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Abstract
Background: The HapMap project aimed to catalog millions of common single nucleotide
polymorphisms (SNPs) in the human genome in four major populations, in order to facilitate
association studies of complex diseases. To examine the transferability of Han Chinese in Beijing
HapMap data to the Southern Han Chinese in Shanghai, we performed comparative analyses
between genotypes from over 4,500 SNPs in a 21 Mb region on chromosome 1q21-q25 in 80
unrelated Shanghai Chinese and 45 HapMap Chinese data.

Results: Three thousand and forty-two SNPs were analyzed after removal of SNPs that failed
quality control and those not in the HapMap panel. We compared the allele frequency distributions,
linkage disequilibrium patterns, haplotype frequency distributions and tagging SNP sets
transferability between the HapMap population and Shanghai Chinese population. Among the four
HapMap populations, Beijing Chinese showed the best correlation with Shanghai population on
allele frequencies, linkage disequilibrium and haplotype frequencies. Tagging SNP sets selected from
four HapMap populations at different thresholds were evaluated in the Shanghai sample. Under the
threshold of r2 equal to 0.8 or 0.5, both HapMap Chinese and Japanese data showed better
coverage and tagging efficiency than Caucasian and African data.

Conclusion: Our study supported the applicability of HapMap Beijing Chinese SNP data to the
study of complex diseases among southern Chinese population.
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Background
The International HapMap Project aimed at determining
the common patterns of DNA sequence variants, their fre-
quencies, and correlations between them, through geno-
typing samples from four large populations, Centre
d'Etude du Polymorphisme Humain reference individuals
from Utah, USA (CEU), Han Chinese in Beijing, China
(CHB), Japanese in Tokyo, Japan (JPT), and Yoruba in
Ibadan, Nigeria (YRI), at a density of 1 SNP every 5 kb.
The populations genotyped in the HapMap can serve as
reference populations for the selection of tagging SNPs
(tSNPs) that capture most of the variations in the genome.
It provides an important shortcut to carry out candidate-
gene and genome-wide association studies in a certain
population by minimizing the numbers of SNPs need to
be genotyped [1-3].

As stated by the International HapMap Consortium, the
general applicability of the HapMap data should be con-
firmed in other populations [1]. Several studies previously
performed showed high concordance with HapMap data
in allele frequencies and haplotype distributions, and
good performance of tSNPs selected from the HapMap
SNP data [4-12]. However there are few reports available
in the literature which compared the linkage disequilib-
rium (LD) patterns of the CHB population in the HapMap
data with other Chinese populations. Whether the Hap-
Map CHB data can be broadly used in other Chinese pop-
ulations remained to be a key question.

In our study, over 4500 SNPs from a 21 Mb region on
chromosome 1q21-q25 were genotyped in 80 Chinese
Hans from Shanghai as a component in the International
Type 2 Diabetes 1q Consortium. Located in the southeast
of China, Shanghai is over 1,000 kilometers away from
Beijing where the CHB samples were recruited. Studies
have shown that the Chinese Han population can be geo-
graphically divided into two also genetically differential
groups, northern Han and southern Han Chinese, sepa-
rated approximately by the Yangtze River [13-16]. The
samples from Shanghai in our study are southern Hans
while most of the CHB samples are northern Hans.
Although previous studies showed similarity of genetic
background between East Asian populations [17,18], no
study has directly analyzed the utility of HapMap data in
the southern Hans. In our study, we estimated the allele
and haplotype frequencies of SNPs in Shanghai individu-
als and compared them with those provided by the Hap-
Map project. Furthermore, we evaluated the transferability
and performance of tSNPs selected from the HapMap data
in this Shanghai population.

Results
Allele frequencies
We estimated allele frequencies of all SNPs in our Chinese
Hans from Shanghai and those in the HapMap popula-
tions. The distribution of minor allele frequencies (MAFs)
of the SNPs in these five populations is shown in Table 1.
By comparing the frequencies of minor alleles defined by
our Shanghai sample, we found that they were highly cor-
related with those from the CHB sample (R = 0.94, P <
0.001) (Figure 1). Only 20 (0.66%) SNPs showed an
allele frequency difference over 0.15 and no SNP showed
difference over 0.2. The allele frequency distribution of
109 SNPs was significantly different between these two
groups as shown by the χ2 or Fisher's exact tests (P < 0.05).
However, by 10,000 permutation tests, only one SNP
remained to be significantly different. It was rs12239719
in the SDHC gene, with a frequency of 0.02 in the CHB
sample vs 0.22 in the Shanghai sample (P = 2.28*10-5,
empirical P = 0.0314).

