theoretical approach is optimization of the life history and
when the dominant genetic process is assumed to be positive selection of beneficial mutations
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(Vaupel et al. 2004). The optimal life history for species with indeterminate growth can include
declining adult mortality.

We have limited our analysis to the case of determinate growth. We have also focused on the
shape of the optimal life history, achieved through selection of beneficial mutations, while
ignoring the influence of accumulated deleterious mutations. The accumulation and selection
of deleterious mutations could be readily included, leading to systematic departures of the
evolved life history from its optimal shape, causing adult mortality to rise more rapidly. At the
same time, we have broadened our analysis to include physiological tradeoffs, a necessity for
the optimality approach, and to allow intergenerational transfers.

Given this setup, we have derived a number of important new results for the optimal shape of
mortality for species with determinate growth and with or without intergenerational transfers.
We have shown that juvenile mortality must decline from birth to maturity, either to protect
the increasing cumulative investments in juveniles found in the mutation accumulation context)
or to exploit the advantages of early investment in somatic growth at the expense of survival,
arising from compounding effects, or to do both. At least one of the two effects must be
operative at any age, so juvenile mortality decline is assured. We have shown that adult
mortality must increase following maturity in species without transfers, due to a version of the
Hamilton effect that is weakened through division by the probability of survival up to each age
in question, which declines with age. If a species makes intergenerational transfers, these
provide an additional reason for mortality to rise with adult age but also lead to postreproductive
survival as in Lee (2003).

These results hold as long as the constraint parameters do not imply energetic efficiency gains
with experience in foraging, survival or fertility, or transfers do not decline relative to
production in the optimal life history. Adult mortality must rise eventually in deterministic
species, but an earlier phase of stability or decline in mortality could possibly occur.

In sum, we have shown how changes in remaining fertility and cumulated transfers operate
differently in the optimization context to shape mortality patterns, we have seen how
physiological tradeoff costs qualify these effects, and we have identified a new force causing
juvenile mortality to decline–the compounding power of somatic growth. These forces
combine to produce a U-shaped mortality pattern in species with determinate growth, including
postreproductive survival for species that make transfers.
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