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ABSTRACT We have developed a top-down, rule-based mathematical model to explore the basic principles that coordinate
mechanochemical events during animal cell migration, particularly the local-stimulation-global-inhibition model suggested orig-
inally for chemotaxis. Cells were modeled as a shape machine that protrudes or retracts in response to a combination of local
protrusion and global retraction signals. Using an optimization algorithm to identify parameters that generate specific shapes
and migration patterns, we show that the mechanism of local stimulation global inhibition can readily account for the behavior of
Dictyostelium under a large collection of conditions. Within this collection, some parameters showed strong correlation, indicating that
a normal phenotype may be maintained by complementation among functional modules. In addition, comparison of parameters for
control and nocodazole-treated Dictyostelium identified the most prominent effect of microtubules as regulating the rates of retraction
and protrusion signal decay, and the extent of global inhibition. Other changes in parameters can lead to profound transformations
fromamoeboidcells intocells mimicking keratocytes,neurons, orfibroblasts. Thus, a simple circuit of local stimulation-global inhibition
can account for a wide range of cell behaviors. A similar top-down approach may be applied to other complex problems and combined
with molecular manipulations to define specific protein functions.

INTRODUCTION

Migration of animal cells is a complex function that plays a

critical role in both physiological and pathological processes,

including embryonic development, wound healing, and can-

cer metastasis. In addition, motile activities in different re-

gions of a cell collectively determine cell shape, which in turn

affects cell growth and viability (1). There is strong evidence

that cell migration involves multiple events, including pro-

trusion, contraction, adhesion, and de-adhesion (2), which take

place simultaneously in different regions of the cell. Although

recent advances have identified a number of molecular com-

ponents involved in each event, such as Arp2/3 in protrusion,

myosin II in contraction, and integrins in adhesion (2), equally

important but much less understood is how these events are

coordinated at the ‘‘circuit’’ level to drive cell migration.

Mathematical modeling represents a powerful tool for ex-

ploring complex problems. A model that explains cell mi-

gration must be able to account for both the migration pattern

and cell shape. In the absence of guidance cues, cell migration

is typically described as a persistent random walk (3). How-

ever, different cell types show a wide range of shapes, sizes,

and migration speeds and patterns. For example, amoeboid

cells are characterized by a highly unstable and irregular

shape and short persistence, whereas keratocytes maintain a

constant crescent shape and a strong persistence (4). Based on

the common dependence on the actin cytoskeleton and sig-

naling molecules such as small GTPases, it is widely assumed

that these diverse manifestations of cell migration involve a

similar mechanism ‘‘tuned’’ in different ways, although little

is known about how the mechanism operates with such a high

degree of versatility.

To date, most quantitative models describing cell shape

and cell motility are bottom-up and inherently mechanical in

nature. These models focus on specific events such as pro-

trusion, adhesion, or retraction (5). Starting with a set of as-

sumptions about the molecules involved, they construct

equations describing temporal evolution of the variables as a

consequence of molecular interactions, typically as ordinary

or partial differential equations (6–8). Constraints for solving

the equations may be imposed based on accepted mechanics

of the cell and models of structural assembly, for example,

mechanical forces required for cell protrusion and factors

limiting actin polymerization (9). The equations may then be

solved via finite-difference schemes (6) or energy-based

methods (10). These models generally depend on a large

number of experimental parameters from the literature, in-

cluding protein concentrations, kinetic constants, and rheo-

logical moduli of the cytoplasm and cortex. Since these

parameters vary among different cells, the models tend to

reproduce the behavior of specific cell types. In addition, as

the complexity increases, the targeted phenomenon, e.g., the

persistence of migration, may become increasingly difficult to

connect with molecular interactions. Bottom-up approaches

have proved very useful for understanding processes of limited

complexity, by demonstrating that the elements they incor-

porated are sufficient to describe specific steps quantitatively.

The purpose of this work is to understand how signaling

events controlling cell protrusion and retraction are coordi-

nated to generate the shapes and migration patterns of dif-

ferent cell types. Due to the complexity of the problem, we

decided to take a top-down approach, implemented as a ‘‘rule-
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based’’ model. In this approach, the underlying mechano-

chemical events are taken into account implicitly in the

mathematical expression of the rules and constraints, with

each parameter representing the ‘‘lumping’’ of many mo-

lecular interactions. This approach is used widely in engi-

neering and has proven very useful for understanding the

propagation of action potential in nerve cells, without any

prior knowledge of the molecular makeup of voltage-gated

ion channels. Far from replacing a molecular description of the

process, these coarse-grained models serve as a scaffold for

understanding and integrating protein functions. The coarse-

grained picture could subsequently be refined by incorporat-

ing additional details, until a connection with molecular level

descriptions is established.

The main rules of our model are based on empirical facts

about migrating live cells. First, the presence of a dominant,

persistent leading edge plus numerous transient lateral protru-

sions, as typically seen in fibroblasts undergoing persistent

random walk (11), suggests a localized, positive feedback that

expands and maintains protrusions at the front, and a long-

range, negative feedback that suppresses protrusive activities

elsewhere. This combination of feedback circuits is also sup-

ported by the theoretical analysis of chemotaxis (12–15) and

by experimental observations of the distribution of signaling

molecules during chemotaxis (16). Second, to drive persistent

random walks, the circuit must contain both deterministic and

stochastic features. Deterministic features may dictate the

propagation and dissipation of signals, whereas stochastic as-

pects may generate random pulses of new signals to overcome

the persistent direction of migration and to promote turns.

The purpose of this study is threefold. First, we ask whether

a simple circuit, as outlined above, combining local/global

feedbacks and deterministic/stochastic signal regulations, is

sufficient to generate the dynamic shapes and persistent ran-

dom walks typical of amoeboid cells migrating in the absence

of chemoattractants. Second, we test whether the model can

be combined with experimental manipulations to determine

the function of specific molecules or structures in cell mi-

gration. Third, we explore how this kind of top-down model

can provide insights into potential synergistic or antagonistic

interactions within the circuit, as well as the physiology un-

derlying the wide range of shapes and migration patterns seen

in different cell types.