The frequencies estimated from the JPT sample were also
highly correlated with the Shanghai sample (R = 0.88, P <
0.001). The allele frequency distribution of 547 SNPs was
significantly different. By 10,000 permutations, 7 of them
remained significant (Additional file 1).

However, the allele frequencies estimated from the CEU
and YRI samples differed dramatically from those in the
Shanghai sample and Pearson's correlation coefficients
between them were 0.46 and 0.41, respectively (P <
0.0001) (Figure 1).

LD structure
The LD structures for the whole region in the Shanghai
and the four HapMap samples were shown in Additional
file 2. In all non-African populations, the LD structure was
similar across populations. In YRI sample, less extent of
LD was observed.

We measured the extent of pairwise LD between adjacent
SNPs by calculating r2 and |D'| and compared them with
the corresponding values in the HapMap populations.
The correlations between different populations for r2 and
|D'| are shown in Figure 2 and 3, respectively. The LD
coefficient r2 that estimated from Shanghai samples was
highly correlated with that estimated from CHB and JPT
samples (CHB: R = 0.9734, P < 0.0001; JPT: R = 0.9590, P
< 0.0001) and less correlated with those estimated from
the CEU and YRI samples (CEU: R = 0.8033, P < 0.0001;
YRI: R = 0.6436, P < 0.0001). |D'| calculated from the
CHB sample was also most correlated with the Shanghai
sample. However, as |D'| appeared to be much more var-
iable, the correlation coefficient R was only 0.5964 (P <
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0.0001). |D'| calculated from the JPT, CEU and YRI sam-
ples were less correlated to that calculated from Shanghai
sample (JPT: R = 0.5383, P < 0.0001; CEU: R = 0.4945, P
< 0.0001; YRI: R = 0.3732, P < 0.0001).

Haplotype
A total of 2667, 2648, 2643, 2775 and 2301 SNPs with
MAFs greater than 0.05 were included in the analyses of
haplotype blocks for the Shanghai, CHB, JPT, CEU and
YRI samples, respectively. In the Shanghai sample, 399

Comparison of allele frequency estimated in Shanghai and four HapMap samplesFigure 1
Comparison of allele frequency estimated in Shanghai and four HapMap samples.

Table 1: Minor allele frequency distributions in Shanghai and four HapMap populations.

Population 0 0~0.05 0.05~0.15 0.15~0.25 0.25~0.35 0.35~0.50

Shanghai 0.99% 11.34% 19.10% 19.40% 20.71% 28.47%
CHB 2.85% 9.44% 20.04% 18.95% 19.48% 29.25%
JPT 4.24% 8.12% 20.26% 21.42% 16.61% 29.34%
CEU 1.38% 3.58% 17.71% 21.78% 21.74% 33.80%
YRI 6.06% 8.87% 17.96% 18.56% 19.64% 28.93%
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blocks were inferred across the region, while 370, 367,
448 and 434 blocks were inferred in the CHB, JPT, CEU
and YRI samples. In our samples, the average block size
and marker number was 30.51 kb and 5.5 SNPs per block.
Similar results were observed in the CHB sample with the
average block size of 30.47 kb and the average marker
number of 5.48. The JPT and CEU samples also showed
similarities to our Shanghai samples to a certain extent.
Their average block sizes were 30.77 kb and 29.72 kb and
average marker numbers were 5.52 and 5.34 respectively.
However, the YRI sample was most distinct from the other

populations. Its average block size and marker number
were only 18.55 kb and 3.43.

Between Shanghai and CHB samples, 151 (37.8%) blocks
were constructed with the same markers and 589 different
haplotypes were observed. Haplotype frequencies were
strongly correlated (R = 0.9855, P < 0.0001) in these two
samples as shown in Figure 4. Only 26 (4.41%) haplo-
types showed absolute frequency difference by more than
0.10 and 5 (0.85%) haplotypes by more than 0.15.

Comparison of r2 of adjacent SNPs in Shanghai and four HapMap populationsFigure 2
Comparison of r2 of adjacent SNPs in Shanghai and four HapMap populations.
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tSNP
To mimic the way an investigator would use the HapMap
resource, we used the HapMap populations as reference
for tSNP selection at different thresholds and then evalu-
ated the performance of tSNP sets in the Shanghai sample.
The performance was determined by computing both the
percentage of SNPs captured and the average tagging effi-
ciency. SNPs with MAFs over 0.05 in both the reference
population and the Shanghai population were analyzed.

