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Abstract

Background: Vapor diffusion is the most widely used technique for protein crystallization and the rate of water evaporation
plays a key role on the quality of the crystals. Attempts have been made in the past to solve the mass transfer problem
governing the evaporation process, either analytically or by employing numerical methods. Despite these efforts, the
methods used for protein crystallization remain based on trial and error techniques rather than on fundamental principles.

Methodology/Principal Findings: Here we present a new theoretical model which describes the hanging drop method as a
function of the different variables that are known to influence the evaporation process. The model is extensively tested
against experimental data published by other authors and considering different crystallizing conditions. Aspects responsible
for the discrepancies between the existing theories and the measured evaporation kinetics are especially discussed; they
include the characterization of vapor-liquid equilibrium, the role of mass transfer within the evaporating droplet, and the
influence of the droplet-reservoir distance.

Conclusions/Significance: The validation tests show that the proposed model can be used to predict the water evaporation
rates under a wide range of experimental conditions used in the hanging drop vapor-diffusion method, with no parameter
fitting or computational requirements. This model combined with protein solubility data is expected to become a useful
tool for a priori screening of crystallization conditions.
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Introduction

Obtaining good quality crystals is a critical step for protein

structure determination by X-ray crystallography. The most

commonly employed techniques to grow crystals of biological

macromolecules are by vapor diffusion [1]. In these techniques,

the supersaturation state needed for crystallization to occur is

achieved by slowly evaporating the solvent from a droplet

containing the macromolecule buffered at a given pH, the

crystallizing agent (or precipitant) and additives. Equilibration of

the droplet takes place in a closed system, which also contains a

reservoir with a solution at a higher precipitant concentration.

Supersaturation, defined as the ratio between the macromolecule

activity in solution and in a saturated state, increases during this

process due to the solvent evaporation leading to the (i) increase of

protein concentration and very often to (ii) its solubility decrease,

due to the increasing concentrations of the precipitant. When the

vapor pressure at the droplet surface equals the vapor pressure of

the reservoir, equilibrium is attained and supersaturation is no

longer affected by the solvent evaporation. The success of the

method in obtaining well diffracting crystals is in a great deal

determined by the kinetics of solvent evaporation and therefore by

the numerous parameters governing the evaporation rate. If the

process is too fast and supersaturation is built up to very high

levels, the formation of an amorphous solid or a precipitate with

bad diffracting qualities will take place; on the other hand, if

evaporation takes place to a limited extent, situations may happen

where no spontaneous nucleation will occur either because the

solution is not yet supersaturated relatively to the macromolecule,

or the supersaturation is not high enough to pass through the

metastable region of no crystal formation [2].

As a consequence of the key role of the solvent evaporation

kinetics on the vapor diffusion technique, a comprehensive

mathematical treatment was proposed for the first time in 1988

to describe the hanging drop method [3], in which the evaporating

droplet is suspended over the reservoir due to its surface tension.

The work was followed by two other approaches [4,5] represented

in Figure 1 by the respective schematic models. The Fowlis et al.

model (FM) is based on the conventional arrangement of a Linbro

box crystallization plate [3], while the formalism presented by

Sibille et al. (SM) departs from different geometric constraints that

reproduce capillaries closed at one end [4]. More recently, new

equations were derived to describe vapor diffusion in an apparatus

specifically designed for protein crystal growth in microgravity

environment [6]. Identified limitations of the FM and SM to fit

experimental data of water equilibration rates, led Luft et al. to
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propose an alternative model (LM) that can be viewed as a hybrid

of the previous two models [5]. Nevertheless, the differences of the

LM to its predecessors go beyond the geometric assumptions, since

a non-physicochemical parameter is introduced – the effective

surface area – that has to be evaluated by curve fitting of the LM

to the observed evaporation kinetics. Empirical equations were

previously proposed to describe the water equilibration rates

measured in the presence of three widely used crystallization

agents and combining the various experimental parameters [7].

The limitation of this type of equations is on their restricted

applicability, which is confined to the set of conditions at which the

empirical parameters were determined. In a different approach,

numerical methods were employed to describe the equilibration of

hanging drop experiments reported in literature; the software

program ‘‘Drop’’ was presented as being based on the FM and SM

but with fewer geometric assumptions, and was reported to

adequately describe the experimental data [8].

The aim of this paper is to provide the mathematical description

of the hanging drop vapor-diffusion method, so that it can be used

to predict the water evaporation rates under a wide range of

experimental conditions, without the limitations of the existing

models. The new model shall be useful for obtaining good protein

crystals regarding their quality, size and number, and should be

combined in the future with complementary kinetic theories of

crystal nucleation and growth [9–11].