DESCRIPTION OF THE MODEL

A ‘‘rule-based’’ model explicitly omits any description in

terms of forces and specific molecules. Instead, mechano-

chemical events underlying cell migration are incorporated in

an implicit way, by embedding them in the rules describing

the evolution of cell shapes and regulatory signals. Due to the

heavy computational load for multidimensional optimization,

described later, we sought as simple a formulation as possible,

which incorporates the general principles of local/global

feedbacks and stochastic/deterministic features, as outlined in

the Introduction, for the generation of measurable shapes and

migration characteristics. Thus, the parameters selected, and

the associated assumptions and approximations, reflected a

compromise between the requirements for defining cellular

mechanisms and practical limitations (Table 1). The rules and

their rationale are explained as follows.

Regulation of cell shape and migration by
protrusion and retraction signals

A cell is modeled by its perimeter points and its center, de-

fined as its geometrical centroid at a given time point. It is

capable of moving its perimeter points away from the center

by localized protrusions, or toward the center by retraction,

and the centroid position is modified accordingly. Note that

since this model deals with cell shape and migration in two

dimensions, it is unnecessary to consider the conservation of

total volume or surface area, which is implied by assuming

that the cell is able to change its height and shape in the third

dimension to meet these constraints. In addition, the move-

ment of the centroid as a result of perimeter extension and

retraction implies adhesive interactions with the substrate,

and the performance of work.

Points along the cell perimeter at a given time point, t, are

represented as vectors r with the cell centroid as the origin,

each associated with a local protrusion signal, S1(r, t), with a

dimension of 1/length for its concentration. Protrusion sig-

nals represent collective signaling activities that stimulate

actin polymerization near the plasma membrane. Retraction

signals, S�(t), on the other hand, are related to both long-

range signals that stimulate myosin-dependent contractility,

e.g., Rho (17), and rheological properties of the cytoplasm

affected by stresses and strains over large areas of the cell.

They allow a dominant leading edge to suppress protrusions

and stimulate retractions elsewhere, and may be represented

by a global variable.

The balance between protrusion and retraction signals

determines the evolution of the points at the cell perimeter.

Retraction takes place at any point of the perimeter r when

S1(r, t) # S�(t). The rate of retraction is represented as

@jrj=@t ¼ maxð½jrj � rmin�R�; 0Þ; (1)

where rmin is a constant minimal radius and R� is a retraction

rate constant with a dimension of 1/time. The linear depen-

dence on jrj implies elastic behavior of the cytoplasm (18).

The existence of an rmin takes into account a noncontractile or

noncompressible central region including the nucleus, where

actomyosin contractility is absent. The absence of S�(t) from

Eq. 1 implies that the retraction process is rate-limited not by

the signal S�(t) but by rheological properties of the cell.

Protrusion takes place when S1(r, t) . S�(t), at a rate

represented as

@jrj=@t ¼ maxðGðR1 Þ; 0Þ; (2)

where G(R1) is a Gaussian distribution function of average

value R1 and variance R1, and R1 is the average protrusion
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rate of the cell boundary with a dimension of length/time.

This equation confers stochasticity to an otherwise constant

protrusion process, rate-limited by the kinetics of actin

polymerization.

Adhesive cell types such as fibroblasts form membrane

structures known as focal adhesions, which provide anchor-

age to the substrate and resist retractions (19). Focal adhe-

sions in fibroblasts were modeled as point constraints of cell

retraction. Retraction was inhibited when a perimeter point

hit a focal adhesion, or fell within the convex hull as defined

by neighboring focal adhesions. Focal adhesions are known

to form near the leading edge during protrusion, and to re-

main stationary in most cases as cells move forward (20). In

our model, they are assumed to form stochastically at pro-

trusive perimeter points with a probability P1
fa, and to disas-

semble stochastically with a probability P�fa.

Regulation of protrusion signals

The evolution of local protrusion signals at a given time point

t is calculated as

@S
1 ðr; tÞ=@t ¼ =

2
S

1 ðr; tÞKdiffuse � S
1 ðr; tÞKdecay

1 maxðGðð f ðS1 ðr; tÞ � S
�ðtÞ; g; lÞ

1 PbaselineÞNburstÞ; 0Þ: (3)

Equation 3 consists of a deterministic part (first two terms),

which describes the propagation and decay of protrusion sig-

nals, and a stochastic component (last term). Signal propa-

gation is simplified as one-dimensional diffusion along the

perimeter, in part to speed up the computation. In reality the

process may involve active stimulation and/or transport of sig-

naling molecules over a wider area, possibly involving mul-

tiple pathways, such as small GTPases (21), phosphoinositides

(22,23), and phosphotyrosine (24) that directly or indirectly

affect actin polymerization. The second deterministic term

takes into account the decay of protrusion signals, which may

involve GTP hydrolysis, dephosphorylation, phosphoinotide

metabolism, and/or proteolysis.

The second part of Eq. 3 represents a stochastic positive

feedback loop that accounts for both the ‘‘local stimulation’’

TABLE 1 Variables used in the model

Variable Symbol Definition Biological/molecular interpretation

Protrusion signals

Diffusion Rate (mm2/s) Kdiffuse Signal change driven by concentration gradients Transport of factors that promote actin

polymerization and protrusion, approximated

as a 1D diffusion process along the border

Decay rate (1/s) Kdecay Fraction of signal decrease per unit time Rate of deactivation of signals for actin

polymerization, e.g., through dephosphorylation,

proteolysis, ligand dissociation, or depletion

Random burst rate (1/s 3 1/mm) Pbaseline Expected number of pulses per unit time per unit

length due to baseline activities

Rate of spontaneous generation of signals that

promote actin polymerization and protrusion

Burst size Nburst Average magnitude of each protrusive pulse Magnitude of spontaneous signals that promote actin

polymerization and protrusion

Retraction signals

Inhibitory signal concentration

constant (1/mm3)