The number and performance of tSNPs selected from four
HapMap populations under different thresholds are
shown in Table 2. Under the threshold of r2 equal to 0.8
or 0.5, both CHB and JPT samples showed better tagging

efficiency than those of CEU and YRI samples in Shanghai
Chinese. In the CHB and JPT samples, less than 50% of
SNPs were selected as tSNPs and over 93% of variants in
the region could be captured in the Shanghai sample. In
the CEU samples, 2~3% more SNPs were selected as
tSNPs and the tagging efficiency were lower than the CHB
and JPT populations. In the YRI samples, we observed the
highest coverage but about 50% more SNPs were selected
as tSNPs and its tagging efficiency in the Shanghai sample
was the lowest among the four populations.

Discussion
Association study is a common way of identifying the
genetic markers for complex diseases, such as diabetes,

Comparison of |D'| in Shanghai and four HapMap populationsFigure 3
Comparison of |D'| in Shanghai and four HapMap populations.
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obesity, cancer, psychiatric illness and cardiovascular dis-
ease [19]. The HapMap data provides the LD and tSNP
information for four populations to facilitate the design
for association studies.

In this study, we evaluated the performance of the Hap-
Map tSNPs in a Shanghai Chinese Han population by
comparing allele frequencies, LD patterns, and haplotype
frequencies between them. We further assessed transfera-
bility of tSNPs selected from the reference populations.

We found that the allele frequencies of the SNPs in this 21
Mb region on chromosome 1q21-q25 were highly corre-
lated between the HapMap CHB and the Shanghai sam-
ples. As marker allele frequencies affect the power and
sample size required for genetic association studies [20-
22], knowing the allele frequencies for the population is
important for the design of genetic studies. Our findings
indicate that the HapMap CHB sample provides this
information for the Chinese population.

We also found the extent of LD were similar among non-
African populations. The average haplotype block length,
which was dramatically smaller in the YRI sample, was
similar in the other populations. R2 values of adjacent
SNPs were highly correlated between the CHB and Shang-
hai samples. However, |D'| was poorly correlated between
these two populations. This may be the result of high
marker density. With the average marker density of ~7 kb
in this study, |D'| values can easily reach their maximum
value of 1.0 in one or both populations, causing a ceiling
effect.

Not surprisingly, tSNP set selected from the CHB sample
performed best in the Shanghai population in terms of
coverage and tagging efficiency. Although the JPT sample
showed poorer correlation on the allele frequencies and r2

of adjacent SNPs than the CHB sample, the tSNP set
selected from the JPT sample performed equally well in
this Shanghai population. Also as shown by analyzing
ALFRED (the Allele FREquency Database), tSNPs selected
from Japanese had high performance in southern Hans
[17]. Thus combining JPT and CHB SNP data will be wor-

thy trying when selecting tSNPs from HapMap reference
populations.

Several comparative studies have examined similarities
and differences between LD patterns and tSNP transfera-
bility of HapMap data in various populations based on
genes or chromosome regions. North European popula-
tion was mostly studied among the four HapMap popula-
tions. Researchers have performed comparative studies
between CEU SNP data and several other populations,
including Spanish, Finnish, Estonia and several popula-
tion isolates [6,8,9,12]. They all came to the same conclu-
sion that the CEU SNP dataset was a robust tool for
association studies in these populations. Two studies
focused on Asians were also reported. Lim et al analyzed
the LD patterns and haplotype structures for ENCODE
region ENm010 on chromosome 7p15.2, by genotyping
792 SNPs in 90 healthy Korean individuals. Their analyses
showed remarkable similarities in LD strength, haplotype
profile, and efficient tSNP transferability among HapMap
CHB, JPT and Korean samples [4]. Mahasirimongkol et al
analyzed 861 SNPs in 166 drug-related genes between
HapMap East Asian populations and Thais. They also
found extensive correlation on allele frequency, Fst statis-
tics and r2 between these populations [5].

One limitation of this study is that only 79 individuals
were analyzed after quality control. Small sample size
may bias the allele frequencies estimated in the popula-
tion, also the extent of LD between markers, and as a
result, the portability of tSNPs could be over estimated. It
is interesting to note, however, that we didn't detect many
significant differences between our sample and the Hap-
Map CHB sample. And as demonstrated previously, for
common SNPs with MAFs over 0.05, the use of 60 inde-
pendent individuals didn't affect the performance of
tSNPs significantly [6]. Another limitation is that our sam-
ples were composed of normal controls from a case-con-
trol study. They were over 65 years old with normal
weight and were free from diabetes, hypertension, dyslip-
idaemia and the family history of these diseases, whereas
the HapMap CHB individuals were recruited randomly
from Beijing ignoring the disease status. The particularity

Table 2: Performance of tSNP sets selected from the four HapMap populations.

