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Protein identification from complex biological mix-
tures often involves the application of tandem mass 
spectrometry techniques1,2 such as MudPIT,3,4 

which involves digestion of the protein mixture with a 
protease such as trypsin, followed by two stages of liquid 
chromatography separation using strong cation exchange 
(SCX) and reversed-phase (RP) separation. Peptides elut-
ing after these separations are subjected to ionization and 
fragmentation in the mass spectrometer. Database search 
algorithms are then used to match the acquired spectra to 
peptide sequences from a protein database. Examples of 
such programs include SEQUEST,1,5 Mascot,6 Spectrum 
Mill,7 ProteinLynx,8 XTandem,9–11 and OMSSA.12 When 
a protein is identified from several unique peptide spec-

tra, the inherent redundancy of identification improves 
the confidence in protein identification, even if the con-
fidence of some of the peptide identifications is low. As 
the number of peptides assigned to each protein sequence 
decreases, the confidence of protein identification drops 
correspondingly.

There are many examples in current literature of pro-
teomic analyses performed by application of the MudPIT 
technique.13–17 However, there is no consensus on the 
search parameters used for the database search algorithms, 
or the treatment of proteins identified from single pep-
tides. It is not correct to simply disregard single-peptide 
matches; such peptides may be the only detectable pep-
tide from an enzymatic digest, and therefore perfectly 
valid for identification purposes. It is equally incorrect 
to include all proteins identified from single peptides, 
because of the variability in protein identification from 
poor mass spectra, resulting in a high rate of false-positive 
identifications.18–21

There have been numerous attempts to validate 
protein identifications from current database search 
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algorithms, including: linear discriminate analysis used 
to determine the accuracy of search algorithm assign-
ments;22 the Qscore algorithm using a probabilistic scor-
ing system and analysis of false-positive identification 
rates using a reversed database;23 the heuristic approach 
to assigning false discovery rates;24 the normalization 
of peptide identification scoring systems based on the 
length of the peptide;25 utilization of the tryptic status 
of peptides as an additional level of validation;3,25–27 the 
application of a support vector machine (SVM) to distin-
guish between correct and incorrect peptide identifica-
tions by SEQUEST;28 and the inclusion of orthogonal 
parameters such as exact mass measurements of selected 
peptides.29 One published report describes a proteomic 
analysis in which the final results were in the form of a 
consensus between the output from two different search 
algorithms.30 However, neither this report, nor any of 
those mentioned above, specifically addresses the issue of 
improving the confidence rate of assignment for proteins 
identified from a single peptide. Several authors, however, 
have noted that consensus analysis of dual algorithm 
searching programs has considerable merit in terms of 
protein identification confidence levels.7,31

Our aim in this study was to develop a basic set of 
software tools that would enable us to achieve 95% or 
greater confidence of assignment for both single- and 
multiple-peptide-based protein identifications, using only 
freely available, open-source software in addition to our 
existing SEQUEST analysis platform. As a consequence, 
all software tools developed and used in this project are 
made freely available via our laboratory Web site.

The data used in the development and testing of this 
approach were acquired from triplicate MudPIT analy-
ses of yeast (Saccharomyces cerevisiae) mixed organelle lysate 
sample (designated Y1, Y2, and Y3), prepared and ana-
lyzed as described,13 and rice (Oryza sativa) leaf, root, and 
seed organ lysate samples (designated R1seed, R2root and 
R3leaf), prepared32 and analyzed13 as described.

The entire set of tandem mass spectra collected from 
all 13 chromatographic steps in each experiment were 
searched using TurboSEQUEST (BioWorks version 3.1, 
Thermo Electron)1,5 run on a 16-processor IBM Beowulf 
cluster; with dta files generated from peptide spectra 
meeting the following criteria: Peptide MW Range = 400–
3500 Da; Threshold = 1000; Precursor Mass = 1.40; Group 
Scan = 1; Minimum Group Count = 1; and Minimum Ion 
Count = 35.

All SEQUEST searches were performed with no 
enzyme specificity indicated. The search parameters 
used were default settings except for: peptide mass toler-
ance = 1.5; max number of modified amino acids per dif-
ferential modification in a peptide = 4; static modification 

mass of +57.0 for acetylated cysteine; differential residue 
modification mass of +16.0 for oxidized methionine; a 
maximum of two internal cleavage sites; one allowed error 
in matching auto-detected peaks, and a mass tolerance of 
1.0 for matching auto-detected peaks. SEQUEST search 
results were filtered using DTA-select v 1.933 using our 
laboratory default cutoff parameters: Xcorr for a 1+ ion = 
1.8, Xcorr for a 2+ ion = 2.5, Xcorr for a 3+ ion = 3.5, 
deltaXcorr = 0.1.13,34–36

The single-peptide matches from SEQUEST were 
re-searched against the same database by XTandem ver-
sion 2005.10.01.5 (open source software, available from 
http://www.proteome.ca/opensource.html).9–11 The 
default XTandem search parameters were used, except 
for the following: a maximum valid expectation value of 
0.02; residue mass modification of +57.022 for carbamido-
methylated cysteine; potential residue mass modification 
of +16.0 for oxidized methionine; enzyme specificity = 
none specified; spectrum parameters including a fragment 
monoisotopic mass error of 0.5 Da and a parent mono-
isotopic mass error of ± 2.5 Da; spectrum conditioning 
parameters of 100 .0 spectrum dynamic range, total spec-
trum peaks 50, a minimum parent M+H of 400.0, and a 
minimum fragment m/z of 150.0.