C� Concentration of retraction signals generated

per unit spread area per unit integrated

protrusion signals

Responses of signals that promote global cell

retraction, such as Rho GTPases and phosphatases

like PTP-Pest, in relation to protrusive activities

and spreading area

Shape change

Protrusion rate (mm/s) R1 Average rate of increase in radius during

protrusion

Rate of pseudopodium extension

Retraction rate (1/s) R� Rate of fractional decrease in radius during

retraction

Rate of retraction in relation to distance from the

cell center

Feedback curve

Slope (1/s) g Slope of the positive feedback curve; rate of new

signals stimulated by existing net signals

Gain of the positive signal feedback loop that

generates signals for actin polymerization and

protrusion in proportion to existing activities

Takeoff point (1/mm) l X-intercept of the positive feedback curve Minimal protrusive signals required to activate the

feedback loop that promotes actin polymerization

and protrusion

Focal adhesions

Formation probability P1
fa Probability of formation of a FA per unit time Probability/rate of the formation of new focal

adhesions in an extending area

Half-life T
1=2
fa Average halftime for a FA Longevity of focal adhesions after formation
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and the generation of random signals. New signals are re-

leased as bursts with an average magnitude of Nburst, multi-

plied by the rate of bursts whose average is expressed as

f(S1(r, t)� S�(t), g, l) 1 Pbaseline. The positive feedback is

represented by a piecewise linear function f(x, g, l), defined as

0 if x , l; f ðx; g; lÞ ¼ ðx � lÞg if x $ l; (4)

where l represents the takeoff point for the feedback with a

dimension of 1/length and g is the slope or gain of the

response with a dimension of 1/time. The feedback loop is

responsible for generating more protrusion signals in pro-

truding regions, where S1(r, t) . S�(t) 1 l. It accounts for

the fact that the signaling cascades for protrusion not only

transduce, but also amplify the stimulus, as has been

established for the signaling lipid PIP3 (23). In addition,

for adhesive cells, anterior focal adhesions may respond to

substrate interactions by generating new protrusion signals,

as part of their signaling functions (21). The sustained auto-

nomous locomotion of cell fragments is further evidence of a

strong positive feedback loop intrinsic to the cellular motile

machinery (25). Pbaseline, with a dimension of 1/(length 3

time), accounts for the rate of random bursts due to internal

baseline activities, and is responsible for generating signals

for random protrusions and turns. Stochasticity of new

signals is controlled by the Gaussian distribution function

G(a) with mean and variance equal to a.

Regulation of retraction signals

The retraction signal is specified by a simple global inhibition

rule of the form

S
�ðtÞ ¼ C

�
A

Z
S

1 ðr; tÞdr; (5)

where C� is an inhibition constant with a dimension of

1/length3, A is the total area of the cell, and the integration of

protrusion signals is carried out over the cell perimeter.

This equation encompasses several factors that contribute to

the tendency of cells to retract. The inclusion of area, A, keeps

an already well spread cell from spreading further, and

may reflect a feedback loop that stimulates myosin-driven

contractility or elasticity-based retraction as a function of cell

spreading. Without this dependence, the cell area becomes

very unstable. A similar rule relating the effects of myosin-

driven contractility to the cell area was used by Nishimura

and Sasai (26). The protrusion signals, integrated around the

cell border,
R

S1(r, t)dr, couple retraction with total protru-

sive activities. It may involve signaling elements like the

small GTPase Rho that responds to protrusive activities over

a long range (17), or the phosphatase PTP-PEST (27).

Equations 1–5 involve a mere nine parameters for cells

without focal adhesions, R�, R1, Kdiffuse, Kdecay, Nburst,

Pbaseline, l, g, C�, and two additional parameters, P1
fa and P�fa,

for focal adhesions (Table 1). In addition, a parameter to

be described later defines the timescale for calibrating the

migration speed of the model against experimental results.

NUMERICAL IMPLEMENTATION OF THE MODEL

Computation of cell shape and migration (see
supplemental source code)

The cell was defined by its perimeter points relative to the

center (xc, yc), with r expressed in polar coordinates (uj, rj),

j ¼ 1,. . .,360, such that there was one perimeter point per

degree. At any time point, i, the extension or retraction of a

perimeter point, j, was controlled by the balance between a

local protrusion signal, S1
j;i; and a global retraction signal, S�i ;

as described above. Protrusion and retraction took place as

an increase or decrease in rj. This resulted in change of the

cell shape and movement of the cell center (xc, yc) (Fig. 1).

Although radial extension/retraction prevented certain com-

plex shapes such as a dumbbell or a broad growth cone at the

tip of an axon, it did not significantly limit the modeling of

FIGURE 1 Shape machine for modeling cell migration. (A) Shape change

is driven by the decrease (gray arrowheads pointing inward) or increase

(double black arrowheads pointing outward) of the radius at each point

along the perimeter. (B) The center of the cell is shifted as a result of the

shape change (black arrow). (C) The angle and radius at each perimeter

point are then recalculated relative to the new cell center.
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normal amoeboid movement, since most shapes extracted

from experimental recordings of Dictyostelium were ex-

pressed readily in this polar coordinate system. The equations

for retraction and extension per iteration were similar to cor-

responding Eqs. 1 and 2, respectively.

Drj;i ¼ maxððrj;i � rminÞR�; 0Þ when S
1

j;i # S
�
i : (19)

Drj;i ¼ maxðGðR1 Þ; 0Þ when S
1

j;i . S
�
i ; (29)

where rmin was set as a constant of 10 pixels or 2.86 microns

for Dictyostelium.

Focal adhesions were allowed to form at protrusive pe-

rimeter points rj,i (i.e., S1
j;i . S�i ), as determined by a sto-

chastic Boolean function u(P1
fa ), which was true with

probability P1
fa and false with probability 1 � P1

fa : Focal

adhesions were disassembled with a similar stochastic

Boolean function, uðP�faÞ: The halftime T
1=2
fa is related to P�fa

as T
1=2
fa ¼ �ln 2/ln (1 � P�fa).

Computation of protrusion and retraction signals

In the preceding sections, we introduced partial differential

equations (Eqs. 1–5) for calculating the signals S1 and S�.