Analysis

As represented in Figure 2, the droplet is considered to be a

spherical cap centered on the point O, with contact angle aR, and

with a radius of curvature R that varies with time. The inner

diameter of the reservoir is given by 2a, and the vertical distance

from the point O to the cover slip corresponds to R sin aR. Ra is the

radius of the sphere centered on O that intercepts the reservoir

walls at the level of the cover slide, and Rb is the radius of the

concentric sphere that is tangent to the surface of the solution in

the reservoir:

Ra ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 z R sin aRð Þ2

q
ð1Þ

Rb ~ b z R sin aR ð2Þ

When the droplet is a hemisphere, aR = 0u, and therefore Ra = a and

Rb corresponds to the vertical distance from the cover slip to the

solution in the reservoir, b. Different implications arise from the

simplifying hypothesis adopted on the derivation of the model. This

will be gradually illustrated by interpreting the limitations of the

existing theories and by proposing new ways to overcome those

limitations. We start by considering the simplest case of Ra$Rb, and

the evaporation kinetics is assumed to be exclusively determined by

the solvent diffusion through the gas phase. Then, the more common

case of Ra,Rb will be analyzed, and finally, the importance of the

diffusion step within the droplet will be assessed. The model

validation will be presented using experimental data reported in

literature by different authors on the equilibration rates of different

water-precipitant systems, under varied experimental conditions.

Figure 1. Schematic representation of the hanging drop method as considered in (A) Fowlis et al. [3], (B) Sibille et al. [4] and (C) Luft
et al. [5] models. The interfacial area for mass transfer corresponds, respectively, to a spherical cap, to the cross-sectional area of a capillary tube and
to an adjustable parameter of the model.
doi:10.1371/journal.pone.0001998.g001

Figure 2. Scheme of the hanging drop method adopted on the
derivation of the mathematical model.
doi:10.1371/journal.pone.0001998.g002
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Discussion

Small droplet-to-reservoir distances (Ra$Rb)
Let us start by considering the simplest case of small droplet-to-

reservoir distances (Ra$Rb) and that the evaporation of a droplet

containing the solvent (water) and the precipitant occurs at a given

rate that is exclusively determined by the vapor diffusion across the

air space between the droplet and the reservoir. The latter

assumption was initially justified in the derivation of the FM [3]

and is common to the subsequent models, SM and LM [4,5]. As

the droplet with initial radius R0 gets progressively smaller, the

geometrical center O moves toward the coverslip so as to provide

that the droplet contact angle aR remains constant. This implies a

small decrease of the radius Rb (and Ra) with time, which will be

ignored since the droplet size is generally much smaller than b

(and a) [3].

The mass transfer area (A) for vapor diffusion over the air

space is of a spherical cap centered on O with radius r

comprised between R and Rb, and delimited by the coverslip.

Accordingly,

A ~ 2p 1 { sin að Þr2 ð3Þ

When aR?0u, the value of a becomes increasingly smaller than aR

as one moves away from the droplet:

sin a ~
R

r
sin aR ð4Þ

The vapor pressure profile p(r) results from solving the continuity

equation for steady-state:

d

dr
1 {

R

r
sin aR

� �
r2 dp

dr

� �
~ 0 ð5Þ

subject to the boundary conditions p|r = R = pR and p r ~ Rb
j ~ pb:

p rð Þ~ pR ln

1 {
R

Rb

sin aR

1 {
R

r
sin aR

0
BB@

1
CCAz pb ln

1 {
R

r
sin aR

1 { sin aR

0
B@

1
CA

2
664

3
775
,

ln

1 {
R

Rb

sin aR

1 { sin aR

0
BB@

1
CCA

ð6Þ

In the mathematical treatment of Fowlis et al., the angle a is

considered to be constant over the diffusion path [3]. As we have

pointed out, this is only true for perfect hemisphere droplets. The

solution found for the vapor pressure profile in the FM is therefore

a limit case of Equation 6, when aR = 0u.
The molar rate of water vapor leaving the droplet (I1) is

evaluated at r = R according to Fick’s first law:

I1 ~ {
VAR2D

<T

dp

dr

����
r ~ R

ð7Þ

where VA is the surface area shape factor of the droplet

(2p(12sinaR)), D is the diffusion coefficient of water vapor in air,

R is the gas constant and T is the absolute temperature. Hereafter,

the subscript 1 stands for water and the subscript 2 for the

crystallizing agent. Substituting Equation 6 into the previous

equation, and letting

ln 1 {
R

Rb

sin aR

� �
& {

R

Rb

sin aR ð8Þ

one obtains that

I1 ~ {
VAD

<T

sin aR

1 { sin aRð Þln 1 { sin aRð Þ
R0bR

R0b { R
pR { pbð Þ ð9Þ

where R9b reduces to Rb when aR = 0u:

R0b ~ {Rb

ln 1 { sin aRð Þ
sin aR

ð10Þ

The vapor pressure at the droplet surface pR decreases in the direct

proportion to the water molar fraction in the droplet x1, following

Raoult’s Law for vapor-liquid equilibrium:

pR ~ x1c1p� ð11Þ

in which c1 is the activity coefficient and p* is the vapor pressure of

pure water. The presence of protein is not considered to

significantly affect pR, nor should it affect the water equilibration

rates [7]. The expression for the water equilibration kinetics

should provide the evolution of the droplet radius (or alternatively,

of the corresponding volume, V) as a function of time, t. With that

aim, Raoult’s Law will be used to express the difference of vapor

pressures in Equation 9 as a function of the precipitant molar

fractions x2; in the reservoir, this value is assumed to remain equal

to x2b, while in the droplet, it will increase as the droplet volume

decreases. Accordingly, Equation 9 is rewritten as

I1 ~ {
VADc1p�x2b

<T

sin aR

1 { sin aRð Þln 1 { sin aRð Þ
R0bR

R0b { R
1 {

x2,0

x2b

V0

V

� � ð12Þ

where x2,0 and V0 are the initial precipitant molar fraction in the

droplet and the initial droplet volume, respectively. The molar rate

of water vapor leaving the droplet can also be expressed as a

function of the droplet change of volume with time and of the

molar volume of pure water (V̄1):

I1 ~ {
1
�VV1

dV

dt
ð13Þ

Finally, knowing that the volume of droplet is given by

V ~ VV R3 ~
p

3
2 { 3 sin aR z sin3 aR

� �
R3 ð14Þ

and introducing the following dimensionless variable

y ~ R=R0 ð15Þ

Equation 12 becomes:

{
dy

dt
~

1

t

yb

y yb { yð Þ 1 {
y?

y

� �3
 !

ð16Þ
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where the constant yb corresponds to y evaluated at R = R9b, y‘ is

the dimensionless radius of the droplet achieved at the

equilibrium, when dy/dt = 0:

y? ~
R?

R0
~

x2,0

x2b

� �1=3

ð17Þ

and t is a time constant defined by

t ~ {
3VV<TR2

0

VADc1p�x2b
�VV1

1 { sin aRð Þln 1 { sin aRð Þ
sin aR

ð18Þ

It is now possible to obtain an expression relating the relative

droplet radius (y) and the time elapsed since the beginning of the

evaporation (t) by integrating Equation 16, subject to the initial

condition y|t = 0 = 1:

t

t
~ {

1

3yb

1 { y3
� �

z
1

2
1 { y2
� �

{

ffiffiffi
3
p

3
y2
?

arctan

ffiffiffi
3
p

y { 1ð Þy?
2y2

? z y? y z 1ð Þz 2y

 !
z

z
y2
?

6
ln

y2 z yy? z y2
?

� �
1 { y?ð Þ2

1 z y? z y2
?

� �
y { y?ð Þ2

 !
z

y3
?

3yb

ln
y2 z yy? z y2

?

� �
y { y?ð Þ

1 z y? z y2
?

� �
1 { y?ð Þ

 !
ð19Þ

The structure of this equation has similarities with the one

obtained in the FM [3]. The main differences between the two

models are, so far, the role of the droplet contact angle and the

way vapor-liquid equilibrium (VLE) is expressed. The former

difference vanishes in the cases where aR = 0u, and will not be

discussed here. Concerning the VLE, while we propose Raoult’s

Law to relate the vapor pressure at the droplet surface and the

droplet composition is given in terms of molar fractions

(Equation 11), in the FM (as well as in the subsequent models

SM and LM) that relationship is given as a function of the number

of moles of water and salt in solution (n1 and n2, respectively), and

of the vapor pressure lowering coefficient w:

p ~ p� 1 { w
n2

n1

� �
ð20Þ

The different formalisms adopted to describe the compositions in

the droplet and in the reservoir also lead to differences in the

resulting model equations. The practical consequences arising

from each representation of the hanging drop method are

illustrated in Figure 3. The differences between the two theoretical

models are more evident in Figure 3B than in Figure 3A. This is

partially because the authors of the experimental work presented

in Figure 3A express their results in terms of the ‘‘percent

completion’’ defined as [3,12]:

% ~
1 { y3

1 { y3
?

| 100 ð21Þ

This variable softens the differences between the predicted values

of y in equilibrium (y‘). As we have previously defined

(Equation 17), y‘ is a function of the 1/3 power of the relative

molar fractions in the droplet and in the reservoir (dilution factor),

while in the FM y‘ is a function of the molar volumes of water and

precipitant, and of the respective number of moles in the droplet

and in the reservoir [3]. The molar volume of MPD used in the

simulations was of 118 cm3/mol [13]. Figure 3B illustrates that the

relative volume in equilibrium predicted by the FM is significantly

above the measured value of ,0.5, which also corresponds to the

value of y3
‘ expected from Equation 17.

In all cases considered in Figure 3, the theoretical curves

correspond to faster evaporations than the measured ones. This is

Figure 3. Plot of the theoretical water equilibration rates
expected by the proposed model and by FM, and evaluation of
the models against experimental data taken from literature. A:
Experimental sets #1 (298 K) and #2 (277 K) of Table 1 [3]. B:
Experimental set #3 of Table 1 [7].
doi:10.1371/journal.pone.0001998.g003
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consistently observed using experimental data obtained under

different conditions. One of the reasons for the gap between theory

and practice might be related with the droplet contact angle, since

all the theoretical simulations were performed assuming aR = 0u,
when deviations to this value are referred to occur during the

experiments [3,7]. The original curve computed by Fowlis et al.

takes into account the variations of the contact angle during the

experiments and provided slightly slower evaporation rates than

the FM curve plotted in Figure 3A [3]. Moreover, the geometrical

simplification assuming Ra$Rb and possibly, the overlooked role of

mass transfer resistance within the droplet should also affect the

quality of the predictions. In the following sections we shall address

these two topics and, by doing it, improve the applicability of the

proposed model.

Long droplet-to-reservoir distances (Ra#Rb)
In the majority of the hanging drop apparatus, the droplet-to-

reservoir distances are longer than the diameter of the reservoir, and

so the presupposition Ra$Rb would not be valid. The implications

arising from this oversimplification are obviously greater for higher

droplet-to-reservoir distances and narrower reservoirs. Recalling

Figure 2, for r.Ra the area for mass transfer represented by the

surface of a spherical cap with radius r starts to be delimited by the

walls of the reservoir, turning the angle a of the spherical cap a

different function of r than for r,Ra (Equation 4). Now, one finds

from trigonometric transformations that:

sin a ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 {

a

r

	 
2
r

ð22Þ

The angle a provided by this equation when r = Ra and r = Rb will be

called aa and ab, respectively. The geometrical shape of the vapor

space should therefore be divided in two zones separated at r = Ra.

For r , Ra, the vapor pressure profile is again obtained from

Equation 5, subject to the boundary conditions p|r = R = pR and

p r ~ Ra
~ paj , where pa is to be determined from the condition of

continuous flux at the boundary (dp=dr r ~ R{
a

�� ~ dp=dr r ~ Rz
a

�� ). In

the zone beyond Ra, the continuity equation should be rewritten to

account for the variation of a with r:

d

dr
r2 1 {

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 {

a

r

	 
2
r !

dp

dr

" #
~ 0 ð23Þ

Here the boundary conditions are p r ~ Ra
j ~ pa and p r ~ Rb

j ~ pb.

The ordinary differential equations (ODEs) 5 and 23 (and respective

boundary conditions), together with the continuity condition at

r = Ra, constitute a boundary value problem representing the vapor

pressure profile when Ra#Rb. Replacing the solution of this problem

in Equation 7, the following equation for I1 is obtained:

I1 ~ {
VADc1p�x2b

<T

sin aR

1 { sin aRð Þln 1 { sin aRð Þ
cR

c { R
1 {

x2,0

x2b

V0

V

� � ð24Þ

with

c ~ {
R2

a 1 z sin aað Þln 1 { sin aRð Þ=sin aR

2Ra 1 z sin aað Þ{ Rb 1 z sin abð Þz Ra arcsin a=Rað Þ{ arcsin a=Rbð Þð Þ ð25Þ

The correspondence between Equations 12 and 24 is evident, with

R9b of the former equation being replaced by c in the latter. Note that

when Ra = Rb both equations are equivalent since it results from

Equation 25 that c = R9b. Correspondingly, Equation 16 can be

rewritten as

{
dy

dt
~

1

t

yc

y yc { yð Þ 1 {
y?

y

� �3
 !