Tandem MS spectra from rice organ samples were 
searched against a database of rice (Oryza sativa japonica) 
protein sequences (36,318 sequences—April 2005 ver-
sion), representing the complete rice genome, from 
NCBI (www.ncbi.nlm.nih.gov). The yeast samples were 
searched against a yeast genome protein sequence data-
base (6882 sequences, March 2005) from the Saccharomy-
ces Genome Database (www.yeastgenome.org). Both the 
rice and yeast databases were supplemented with com-
mon laboratory contaminants.13 Manipulation of mass 
spectrometry data was assisted by the use of several perl 
script programs designed in-house, all of which are freely 
available for download from our laboratory Web site as 
part of the Wildcat Toolbox (http://proteomics.arizona.
edu/toolbox.html). The first release of this set of perl 
scripts is described in detail in a previous report,37 but 
the data manipulation in this study was performed using 
two additional perl scripts, which have now been added 
to the toolbox collection.

For the data analysis outlined in this report, six dis-
tinct sets of MudPIT data were acquired, and all six data 
sets were searched using SEQUEST against both a for-
ward and reversed database.23–25,38 False discovery rates 
(FDR) were calculated by determining the number of 
matches against the reversed database as a percentage 
of the number of matches against the forward database, 
which gives an estimate of random sequence matches to 
the database, in accordance with recently published pro-
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teomics data guidelines.19,20 In numerical terms, FDR 
is FP/(TP + FP), where FP is false positives and TP is 
total positives.24 It is important to note that we have not 
addressed false-negative assignments in this report for two 
reasons: first, identification of false-negative assignments 
from a biological sample where the “correct” answer is not 
known is problematic; and second, the method presented 
here is simply intended to limit the false discovery rate 
using available search algorithms.

The number of proteins identified in each experiment, 
along with the protein false discovery rate in each experi-
ment, is shown in Table 1. The salient features of these 
data are, first, that the largest contributor to the overall 
false-positive rate is very clearly those proteins identified 
from single peptides, and second, that by using a two-
peptide minimum criterion, our currently used SEQUEST 
cutoff parameters would give us a satisfactory confidence 
of protein assignment. When a minimum of two peptides 
per protein is imposed, our current SEQUEST parameter 
cutoff scores produce a false discovery rate below the tar-
geted 5% threshold. One data set out of six has an FDR of 
5.7%, but the average for all six experiments is 3.1%.

The DTA_sorter.pl script was developed to extract 
those .dta files corresponding to SEQUEST single-peptide 
identifications. This script uses the DTASelect-filter.txt 
output file33 and separates all .dta files from a MudPIT 
run into three newly created folders: singlexcel, which 
contains all .dta files that correspond to single-peptide 
identifications; inexcel, which contains all of the .dta files 

that correspond to multiple-peptide protein identifica-
tions; and notinexcel, which contains all of the remain-
ing .dta files. The script then creates a concatenated .dta 
file from all of the individual .dta files contained in each 
newly created subdirectory, for use in further searching.

The CommonSingles.pl script was developed for data 
output comparison purposes. It compares a DTASelect 
output file (DTASelect-filter.txt) to an XTandem Excel 
table output (obtained using the Global Proteome Machine 
xml input upview page at http://www.thegpm.org). The 
CommonSingles script produces a modified DTASelect 
output file that includes all of the single peptides found 
by XTandem that are also found by SEQUEST.

Spectra corresponding to the single-peptide-based 
protein identifications from all six experiments were 
sorted using DTA-sorter.pl, re-searched using XTan-
dem, and the single-peptide identifications common to 
both algorithms were combined with the multiple-based 
protein identifications using the Commonsingles.pl pro-
gram. The same procedure was used for both forward and 
reversed databases to allow calculation of FDR.