For computational implementation, however, it was more

convenient and efficient to use an approximated integrated

form of Eq. 3, implemented as a coupled map lattice (28) in

the generalized form of S�i ¼ Fðrj;i�1; S�i�1; S
1
j;i�1Þ and S1

j,i ¼
F9(rj,i�1, S�i�1; S

1
j,i�1). This avoided the complexity of solving

one-dimensional differential equations along a deformable

boundary. At any iteration, i, the protrusion signal at a cell

perimeter point, j, was computed according to

S
1

j;i ¼ S
1

j;i�1 1 DðS1

j;i�1;KdiffuseDtÞ � S
1

j;i�1KdecayDt

� DðS1

j;i�1;KdiffuseDtÞKdecayDt maxðGðNburst

3ðf ðS1

j;i�1 � S
�
i�1; g; lÞ1 PbaselineÞÞ; 0ÞDt; (39)

where Dt is the time interval between i and i� 1 in the unit of

iteration cycle, which equals 1 for the computation. It is

shown for the sake of balancing the units. The second, third,

and last terms on the righthand side account for the contribu-

tions of diffusion, decay, and generation of new signals, respec-

tively, as shown in Eq. 3. The fourth term applies a correction

due to the fact that diffusing signals also decay simultaneously.

Except for the diffusion function D(), the definitions of

functions and parameters remained the same as in Eq. 3.

We used a finite difference form for the diffusion term.

When the rate was small, such that the distances between

adjacent perimeter points dj�1,j,i and dj,j11,i were both larger

than the characteristic distance O(2Kdiffuse), the amount of

signal diffusion was given by

DðS1

j;i�1;KdiffuseÞ ¼ ½½S1

j�1;i�1 � S1

j;i�1�=2d2

j�1;j;i�1�KdiffuseDt

� ½½S1

j;i�1� S
1

j 1 1;i�1 �=2d
2

j 1 1;j;i�1�KdiffuseDt;

(6)

where dj11,j,i�1 was computed according to the radii rj11,i�1

and rj,i�1 and an angular span of 1�:

dj 1 1;j;i�1 ¼ O½r2

j;i�1 1 r
2

j 1 1;i�1 � 2rj;i�1rj 1 1;i�1 cos 1��: (7)

The two terms on the righthand side of Eq. 6 represented

contributions to the protrusion signal at site j by the diffusion

from adjacent sites j � 1 and j 1 1, respectively. When the

distance between adjacent perimeter points was smaller than

the characteristic distance O[2Kdiffuse], the effect of diffu-

sion extended significantly beyond the adjacent sites and

DðS1
j;i�1;KdiffuseÞ was calculated based on the average signal

on each side of the point j, S1
av j, i�1

DðS1

j;i�1;KdiffuseÞ ¼ ½S1

av j;i�1 � S
1

j;i�1�=2; (8)

where S1
av j, i�1 is the average signal over a characteristic

distance of O(2Kdiffuse). S1
j,i from Eq. 39 was set to 0 when it

fell below a threshold of 10�4, otherwise cell behavior may

be dominated by minuscule signals. The results were not

affected significantly with this threshold set between 10�4

and 10�10.

At every time point, the retraction signal was given

through a global inhibition rule of the form similar to Eq. 5

S
�
i ¼ C

�
ASjS

1

j;i�1; (59)

where the sum was taken over the cell perimeter.

The above equations were implemented in a C11 pro-

gram on a personal computer. At t ¼ 0, the model cell was

assumed to have a circular shape with a radius of 10 pixels,

the minimal radius rmin. Protrusion signals were assumed to

be at a pseudo-steady state, S1
j;i11 � S1

j;i ¼ 0; and to have a

constant value around the cell perimeter (i.e., no diffusion).

Therefore, after setting D ¼ 0, S1
j,i11 ¼ S1

j;i; simplifying G(x)

to x in Eq. 39, and setting A ¼ 100p in Eq. 59, we obtained

S
1

j;0 � Nburst½Pbaseline � gl�=½Kdecay � gNburst½1� 36000pC
���
(9)

when the resulting S1
j;0 $ l/(1 � p36000C�); otherwise,

S
1

j;0 � NburstPbaseline=Kdecay: (10)

S�0 was then calculated as 36000pC�S1
j;0:

Calculation of metrics and calibration of
the model

The shape and migration of model and experimental cells

were characterized with a set of metrics, including maximal

radius, area, area fluctuations, speed, roundness, and persis-

tence (29). Metrics for simulations were computed every

n iterations (referred to as the sampling interval) during the

steady state, which spanned between the 2000th and 25,000th

iterations after initiation of the simulation. These quantities

were averaged over the period of experimental observations or

computational simulations. Area was calculated as Spr2
j =360:

Area fluctuation was the standard deviation of the area over

the period of observation or simulation, and shared the same
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unit as area. Speed was defined as the displacement of cen-

troid per sampling interval. Roundness was defined as A/pR2,

where A represents the area and R ¼ max(rj), j ¼ 1,. . .,360.

Persistence of centroid movement was defined, for a given

persistence reference length L, as L/(speed 3 T), where speed
was the average speed of the cell, and T was the average time

needed for the cell to migrate for a net displacement of L.

Therefore, persistence measured the actual displacement

against (speed 3 T), which was the net displacement if the

migration were entirely persistent (persistence ¼ 1; Supple-

mentary Material, Fig. S1 A). Persistence was a function of L
(Fig. S1 B) and had a theoretical range between 0 and 1. In

practice, the value L was chosen such that the resulting per-

sistence was between 0.5 and 0.8.

To match the temporal scale of the model with that of ex-

perimental observations, the sampling interval of the model, n,

was treated as a variable such that time-dependent metrics (i.e.,

speed, persistence, and area fluctuation) matches those mea-

sured experimentally. Thus, n iterations of computation be-

came equivalent to one interval of image acquisition, which

was 1 s. Length scale was determined by imaging a calibrated

micron scale, which yielded 3.5 pixels per micron.