ð26Þ

where yc = c/R0, and can be solved to obtain the expression for the

equilibration curves when Ra#Rb:

t

t
~ {

1

3yc

1 { y3
� �

z
1

2
1 { y2
� �

{

ffiffiffi
3
p

3
y2
?arctan

ffiffiffi
3
p

y { 1ð Þy?
2y2

? z y? y z 1ð Þz 2y

 !
z

z
y2
?

6
ln

y2 z yy? z y2
?

� �
1 { y?ð Þ2

1 z y? z y2
?

� �
y { y?ð Þ2

 !
z

y3
?

3yc

ln
y2 z yy? z y2

?

� �
y { y?ð Þ

1 z y? z y2
?

� �
1 { y?ð Þ

 !
ð27Þ

This expression corresponds to Equation 19 after replacing yb by yc.

Slower evaporation rates result from the introduced geometry

corrections because the area for mass transfer is in this case smaller

than when assuming Ra$Rb. The greater Rb relatively to Ra, the

bigger would be the differences to the preceding case. This is seen in

Figure 4A by comparing the predicted profiles using Equations 19

and 27 (and the definitions of the respective parameters), for the

experimental sets #1 and #2 of Table 1. Despite the small

improvements, the water evaporation rates remain over-predicted

by Equation 27. As it was pointed out in the discussion of Figure 3,

variations of the droplet shape may explain the differences between

the theoretical solution and the experimental results visible in

Figure 4A. Likewise, in the previously considered case where MPD

was used as precipitant (Figure 3B) a slight improvement of the

theoretical profiles results from using Equation 27 instead of

Equation 19 (data not shown). This is expectable since, as listed in

Table 1 for experimental set #3, the reservoir radius (a) is close to the

droplet-to-reservoir distance (b). In this case, the differences to the

experimental results remain too high to be explained by variations

on the droplet shape, only. It is believed that high mass transfer

resistances within the droplet might explain the quantitative and

qualitative differences obtained (see the following section). These

resistances are expected to be more significant when using MPD as

precipitant than with salts. The adequacy of Equation 27 in

predicting water evaporation kinetics in the absence of significant

liquid-phase resistances is confirmed in Figure 4B, which shows the

results of a second experiment using ammonium sulfate as

precipitant. In this experiment, the droplets shape did not change

significantly from perfect hemispheres and a smaller droplet volume

was used relatively to the experiment presented in Figure 4A

(Table 1) [7]. As a result, the diffusion path within the droplet and

the impact of the mass transfer resistance in the equilibration rates

should also be smaller. The experimental results represented in

Figure 4B also show that the presence of protein did not affect

significantly the evaporation rates [7].

As demonstrated in the fundamental analysis presented so far,

the applicability of theoretical models of the hanging drop method

is in a good deal determined by the value of the droplet-to-

reservoir distance (and its relation with the reservoir diameter).

The same conclusion was drawn by measuring the dependence of

ð25Þ
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water equilibration kinetics on the droplet-to-reservoir distance

[5]. It was found that for small values of b the FM could be

employed, while for large values the SM would be more suitable;

at intermediate values of b a modified version of the FM and SM

was proposed (LM), which introduces an adjustable parameter

representing the effective surface area of the reservoir solution.

The experimental results obtained by those authors are presented

in Figure 5 in terms of the precipitant concentration in the droplet

after a 121 h evaporation period, at different droplet-to-reservoir

distances. The behavior expected by our model is also plotted in

the same figure, after determining the y vs. b relationship from

Equation 27 (and from the definitions of the respective

parameters), and computing the instantaneous solute concentra-

tion in the droplet, C, as a function of y (C = C0/y3, with the initial

concentration C0 being 1.00 M). The same procedure was

adopted, and applied to Equation 19, which predicts that the

NaCl concentration should be independent of the droplet-to-

reservoir distance after the considered evaporation period has

elapsed. The agreement of the proposed model (Equation 27) with

the collected data is remarkably good for low, intermediate, and

large values of b (Figure 5), especially if one takes into account that

no parameter was determined by curve-fitting to the evaporation

rate results. In fact, for the simulations performed only the

experimental parameters and physicochemical constants listed in

Table 1 were used, which are generally available in the literature.

