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Abstract
Estimating the relaxation constant of an exponentially decaying signal from experimental MR data
is fundamental in diffusion tensor imaging, fractional anisotropy mapping, measurements of
transverse relaxation rates and contrast agent uptake. The precision of such measurements depends
on the choice of acquisition parameters made at the design stage of the experiments. In this report,
χ2 fitting of multi-point data is used to demonstrate that the most efficient acquisition strategy is a
two-point scheme. We also conjecture that the smallest cofficient of variation of the decay constant
achievable in any N-point experiment is 3.6 times larger than that in the image intensity obtained by
averaging N acquisitions with minimal exponential weighting.
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Introduction
A wide range of microscopic processes in physiological tissues that can be accessed using MR
techniques are characterized by an exponential decay. Determining their relaxation constants
from experimental data collected with spin-echo sequences is common in diffusion tensor
imaging (DTI) and spectroscopy (DTS) [1–3], measurements of fractional anisotropy (FA)
[4], transverse relaxation rates (R2) [5–7], etc. An exponentially decaying signal can be
described by two parameters: its amplitude ρ and decay rate λ,

(1)

where t is the user-controlled encoding parameter (diffusion weighting or echo time).
Therefore, at least two measurements with different encodings t1 and t2 > t1 are needed to
estimate λ. It has been shown that within all such “two-point” schemes, the imaging time is
used most efficiently when (t2− t1) is chosen to be about 1.29/λ [8]. The method also requires
that the number of averages of the acquisition with encoding parameter t2 to be about 18/5 the
number of averages with t1.

In this report we examine whether multi-point acquisitions with several (more than two)
encodings may be more efficient than two-point schemes in the same total measurement
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duration. To this end, we use corresponding diagonal element of the covariance matrix of the
χ2 fitting procedure as a measure of the precision of the decay rate estimation and demonstrate
numerically that the most efficient multi-point scheme, in fact, approaches that of the two-
point.

Theory
In a multi-point acquisition N data points, Si, are collected, each with its own encoding
parameter ti. Since interchanging the order of these acquisitions does not affect the precision
of the estimation we will assume t1 ≤ t2 ≤ t3 ≤ … tN. (The equal sign reflects the possibility
that acquisitions with the same encodings may be repeated.) We also assume that all N
acquisitions are subject to Gaussian noise with standard deviation σ0 determined by the receiver
hardware, spatial resolution and sample properties. Having such data, χ2 fitting can be executed
to yield the maximum likelihood estimate of the decay constant [9]. The variance  of the
estimation is given by the second diagonal element of the 2 × 2 covariance matrix (A+ A)−1

where rows of the N × 2 matrix A are:

(2)

The optimal acquisition strategy is specified by a set of ti’s yielding the highest precision in
the decay rate, i.e. the smallest . We perform this optimization in the vicinity of the expected
decay value λ = λtune and then evaluate σλ at arbitrary λ’s.

It is clear that optimal value of t1 is zero otherwise the amplitude ρ can be redefined as
ρe−λt1 and all ti’s as (ti − t1). After this redefinition, ρ is the signal with minimal exponential
weighting (i.e. signal acquired with minimal echo time or diffusion weighting allowed by the
sequence/hardware) and t1 is zero. Thus, we are left with the problem of finding (N - 1) values
of ti, i = 2, 3, …,N minimizing σλ. This search is performed numerically using a brute-force
method in (N - 1) dimensions on a uniform grid of λtuneΔt = 0.05 between 0 and 4. The size of
the search grid is dictated by the flattening of the signal dependence at large λt, Eq. (1), while
its granularity — by the numerical complexity. The optimal values of ti for N between 2 and
10 are given in table 1. Computation of the last line in table 1 took 8 hours on a Pentium IV,
3.4 GHz PC. Making the search grid twice finer would require 210-1 fold more time or about
170 CPU days. The dependence of σλ on λ using several optimal N-point acquisition strategies
is shown in Fig. 1.

Results and Discussion
The optimal N-point protocols presented in table 1 reveal that within the search grid all N-point
schemes (except N = 9) are, in fact, two-point methods with the appropriate number of averages
at each acquisition [1,8]. In the N = 9 case, two out of the three optimal encodings land on the
neighboring search grid points 1.25 and 1.30, making this case not too different from a two-
point one as well. Performing the search on a finer grid to validate this is computationally
intractable as described above. Therefore, we conjecture that the highest precision of
exponential relaxation estimation is achieved using the optimal two-point method. The
hardware, sample and duration independent measure of this precision can be characterized by

the dimensionless normalized coefficient of variation  [8] where SNR is the
signal to noise ratio obtained by averaging N acquisitions with minimal exponential weighting,
S(t1). For example, if averaging N such images delivers signal to noise ratio of 100, then the

relative error in the decay constant estimation can not be smaller than . This
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precision is achieved in the vicinity of the assumed value, λtune, used for tuning the encodings
ti as shown in the Fig. 1.