Constrained particle swarm optimization

Numerical optimization was used for unbiased search for

conditions where the behavior of the model matched that of

Dictyostelium as judged by the set of metrics defined above.

Numerical optimization involved the definition of a fitness

function that measured the difference between the model

and experimental cells. The fitness function was defined as

OSi[[mi � mi0]/si0]2/On, where i was indexed over the six

metrics defined above, mi was the model metrics, mi0 was the

average experimental metrics, and si0 was the standard de-

viation of the experimental metrics. mi0 and si0 were obtained

from eight cells recorded for 20 min under each condition

(Table 2).

A slightly modified version of the particle swarm optimi-

zation algorithm was used to search for conditions that

minimized the fitness function (30). The algorithm was par-

ticularly efficient for exploring large multidimensional

spaces for global minimum (our model has 10 variables to

optimize), and was insensitive to the starting condition. The

approach was also relatively robust against the noisy fitness

function due to the stochastic nature of the model. Briefly, the

multidimensional parametric space was surveyed by a num-

ber of interacting ‘‘particles’’ that traveled through the space.

The initial particle positions followed a random logarithmic

distribution to improve sampling of the space. Particle ve-

locities were bound to one-fourth of their maximal values,

and the best historic position of each particle was routinely

reevaluated to avoid false solutions due to the inherent noise

of the model. In addition, each input parameter was con-

strained to be both positive and smaller than a defined maximal

value. Particles reversed the direction of travel when any pa-

rameter hit its boundaries.

The computation was parallelized using the message-

passing interface (MPI) on a Linux cluster, which was

particularly suitable for efficient computation of multiple in-

dependent searching particles. The cluster had 174 nodes of

dual AMD Opteron processors. Each session of computation

typically used 20–25 nodes and required ,100 rounds of

evaluations for convergence. We collected solutions where

the fitness was ,0.07 and all the metrics were within 15% of

experimental measurements. Correlation of input parameters

among the solutions was detected by scatter plots and linear

regression using Microsoft Excel. Statistical significance of

the correlation of each pair was determined by the t-test, with t
calculated as r O(N � 2)/O(1 � r2), where r was the Pearson

correlation coefficient and N was the sample size. Full fac-

torial ANOVA analysis of the impact of input parameters on

metrics was performed with SAS (version 9) using a general

linear model procedure.

EXPERIMENTAL METHODS

Culture and imaging of Dictyostelium

Dictyostelium discoideum AX3 cells, a kind gift from D. A. Larochelle (Clark

University, Worcester, MA), were cultured in HL5 media on polystyrene

plates and harvested during the log phase for imaging. Cells were plated

underneath a 1% agarose gel in HL5 media, on plastic dishes in which the

bottoms were replaced with glass coverslips. After 30 min of spreading be-

TABLE 2 Experimental metrics of control and nocodazole-treated Dictyostelium

Maximum radius(mm) Area (mm2) Area fluctuation* (mm2) Speed (mm/s) Roundness Persistencey

Control 25 (2/2) 1080 (137/22) 22 (11) 0.31 (0.21/0.04) 0.55 (0.08/0.06) 0.77 (0.09/0.06)

Nocodazole 29 (4/3) 1230 (277/42) 42 (15) 0.32 (0.12/0.04) 0.45 (0.09/0.06) 0.51 (0.13/0.13)

Definitions of the six metrics are given in the section Calculation of metrics and calibration of the model. The measurements are performed on eight cells for

each condition, and the recording period for each cell is 20 min at intervals of 0.8–1.5 s. These measurements yield average values over the recording period

for each cell VA
1 . . . VA

8 ; and the corresponding standard deviations VSD
1 . . . VSD

8; where V represents the metrics. The averages and standard deviations of

VA
1 . . . VA

8 are the value outside the parentheses and the first term in the parentheses, respectively. The averages of VSD
1 . . . VSD

8 are shown as the second term

in the parentheses.

*Area fluctuation for each cell is defined as the standard deviation of the area over the period of the observation, i.e., VSD
i ; for the area. Therefore, it has the

same unit as Area, and the same value as the second term in parentheses for Area. In addition, there is only one standard deviation for Area fluctuation, which

is the standard deviation of VSD
1 . . . VSD

8 for area.
yReference persistence lengths used, L, were 48.58 mm for the control and 38.87 mm for nocodazole-treated cells (see Calculation of metrics and calibration

of the model, and Fig. S1).
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tween the glass and the agarose, cells were imaged with a Zeiss IM35 in-

verted microscope using a 403 phase-contrast objective (Thornwood, NY).

Cells with a visually typical spreading area as seen in the population were

selected for recording. Time-lapse images were acquired with a video-rate

charge-coupled device camera (12V1E-EX, Mintron, Santa Clara, CA) at

0.8- to 1.5-s intervals for a period of 20 min using custom software. For

microtubule depolymerization, cells were treated with 20 mM nocodazole

(Sigma, St. Louis, MO) for 1 h before imaging. The same concentration of

nocodazole was present in the 1% agarose gel overlay during image acqui-

sition.

Boundary extraction from cell images

Extraction of boundaries of experimental cells was automated via image

segmentation. Briefly, a Perl script invoking filters from the Insight Toolkit

Library (version 2.6.0; National Library of Medicine) and functions from

ImageMagick (version 6.2.2) were used to convert cell images into binary

bitmaps. The main components of the script were a region-growing, confi-

dence-connected filter and a level-set shape-detection filter. Linear coordi-

nates of cell boundaries were then extracted from bitmaps using customized

software in C, and converted to polar coordinates, as for model cells. The

shape and migration characteristics were then analyzed using the same

metrics as applied to the model.