Moreover, some degree of uncertainty resulting from possible

variations of the droplet contact angle during the equilibration

experiments is not taken into account on the simulations. The

droplets were again considered to have a hemispherical shape

(aR = 0u) that remains unchanged during the evaporation period.

The four points of Figure 5 corresponding to higher values of b

were obtained at slightly different temperature (297.2 K) and

evaporation periods (120 h), and then corrected to the experi-

mental conditions of the remaining points [5].

Mass transfer resistance within the droplet
In the theoretical study done by Fowlis et al. on the several

resistances that determine the evaporation rate during the hanging

drop method, the diffusion of water molecules from the interior of

the droplet to the surface was estimated to be of higher magnitude

than the diffusion of vapor across the air space [3]. The same authors

consider, moreover, that the convection motion under a gravita-

tional field promotes homogeneous composition of the solution in

the droplet and decreases the importance of the diffusion step in the

liquid phase to a point that is no longer significant for the whole

process. The results presented in Figures 4 and 5 seem to confirm

that hypothesis whenever inorganic salts were used as precipitant;

good predictions of the equilibration rates were obtained by

considering that the rate limiting step was the vapor diffusion from

the droplet to the reservoir. As previously referred, Figure 4B

documents a contrasting case where the evaporation rates of droplets

containing MPD were noticeably slower than the predictions. It is

believed that the use of precipitants such as MPD or polyethylene

glycol (PEG) may affect the rate of diffusion of water molecules and

create a concentration gradient within the droplet (Figure 6). The

additional diffusion resistance may explain the contradiction

observed when solutes with a stronger vapor pressure lowering

effect (like MPD relatively to ammonium sulfate) led to slower

equilibration rates of water [7]. Incorporating the additional

diffusion resistance in the theoretical model will be firstly done by

changing the boundary conditions at the droplet surface. Equation 5,

concerned with the vapor pressure profile for r,Ra, is now subject to

the boundary conditions p|r = R = pi and p r ~ Ra
j ~ pa, where pi is

the effective interfacial vapor pressure. On the other hand, the

interfacial vapor pressure is in equilibrium with the interfacial

composition in the liquid phase represented in Figure 6 by the water

molar fraction, x1i (x2i, if one refers to the precipitant). Apart from the

alteration in the boundary condition, the boundary value problem is

solved as in the previous section to obtain a new equation for I1 that

is analogous to Equation 24:

I1 ~ {
VADc1p�x2b

<T

sin aR

1 { sin aRð Þln 1 { sin aRð Þ
cR

c { R
1 {

x2i

x2b

� � ð28Þ

Figure 4. Validation of the predictions of Equation 27 against
measured rates of water equilibration available in literature. A:
Experimental sets #1 and #2 of Table 1 [3]. B: Experimental set #4 of
Table 1 [7].
doi:10.1371/journal.pone.0001998.g004
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The relationship between x2i and the precipitant molar fraction in

the bulk of the droplet, x2d, is given as a function of the mass transfer

coefficient of water in solution, kc, using the following expression for

the current I1:

I1 ~
VAR2kc

VV1
x2i { x2dð Þ ð29Þ

The three definitions of I1 given by Equations 13, 28 and 29 can

be combined to give the ODE of the variation of the droplet radius

with time. Accordingly, after expressing x2d as a function of the

initial concentration in the droplet, x2,0, and using the dimension-

less constants t, y‘ and yc, one obtains

y yc { yð Þ
yc

z b

� �
dy

dt
~ {

1

t
1 {

y?

y

� �3
 !

ð30Þ

where the introduced parameter b is defined as

b ~
3VV

VA

R0

x2bkct
ð31Þ

and measures the weight of the mass transfer resistance within the

droplet. Low mass transfer coefficients mean high resistances to

diffusion and high values of b. The solution of Equation 31 (initial

condition y|t = 0 = 1) provides the most general form of the

equilibration curve, contemplating liquid and vapor phase

diffusion, and the cases where Ra#Rb:

t

t
~ {

1

3yc

1 { y3
� �

z
1

2
1 { y2
� �

z 1 { yð Þb {

ffiffiffi
3
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3
1 {

b
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� �
y2
? arctan
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3
p

y { 1ð Þy?
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z
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b
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?

6
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z
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3yc
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?

� �
y { y?ð Þ

1 z y? z y2
?