If the actual value of λ deviates from λtune the precision degrades as shown in Fig. 1.
Fortunately, the precision loss is only 15% over a wide range λ ∈ (0.6, 1.5)λtune. If the decay
constants to be measured are expected to vary by much more than a factor of 1.5/0.6=2.5, the
two-point method will be inefficient at the edges of the range of λ’s. Tuning the multi-point
method to minimize combined error at the edges of the expected range may yield a flatter ελ
and thus more uniform precision across the range. However, for all values of λ in this range
the precision will always be worse than the 3.6 achievable with the optimal two-point method.
To illustrate this point, superposed in Fig. 1 is the precision for the optimal 6-equally-spaced-
point protocol. As expected, the curve is flatter than those achieved by the two-point methods
and is above them in the range λ ∈ (0.4, 1.6)λtune. Thus, even if λ lies in this wide range, the
two-point method will outperform the equally spaced one. Only outside of this range can the
advantage of such protocol be evident. However, the precision is at least 30% worse than could
be achieved in the same experimental duration which may render the procedure moot.

The strategy presented assumes a separate spin-echo acquisition for each encoding ti. Although
multi-spin-echo experiments are sometimes used to speed up the acquisition, imperfect RF
pulses may lead to incomplete refocusing and thus to additional apparent signal decay. Such
schemes, therefore, are prone to systematic errors in the relaxation constant estimation.

Measurement of exponential relaxation constants for which the two-point method is found to
be the most efficient should not to be confused with the validation of the model of exponential
signal decay. The latter is characterized by the goodness of the fit and requires acquisitions at
multiple distinct encodings ti.

Being optimal, the two-point scheme lends itself admirably to applications relying on
measurement of the change in the relaxation constants such as microvessel density estimation
[10]. Indeed, images acquired before and after the relaxation constant is altered, say by
administration of a contrast agent, naturally constitute the two points. Image intensity of the
first point is given by ρe−λ0t while of the second — by ρe−λ0te−Δλt. Since modification of the
encoding parameter t between the points introduces unwanted sensitivity to the unknown
“resting” tissue relaxation constant λ0, t has to be common to both acquisitions. The optimal
acquisition strategy consists of choosing the value of t to yield the highest precision of Δλ.
Interpreting ρe−λ0t as the amplitude of the decay ρ and Δλ as decay constant λ casts the problem
in terms of the relaxation constant estimation considered [see Eq. (1)] with one exception: ρ
depends on the user selectable parameter t. However, in applications such as microvasculature
imaging requiring high doses of contrast agents, λ0 is much smaller than Δλ [10]. Therefore,
for optimization purposes in the vicinity of Δλ the t-dependence of ρ can be neglected. Thus,
optimal exponential weighting t as well as the number of acquisition averages before and after
the relaxation constant alternation are found in table 1 (by replacing λtune with Δλ).

Conclusion
We have considered optimization of N-point data acquisition protocols with N = 2, 3, …, 10
for estimation of exponential relaxation constants. In all but the N = 9 cases two-point scheme
was found to be the most efficient. Two encodings out of the three optimal for N = 9 lie on the
neighboring search grid points indicating that had a finer grid been used the protocol would
perhaps have converged to two points as well. Therefore, we conjecture that the highest
precision of exponential relaxation constant estimation is achieved with the optimal two-point
acquisition scheme. This yields a coefficient of variation not smaller than 3.6 times the
coefficient of variation in image intensity obtained by averaging N acquisitions with minimal
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exponential weighting (i.e. signal acquired with minimal echo time or diffusion weighting
allowed by the sequence/hardware, etc).
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Fig. 1.
Precision as a function of λ for several N-point protocols tuned for λtune. Here, the SNR is the
signal-to-noise ratio of the average of N images with minimal exponential weighting and in
general is a function of λ if the minimal weighting is not zero. Note that the precision of
protocols with N ≥ 3 is already very close to optimal. Since the convexity of the curves is very
small, the precision stays within 15% of the best over a broad interval λ ∈ (0.6, 1.5)λtune. As
an example of a commonly used scheme, the precision for optimal 6-equally-spaced-point
protocol is superposed.
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