RESULTS

Modeling the shape and migration
of Dictyostelium

We have built a top-down model that generates 2D cell

shapes and movements under the control of a minimal im-

plementation of the local-stimulation-global-inhibition mech-

anism. The behavior of model and experimental cells was

compared using a set of metrics (Table 2), three of which

measured cell shape (area, maximal radius, and roundness)

and three of which measured dynamic behavior (area fluc-

tuation, speed, and persistence). Experimental metrics were

obtained by automatic extraction of the cell contour from

time-lapse images of Dictyostelium migrating under an aga-

rose overlay (31), which forced the cell to take a 2D shape in

agreement with the 2D nature of the model, and eliminated

complications due to 3D extensions and tumbling of the cell

body (32). Details on the definition of the metrics and the

procedure used for extracting cell contours are presented in

the sections on Calculation of metrics and calibration of the

model and Boundary extraction from cell images.

To match the model with experimental observations

(Table 2), we searched for set(s) of input parameters that

minimized their differences, based on a fitness function that

measured aggregated differences in metrics. The search was

conducted in a nonbiased way using the recently developed

method of particle swarm optimization (PSO) (30), a social-

biology-like strategy with multiple interacting ‘‘agents’’ that

traveled through the multidimensional parameter space (see

Constrained particle swarm optimization). This approach

outperformed the alternatives tested (e.g., simplex method

(33)) due to its robustness against stochastic noise, its effi-

ciency for exploring high-dimensional space, its lack of

sensitivity to initial conditions, and its suitability for paral-

lelization.

Analysis of conditions that regenerate the
Dictyostelium behavior

We were surprised to find hundreds of distinct conditions that

met the metrics criteria, as confirmed by visual inspection of

the resulting shapes and migration patterns that mimic live

Dictyostelium (see Fig. 4 A and Supplementary Material,

Movie S1). Some of the parameters, such as burst rate,

Pbaseline, burst size, Nburst, and the slope of positive feedback,

g, spanned a wide range of values, whereas other parameters,

such as the inhibition constant, C�, and the rate of retraction,

R�, were confined within a narrow range (Table 3 and Fig. 2

A). Attempts at classifying the solution space via cluster

analysis did not reveal any apparent structure of the data,

suggesting that the solution space is a continuous subspace of

the parameter space.

We performed pairwise scatter plots to identify possible

relationships among the solutions. The strongest correlation

was found between the decay rate of protrusion signals,

Kdecay, and the net production of random protrusion signals,

Nburst 3 Pbaseline (R2 . 0.95; Table 4 and Fig. 3). Their mutual

compensation explains the wide range of these parameters

(Table 3). To explore further the impact of each parameter on

each of the behavior metrics, we performed statistical analysis

using a full factorial design. We chose the reference point as

the solution lying closest to the center of mass of the solution

set. Then we built a set of 29 ¼ 512 conditions around the

reference point, corresponding to a hypercube in the nine-

dimensional parameter space. Each condition differed from

the reference point by increasing or decreasing one or more of

the parameters by one standard deviation (Table 3). The

metrics under each condition were then determined and ana-

lyzed by ANOVA, for the impact of each of the nine param-

eters and all of the two-parameter interactive factors (a total of

45 factors) on each of the metrics. The analysis, shown as a

heat map (Fig. 2 B), indicated that eight out of the nine pa-

rameters were essential for fitting the model (p , 0.0001). In

addition, seven interactive factors also had a significant effect

on cell behavior. The decay rate of protrusion signals, Kdecay,

and the net production of random protrusion signals, Nburst 3

Pbaseline, were found to be universally important, affecting all

metrics. Their similar impacts were consistent with the mutual

compensation seen in the scatter plot analysis.

Other parameters showed differential impact on specific

metrics. For example, the inhibition constant, C�, has a

strong effect only on the spread area, as it can be intuitively

rationalized from Eq. 5. In addition, the diffusion coefficient,

Kdiffuse, controls the propagation of signals around the cell

perimeter, and its effects on cell roundness make intuitive

sense. Also readily explained were the dependence of

roundness on the rates of protrusion, R1, and retraction, R�,

and the effects of R1 on speed and maximal radius. It is
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important to emphasize that the outcome of such analysis is

likely to vary among different cell types.

Dissecting the functional role of microtubules in
cell shape control and migration

By comparing the conditions that generate the behavior of

normal cells and cells manipulated pharmacologically or

genetically, the model presented here may serve as a pow-

erful tool for determining potential targets of specific proteins

in the control circuit. We have applied this approach to

Dictyostelium treated with nocodazole to depolymerize mi-

crotubules. At the concentrations of nocodazole used (20

mM), only a small number of short microtubules remained in

the region immediately surrounding the microtubule orga-

FIGURE 2 Conditions that reproduce cell shape and

movement of control Dictyostelium cells. (A) Box plot

representation of the distribution of values for each param-

eter. Units (described in Table 3) have been omitted for

clarity. Boxes represent first quartile, median (middle bar),

and third quartile; vertical lines indicate maximum and

minimum values. (B) Heat map indicating parameters that

significantly influence each of the cell metrics according to

the full factorial ANOVA analysis. Gray levels indicate p

values with white representing the most significant (low-

est p values) and black the least significant (high p values).

The values are clustered as follows: p . 10�2 . 10�3 .

10�4 . 10�6 . 10�8 . 10�12 . 10�16 . 10�24 . 10�32 .

10�48 . 10�64 . 10�96 . 10�128.

TABLE 3 Conditions for generating normal Dictyostelium behavior

Average Standard deviation Minimum Maximum

Diffusion rate, Kdiffuse (mm2/s) 1.19 3 101 5.49 5.06 3.08 3 101

Decay rate, Kdecay (1/s) 2.42 3 10�2 7.73 3 10�3 1.03 3 10�2 5.85 3 10�2

Random burst rate, Pbaseline (1/s 3 1/mm) 1.81 3 10�1 1.42 3 10�1 3.15 3 10�2 6.45 3 10�1

Burst size, Nburst 1.30 3 101 6.39 1.32 2.41 3 101

Protrusion inhibitor, C� (1/mm3) 3.26 3 10�6 6.08 3 10�8 3.07 3 10�6 3.47 3 10�6

Protrusion rate, R1 (mm/s) 1.03 3 10�1 2.45 3 10�2 5.24 3 10�2 1.59 3 10�1

Retraction rate, R� (1/s) 2.81 3 10�2 3.04 3 10�3 2.01 3 10�2 3.64 3 10�2

Feedback slope, g (1/s) 2.91 3 101 1.50 3 101 4.04 7.27 3 101

Feedback takeoff point, l (1/mm) 3.22 8.47 3 10�1 1.55 5.04

PSO was used to generate ;300 conditions that reproduce the shape and migration pattern of Dictyostelium, as determined by six metrics (Table 2) and a

fitness function that measured the aggregated difference between the model and experimental cells (see Constrained particle swarm optimization).
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nizing center (34), effectively depleting the microtubules that

interact with the cell cortex.