� �
1 { y?ð Þ

 !
ð32Þ

It is now possible to predict the water evaporation rates for

different levels of importance of the liquid phase resistance. This is

done in Figure 7A for the already considered case of MPD used as

precipitant, in Figure 7B for an analogous experiment with a

different volume of the droplet (8 ml instead of 32 ml), and in

Figure 7C where PEG was used as precipitant. As expected, the

simulated equilibration rates represented in Figure 7A are

progressively slower as the value of b increases, i.e., as lower

Table 1. Experimental details and physicochemical parameters of the water evaporation experiments used to validate the
theoretical model.

Bibliographic Source [3] [7] [5] [7]

Experimental Set #1 #2 #3 #4 #5 #6 #7

Crystallizing Agent Ammonium Sulfate (AS) methyl-2,4-pentanediol (MPD) AS (+lysozyme) Sodium Chloride MPD PEG

a (cm) 0.85 0.80 0.68 0.80

b (cm) 1.2 1.0 Variable 1.0

D (cm2/s) 0.26 0.239 0.26{ 0.26{ 0.26{ 0.239{

p* (Torr) 23.769 6.101 17.5 21.07 17.5 5.7

T (K) 298 277 293 295.9 293 276

V0 (ml) 25 32 8 24 8 16

w (2) 1.6259 1.4031 N/A N/A N/A N/A

x2b(2) 0.0302 0.0314 0.0377 0.0321 0.0362 0.0377 0.0014

x2,0/x2b (2) 0.5 0.5 0.5 0.5

c1 (2) 1.7271 1.7791 1.7271 1.752 1.7791 9.8541

1Value estimated from freezing point depression measurements [7].
{The vapor diffusion coefficients reported at 298 K and 277 K [3] were not considered to change significantly for (i) 293 K and 295.9 K, and for (ii) 276 K, respectively.
doi:10.1371/journal.pone.0001998.t001

Figure 5. The measured influence of the droplet-to-reservoir
distance on the average concentration of NaCl in the droplet
after a 121 h evaporation period – experimental set #5 of
Table 1 [5] – and the theoretical profiles expected from
Equations 19 and 27 for the same set of conditions.
doi:10.1371/journal.pone.0001998.g005
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mass transfer coefficients (kc) are considered in Equation 31. In this

case, a good agreement with the experimental data was found for

b= 2.06, which corresponds to kc = 1.561025 cm/s. This value is

close to a rough estimation of the mass transfer coefficient of

461025 cm/s, obtained using a value of the liquid water diffusion

coefficient of 1025 cm2/s [14] and a diffusion path in the order of

magnitude of the droplet radius (,0.25 cm for a 32 ml hemispheral

drop). The value of kc obtained from the results shown in Figure 7A

was used to predict the equilibration rates of an analogous

experiment with smaller droplet radius (Figure 7B); a correction

factor of (32/8)1/3 was applied to that value to account for the new

diffusion path in the smaller drop, so that in the simulation of

Figure 7B, kc = 2.3861025 cm/s. As it arises from the definition of b,

the same value of 2.06 is obtained for this parameter after the droplet

radius correction. Accordingly, the equilibration rates of the 8 ml

droplets were simulated and the predicted profiles are again in good

agreement with the experimental data (Figure 7B). This is a good

indication that mass transfer coefficients determined for a given

system can be later used, after the corrections to the diffusion path,

and eventually temperature. Figure 7C is concerned with another

situation where the used precipitant (PEG) may have led to

significant liquid phase resistances. The results are qualitatively

and quantitatively well described using b= 0.713, which corresponds

to a mass transfer coefficient of kc = 1.061024 cm/s. The reasons

why this coefficient is higher than those obtained with solutions of

MPD are related with different diffusion properties of each solution,

as well as with the different diffusion paths and temperature in each

of the cases. The VLE data determined for PEG from the

measurement of the freezing point depression [7] has some scatter

that may also have affected the quality of the predictions represented

in Figure 7C.

Applicability of the model and future work
Once proposed and validated a solvent equilibration rate model,

the next step for rational protein crystallization should be the

combination of this model with the protein solubility information in

order to know the evolution of supersaturation in vapor diffusion

techniques. At any time during a hanging drop crystallization

experiment, the volume of the droplet can be calculated from the

dimensionless droplet radius y obtained from Equation 32, for the set

of constants t, b, yc and y‘ that are characteristic of the system. Then,

the instantaneous concentration of precipitant can be computed

from the droplet volume. Having the protein solubility curve

measured at the pH and temperature conditions under study and the

calculated concentration of precipitant, the corresponding protein

solubility is available. Finally, the supersaturation can be calculated,

using the updated values of protein concentration and solubility. The

information conventionally provided in phase diagrams of the

nucleation region in relation to the solubility curve [2,15] can now be

complemented with the kinetic characterization of the process

between the initial and final stages of a crystallization experiment.