Population r2 = 0.8 r2 = 0.5

Number of 
SNPs analyzed

Number and 
percentage of 
tSNPs selected

Percentage of 
SNPs captured

Tagging 
efficiency

Number and 
percentage of 
tSNPs selected

Percentage of 
SNPs captured

Tagging 
efficiency

CHB 2590 1287(49.7%) 0.938 1.889 852(32.9%) 0.669 2.036
JPT 2566 1277(49.8%) 0.932 1.872 820(32.0%) 0.654 2.045
CEU 2474 1272(51.4%) 0.897 1.744 886(35.8%) 0.710 1.982
YRI 2069 1509(72.9%) 0.977 1.340 1184(57.2%) 0.902 1.576
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of our sample might lead to the difference in some SNPs
or haplotypes.

Conclusion
We conclude that the HapMap CHB SNP set has a good
portability to the Shanghai population and thus it is a
powerful tool for the genetic studies on complex disease
in Chinese Hans. Further studies focusing on populations
from other regions and nationalities in China are needed
to confirm our findings.

Methods
Population samples
Eighty unrelated Chinese individuals were recruited from
Shanghai Caoyang community as a component of the
case-control study in the International Type 2 Diabetes 1q
Consortium. All the individuals were normal controls free
from diabetes, hypertension or dyslipidaemia. The sam-
ple was compased of 55 males and 25 females, aged 74
years in average. This study was reviewed and approved by
the institutional review board of Shanghai Jiao Tong Uni-
versity Affiliated Sixth People's Hospital, Shanghai,
China. Written informed consents were obtained from all
participants.

SNP selection and genotyping
A 21 Mb region on chromosome 1q21-q25 (position
148.10 Mb to 169.42 Mb, from the NCBI build 35 UCSC
genome) was selected for genotyping. Over 4,500 SNPs
were genotyped using the Illumina Golden Gate assay
(Illumina Inc., San Diego, CA, USA) and the quality con-

trol was performed by the 1q Consortium [23]. After
removal of SNPs that failed quality control and those not
in the HapMap panel, 3,042 SNPs and 79 individuals
were analyzed in this study, with an average density of one
SNP per 7.0 kb. Detailed SNP information is shown in
Additional file 3 and can be also obtained from dbSNP.

The HapMap SNP data of 60 CEU individuals, 45 CHB
individuals, 45 JPT individuals and 60 YRI individuals
were obtained from HapMap database (release #20).

Statistical analyses
Allele frequencies were estimated by gene counting and
checked for accordance with Hardy-Weinberg equilibrium
in each population [24]. Allele frequencies of SNPs were
compared between populations by chi-square or Fisher's
exact tests, where appropriate. Linkage disequilibrium
parameters (|D'| and r2) for adjacent SNPs were calculated
and haplotype blocks were defined within each popula-
tion using the confidence interval algorithm [25] and per-
formed by Haploview version 3.32 [26]. Haplotype
frequencies were estimated by Expectation – Maximiza-
tion algorithm [27]. Permutation test that randomly
assigns the phenotypes while keeping the genotypes intact
was used to obtain empirical P values as an alternative to
multiple test correction. Pearson's correlation coefficient
(R) was used to estimate correlations in allele and haplo-
type frequencies and linkage disequilibrium parameters
among populations. A paired t-test was performed to
compare the allele frequencies and linkage disequilibrium
parameters among the populations using SAS for WIN-
DOWS (version 6.12, SAS Institute Inc., Cary, NC, USA).

SNPs with MAFs over or equal to 0.05 were selected for
the analyses of tSNP transferability across populations.
The Tagger program in Haploview was used to identify
tSNPs that optimally capture allelic variation among
SNPs. The tSNPs were selected based on a pairwise
approach [28]. An r2 of 0.5 and 0.8 was selected as thresh-
olds for tSNP selection. Coverage of tSNPs was defined as
the percentage of SNPs in the evaluated population that
had an r2 above 0.5 or 0.8 by the tSNP selected from the
reference population. Tagging efficiencies of tSNP sets
were defined as the average number of SNPs captured by
each tSNP selected.
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Comparison of haplotype frequencies in Shanghai and CHBFigure 4
Comparison of haplotype frequencies in Shanghai and CHB.
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