Experimental metrics for nocodazole-treated cells were

obtained as for control cells. The most prominent differences

were a decrease in the persistence of cell migration and an

increase in the fluctuation of spread area (Fig. 4 B and Table

2), consistent with the loss of polarity and shape stability for

other cell types treated with nocodazole (17). There was also

a significant increase in spread area and a decrease in

roundness (p , 0.001). Modeling these characteristics using

PSO led to a set of conditions distinct from those for control

cells. Relative to the standard deviation, the most significant

differences were an 81% increase in the rate of retraction, R�,

a 46% increase in Kdecay, and a 13% decrease in the inhibition

constant, C� (Fig. 5 A). Other parameters that showed sta-

tistically significant differences (p , 0.005) were Kdiffuse and

g (Fig. 5 A).

The rates of retraction and protrusion were both parameters

for the model and experimentally measurable quantities, and

may serve as a means for validating the computation. Anal-

ysis of the experimental movies indicated an increase in re-

traction rate for nocodazole-treated cells compared to control

cells, in agreement with the model (Fig. 5 A). Qualitatively,

the increase in retraction rate was visible as a more rapid

collapse of the tail in nocodazole-treated cells compared to

control cells (see Movies S1 and S2 for experimental results

and Movies S3 and S4 for matching simulations). In addition,

consistent with the model, measurements of experimental

protrusion rates showed no significant effect of nocodazole

treatment (Fig. 5 A). However, the measured protrusion rates

were several times larger than modeled values. Visual in-

spection of the movies indicated that protrusions in experi-

mental cells were more transient and localized than those in

model cells, which likely accounted for the higher values.

Mathematical transformation from Dictyostelium
to other cell types

By systematically changing each parameter, we were able to

test the effects of specific ‘‘mathematical mutations’’ on cell

TABLE 4 Correlation between pairs of parameters that generate normal Dictyostelium behavior

Diffusion rate,

Kdiffuse

Decay rate,

Kdecay

Random burst

rate, Pbaseline

Burst size,

Nburst

Protrusion

inhibitor, C�
Protrusion

rate, R1

Retraction

rate, R�
Feedback

slope, g

Decay rate, Kdecay 0.1635

Random burst rate, Pbaseline NS NS

Burst size, Nburst NS NS 0.6463
Protrusion inhibitor, C� 0.1345 0.3612 NS NS

Protrusion rate, R1 0.1457 NS 0.2563 0.2186 NS

Retraction rate, R� 0.2878 NS 0.1680 NS NS 0.2951

Feedback slope, g NS NS NS 0.1049 NS NS NS

Feedback takeoff point, l NS 0.6087 NS 0.3252 0.3352 0.1762 NS 0.1001

Burst rate 3 burst size, Pbaseline 3 Nburst NS 0.9541 NS 0.1465 0.3660 NS NS 0.7810

Values indicate R2 of linear regression of the scatter plot between two parameters, determined from ;300 sets of conditions. NS, insignificant correlation,

with a two-tailed null-hypothesis probability p . 0.02, or R2 , 0.1. Bold numbers indicate strongest correlations (see Fig. 4 for scatter plots).

FIGURE 3 Correlation between parameters that generate

normal Dictyostelium behavior. Several pairs of parameters

from a collection of 328 solutions that generate equivalent

Dictyostelium behavior are plotted as scatter plots and fit

with linear regression. R2 values for other pairs are shown

in Table 4.
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shape and migration (Table 5 and Fig. 6). Addition of focal

adhesions, which were modeled as anchorage points resisting

retractions, turned model Dictyostelium into wedge-shaped

cells with retraction fibers (Fig. 6 B and Movie S5), charac-

teristic of fibroblasts. In addition, the movement showed

surges after tail detachment, as reported with migrating fi-

broblasts (1). Alternatively, an increase in positive feedback,

by decreasing the takeoff point l, was sufficient to cause

model Dictyostelium to transform into a stable half-moon

shape and to move with a constant speed and high persis-

tence, characteristic of keratocytes (Fig. 6 C and Movie S6).

Finally, simultaneous decreases in Kdiffuse, Kdecay, Pbaseline,

R�, and l lead to a stationary cell body and a thin, highly

localized protrusion characteristic of neurons (Fig. 6 D and

Movie S7). It is interesting that none of the phenotypic

changes for these transformations required a change in the

slope of the positive feedback loop, g, consistent with its low

impact indicated by the factorial analysis.

DISCUSSION

By its nature, quantitative modeling does not provide direct

evidence for a hypothetical mechanism, but serves as a

powerful tool to test whether it is sufficient to explain ex-

perimental observations and to generate new hypotheses. The

approach is particularly useful for testing the outcome of

complex interactions between structural and regulatory

mechanisms, which can be difficult or misleading to predict

based on intuition. Conversely, it can be equally challenging

to interpret complex phenotypes, such as changes in cell

shape or migration pattern. Mathematical modeling provides

a unique approach for understanding these phenotypes in

terms of specific mechanisms.

Modern cell biology has focused largely on understanding

specific molecules and molecular assemblies. The basic

premise of this reductionist approach is that by characterizing

all the molecules and potential molecular interactions in a cell,

one should be able to put the pieces together and understand

how cells function. However, although this approach may be

highly effective against problems of a limited scale, it can be

challenging when addressing complex functions that involve

multiple hierarchical interactions at a cellular or multicellular

level, as the task is likely to encompass a wide range of scales

from single molecules to interactive functions created by large

ensembles of molecules across the entire cell.