The goal is to recognize the kind of supersaturation profiles that

lead to high quality protein crystals and to know how to achieve

the corresponding evaporation kinetic profiles. At this point, a

distinction should be made between purely ‘‘kinetic’’ parameters,

which affect solely the water equilibration rates, and those that also

affect the thermodynamics of the solution. In the first category are

included the geometry of the crystallization chamber, the droplet-

to-reservoir distance, and the droplet volume, while for the second

category the examples are temperature, pH, and the precipitant

type and concentration. Purely ‘‘kinetic’’ parameters are therefore

appropriated for fine-tuning of the crystallization conditions, and

their effect can be promptly computed using Equation 32. When

the second-type parameters are changed, besides their effect on the

evaporation kinetics (Equation 32), the solution thermodynamics is

also altered according to the solubility curve of the system. We

envisage that future work will address the incorporation of

nucleation and crystal growth models on the full characterization

of the crystallization technique. This is important, but not

straightforward since several parameters need to be studied. For

example, depending on the hydrophobicity of the coverslip

material, different evaporation kinetics are expected (due to

different contact angles and shapes of the droplet) but also different

nucleation kinetics will occur [16,17].

Figure 6. Representation of the water concentration profiles expressed in terms of molar fractions within the droplet, and of vapor
pressures in the air space.
doi:10.1371/journal.pone.0001998.g006
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The applicability of Equation 32 can also be extended in the

future to vapor diffusion techniques in the presence of oils [18]. In

fact, considering the apparatus of Figure 2, a layer of oil can be

applied upon the solution in the reservoir or covering the droplet.

The practical consequence of this procedure is to lower the liquid-

vapor mass transfer coefficient and to decrease the evaporation

rates. If the oil is totally water-impermeable, evaporation will be

suppressed, leading to a microbatch crystallization experiment.

Other vapor-diffusion methods such as sitting drop share the same

principles here illustrated for the hanging drop method, although

they are subject to different, and generally more complex,

geometrical constraints that depend on the crystallization chamber

design, employment of micro-bridges or glass rods as droplet

holders, etc. In future, it is of interest to investigate the differences

in the water equilibration rates of the different possible

arrangements by measuring the corresponding evaporation

kinetics and, when possible, provide the theoretical basis of the

measured data. The validation results here reported for the

hanging drop method are a good indication that a priori screening

of crystallization conditions is a goal not too far to be accomplished

if protein solubility curves under different conditions are

experimentally determined.

Figure 7. Validation of the predictions of Equation 32 against measured rates of water equilibration in the presence of significant
diffusion resistance inside the droplet. A: Experimental set #3 of Table 1 [7]. B: Experimental set #6 of Table 1 [7]. C: Experimental set #7 of
Table 1 [7].
doi:10.1371/journal.pone.0001998.g007
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Conclusions
A new equilibration rate model was presented describing the

hanging drop method for protein crystallization. The presentation

of the model was progressively made with increasing degrees of

complexity as a consequence of the model assumptions that were

being considered. This also allowed emphasizing the differences

between the present theory and existing models, namely the distinct

ways of characterizing the vapor-liquid equilibrium, the geomet-

rical assumptions involved in the different models, and the role

allocated to water diffusion within the droplet. Several measure-

ments of water equilibration rates using different precipitants at the

different experimental conditions were taken from literature and

compared with the predictions of the proposed model. The

experimental curves described the variation of the droplet volume

(or alternatively, the precipitant concentration in the droplet) with

the evaporation time, and with the droplet-to-reservoir distance, at

a fixed evaporation time. Good validation results were obtained in

all cases. In the performed simulations, only the experimental

parameters and physicochemical constants reported in the

analyzed literature data were used. Precipitants which are expected

to significantly increase the water diffusion resistance within the

droplet were indentified. The clearest example was MPD, for

which water mass transfer coefficients were possible to be estimated

for the liquid phase. The obtained coefficient was then used to

successfully predict the water equilibration rates in the presence of

MPD, at different conditions. The proposed model will be used to

predict the water evaporation rates in a variety of different

conditions used in the hanging-drop vapor diffusion technique for

protein crystallization. In fact, this model is a consistent step for a

rational protein crystallization experimental set up.
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