Table 2 shows the revised numbers of proteins iden-
tified in each of the six MudPIT experiments. The false 
discovery rates of the overall data sets have dropped from 
approximately 25% in the initial SEQUEST searches to 
less than 1% in the dual algorithm search results, while 
the false discovery rates for the single peptides considered 
in isolation have dropped from around 50% to less than 
1%, zero in some cases. This is a dramatic improvement 

T a b l e  1

Protein Identifications and False Discovery Rates in SEQUEST Analysis of MudPIT Data

FdRc

expt no
Total proteins 

identifieda
single peptide  

proteins identifiedb
single  

peptides only overall
Two peptides 

minimum

y1 532 248 50.4 23.9 1.1
y2 604 295 51.2 25.5 2.9
y3 517 262 47.7 25.5 5.7
R1seed 221 155 41.9 29.9 3.1
R2root 258 175 28.6 19.4 0.0
R3leaf 247 169 59.2 40.9 2.6

a number of proteins identified in yeast and rice mudPiT protein identifications using sequesT 
cutoff scores of: Xcorr for a 1+ ion = 1.8, Xcorr for a 2+ ion = 2.5, Xcorr for a 3+ ion = 3.5, 
deltaXcorr = 0.1.

b number of proteins identified from single peptides only using sequesT with cutoff parameters 
detailed in footnote a.

c False discovery rates assessed by searching against a reversed sequence database, calculated 
using FdR is FP/(TP + FP), where FP is false positives and TP is total positives,24 expressed as a 
percentage.
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in overall data quality, and has been obtained without 
increasing the number of false-negative assignments by 
simply excluding all of the single-peptide-based matches.

Within the yeast samples, there is a high level of repro-
ducibility in the results. When compared to samples pre-
pared from rice organs, there is a clear difference in false 
discovery rates, as expected in samples from different 
biological sources.25 The reanalysis of the yeast MudPIT 
datasets results in the retention of an average of 76.7% 
of all proteins identified by SEQUEST, which includes 
on average 52.1% percent of the single-peptide identifica-
tions. For the rice MudPIT datasets, an average of 64.4% 
of the total proteins are retained, which includes an aver-
age of 48.3% of the single-peptide identifications.

While none of the partially tryptic peptides contained 
in the SEQUEST analysis data sets were confirmed by 
XTandem searching, a large number of fully tryptic pep-
tides were dropped from the final dataset as they were 
not confirmed using the second algorithm. This confirms 
that we are not simply filtering the single-peptide matches 
on the basis of tryptic status, which is essential as not all 
of our experiments involve solely trypsin digestion. When 
analyzing the common singles, none of the dual algorithm 
consensus matches are partially tryptic; all are fully tryp-
tic. However, out of 115 single-peptide matches dropped 
from Y1, 58 (50.4%) are partially tryptic; for Y2, 91 of 137 
(66.4%) are partially tryptic; and for Y3, 83 of 133 (62.4%) 
are partially tryptic. Further analysis of the forward and 
reversed database search results (data not shown) dem-
onstrates that imposing a fully tryptic constraint on the 
single-peptide matches would improve the FDR compared 
to the original SEQUEST results, but would not bring it 
below our desired threshold rate of less than 5%.

In conclusion, we have presented a method for verify-
ing proteins identified from a single unique peptide during 

nanoLC-MS/MS experiments such as MudPIT analysis of 
a complex biological mixture. For the analysis of yeast 
MudPIT datasets, we are able to produce a revised results 
output with an overall false-positive assignment rate of 
less than 1%, which still retains over 75% of the proteins 
initially identified. Similarly, for analysis of the rice organ 
MudPIT datasets, we are able to retain over 60% of the 
proteins initially identified, with a revised overall false 
discovery rate less than 1%. This indicates that application 
of this technique is highly reproducible for the analysis of 
similar samples, and likely to yield comparable, yet dis-
tinctly different, results for samples prepared from differ-
ent biological sources.

We have developed a technique that can be employed 
by laboratories utilizing a SEQUEST-based proteomic 
analysis platform, incorporating the XTandem algo-
rithm as a complementary tool for verification of single-
peptide protein identifications. We have achieved this 
using open-source software, including several data-
manipulation software tools developed in our labora-
tory, which we have made freely available for download. 
We make these programs available to other users in the 
spirit of open-source collaboration, and we hope and 
expect that users will modify them to fit their own needs. 
For example, it would be relatively simple to adapt these 
tools for use with Mascot rather than SEQUEST as the 
primary search engine, or Mascot rather than XTandem 
as the secondary search engine. We are currently inves-
tigating these approaches, and we have encountered 
numerous validation issues, such as the selection of dif-
ferent protein isoforms by different programs, and the 
mechanisms each program uses for filtering out of pep-
tide identifications which have a closely related hit due 
to the presence of, for example, Asp-Asn or Gln/Glu 
isoforms in the protein sequence database.

T a b l e  2

Protein Identifications and False Discovery Rates Observed Using Dual Algorithm Searching

expt no

Total Proteins 
identified 

in sequesT 
searches

Revised Total  
Proteins identified 

using dual  
Algorithm search

overall FdRa using 
dual Algorithm search 

FdR of single Peptides 
Retained in dual  

Algorithm Approach

y1 532 417 0.005 0.0
y2 604 467 0.011 0.013
y3 517 384 0.021 0.008
R1seed 221 141 0.71 0.0
R2root 258 174 0.00 0.0
R3leaf 247 153 0.65 0.0

a Protein false discovery rates, determined as explained in Table 1.
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