In this study, we have focused on the function of the local-

stimulation-global-inhibition mechanism in regulating cell

shape and migration. Due to the complexity of these pro-

cesses and incomplete knowledge about the inventory of

proteins and their properties, we decided to use a top-down

approach that dissects a cell into a limited number of inter-

acting modules, each of which may represent the collective

functional output of an ensemble of molecules. As a starting

point, our model involved only 10 variables and four func-

tional modules representing protrusion, retraction, a local

positive feedback loop promoting protrusions, and a global

negative feedback loop inhibiting protrusions and promoting

retractions. The general involvement of local stimulation

global inhibition has received strong support in the field of

chemotaxis (15). In addition, previous experiments have

FIGURE 4 Shape and migration pattern of experimental

and model Dictyostelium, for control cells (A) and nocoda-

zole-treated cells (B). The path is shown as overlapping cell

contours from four representative experimental (a–d) or

model (e–h) cells. Interval between successive cell contours

is 40 s. Model cells are generated with parameters from one

of the PSO solutions near the centroid of the set of answers.

Asterisks indicate the starting point of the path. Scale bar,

50 mm.
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implicated the PI3 kinase and the small GTPase Rac in

positive feedback at the leading edge (17,36–37), and the

phosphatase PTEN and the small GTPase Rho in maintaining

a retracting tail (16,17,38).

Our results indicate that a minimal implementation of this

local-stimulation-global-inhibition mechanism is sufficient

to explain the complex behavior of Dictyostelium cells, in-

cluding their amoeboid shapes and persistent random walks

in the absence of chemotactic signals. In addition, adding a

minuscule bias to the random protrusion signals, Pbaseline,

was sufficient to induce directed migration reminiscent of

chemotaxis (Y.-L. Wang, unpublished observations). To our

surprise, blind search with the PSO algorithm generated a

large number of conditions with equivalent behavior. Al-

though the inclusion of additional metrics, such as the tem-

poral periodicity of area or the fluctuation of speed, may

reduce the degree of degeneracy, the strong correlation be-

tween some of the parameters indicates a mutually compen-

satory relationship analogous to genetic complementation.

Indeed, some of these relationships make intuitive sense. For

example, an increase in stochastic signal production (Pbaseline

3 Nburst, or frequency of random pulses multiplied by the

magnitude of the pulse) may be compensated by a higher rate

of signal degradation, Kdecay. Such complementation is likely

to be critical for adaptation, and may occur with or without

physical interactions between the functional modules.

One of the most useful aspects of the approach described

here is its ability to model complex phenotypes as a result of

pharmacological or genetic manipulations, which allows

descriptive observations to be understood in terms of per-

turbations to specific functional modules. The analysis of

Dictyostelium treated with nocodazole to depolymerize mi-

crotubules provides an informative example. Depolymer-

ization of microtubules is known to have visible effects on the

shape and migration pattern of a number of cell types, which

have been attributed to changes in polarity (39), contractility

(40), adhesion (41), or pseudopod formation (42). However,

the exact roles of microtubules in the motile machinery re-

main unclear. Our analysis revealed three major effects of

microtubule depolymerization: a 1.8-fold increase in the rate

of retraction, R�; a 1.5-fold increase in the decay rate of

protrusion signals, Kdecay; and a 13% decrease in the global

FIGURE 5 (A) Parameters that generate the behavior of

nocodazole-treated Dictyostelium cells relative to those for

control cells. Black bars indicate the percentage change of

each of the parameters upon nocodazole treatment (left).

Asterisks indicate statistically insignificant differences (p .

0.005). White bars indicate retraction and protrusion rates

predicted by the model using PSO, whereas black bars

indicate experimentally measured retraction and protrusion

rates (center and right). Error bars are standard deviations

over the optimization solution space. (B) Box plot repre-

sentation of the distribution of parameters for generating the

behavior of control (black; same as in Fig. 2 A) or

nocodazole-treated Dictyostelium (gray).
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inhibition constant, C�. The change in C� readily explained

the increase in cell area in nocodazole, according to the

factorial analysis (Fig. 2 B). In addition, the increase in re-

traction rate, confirmed by experimental measurements, ap-

peared consistent with the increase in the contractility of

mammalian cells upon microtubule disassembly (40). De-

polymerization of microtubules in amoeba also caused a

shorter lifetime of pseudopods (42), which may be due to the

increase in signal decay rate. Shorter lifetime of pseudopods

may in turn explain the decrease in polarity (17), higher

fluctuation in cell area, and lower persistence of cell migra-

tion.

Further insights were gained by mathematically ‘‘mutat-

ing’’ various parameters and observing the effects on cell

shape and migration. We showed that such changes can lead

to drastically different shapes and migration behaviors,

mimicking various cell types. In retrospect, the effects seem

logical. For example, a keratocytelike behavior may be ex-

plained by a strong positive feedback that broadens the la-

mellipodia. Conversely, a neuronlike behavior requires a

very low rate of retraction to maintain a stationary cell body,

a low rate of diffusion to confine the protrusion to the growth

cone, a low rate of decay to maintain a persistent growth

cone, and a low burst rate of random signals to suppress the

formation of new protrusions. Our results further indicate that

destabilization of focal adhesions was sufficient to cause the

transformation of wedge-shaped fibroblasts to amoeboid

cells, as observed with transformed cells (43). The conditions

for generating these different cell behaviors shed important

light on the mechanism responsible for diverse cell shapes

and migration patterns.

The model presented here represents the first step of a

‘‘top-down’’ refining process, during which each module is

progressively replaced with multiple submodules, and each

parameter is replaced with a function of multiple parameters

to approach the complexity of live cells. The model will

generate an increasing number of testable predictions as the

complexity increases, and the interactive cycles of mathe-

matical modeling and experimentation should lead toward a

fundamental understanding of cell migration. A similar ap-

proach, where abstract functional modules, rather than mol-

ecules, serve as the basic unit of analysis, may be applicable

to a wide range of problems in cell biology.
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