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ABSTRACT The mechanosensitive channel of large conductance (MscL) belongs to a family of transmembrane channel
proteins in bacteria and functions as a safety valve that relieves the turgor pressure produced by osmotic downshock. MscL gating
can be triggered solely by stretching of the membrane. This work reports an effort to understand this mechanotransduction by
means of molecular dynamics (MD) simulation on the MscL of mycobacterium tuberculosis embedded in a palmitoyloleoylphos-
phatidylethanolamine membrane. Equilibrium MD under zero membrane tension produced a more compact protein structure, as
measured by its radii of gyration, compared to the crystal structure, in agreement with previous experimental findings. Even under
a large applied tension up to 1000 dyn/cm, the MscL lateral dimension largely remained unchanged after up to 20 ns of simulation.
A nonequilibrium MD simulation of 3% membrane expansion showed a significant increase in membrane rigidity upon MscL
inclusion, which can contribute to efficient mechanotransduction. Direct observation of channel opening was possible only when
an explicit lateral bias force was applied to each of the five subunits of MscL in the radially outward direction. Using this force, open
structures with a large pore of radius 10 Å could be obtained. The channel opening takes place in a stepwise manner and
concurrently with the water chain formation across the channel, which occurs without direct involvement of protein hydrophilic
residues. The N-terminal S1 helices stabilize the open structure, and the membrane asymmetry (different lipid density on the two
leaflets of membrane) promotes channel opening.

INTRODUCTION

Mechanical stimuli generated in cellular environments are

converted by a class of membrane proteins, known as me-

chanosensitive (MS) channels, into a variety of electrical or

chemical signals. This provides a basic mechanism of, e.g.,

hearing, touch, and osmotic regulation (1–3). The mecha-

nosensitive channel of large conductance (MscL), found in

bacteria, detects and responds to forces from the lipid bilayer

membranes and forms a large nonselective channel (diameter

30–40 Å) for osmolites across the membrane (4), relieving

the acute turgor pressure generated by osmotic downshock.

MscL has been reconstituted in liposomes and shown to be

activated directly by membrane tension (5). Because of its

large unitary conductance (;3 nS) and relative ease of ma-

nipulation, bacterial MscL has been studied extensively and

serves as a representative model system to understand me-

chanotransduction and, more generally, the relation between

the lipid-protein interaction and the membrane protein func-

tion (6).

MscL from Escherichia coli (Eco-MscL) is the best

characterized MS channel, with 136 amino acids in each of

five identical subunits. Although the crystal structure of Eco-

MscL has not been resolved, the solved structure of its ho-

molog from Mycobacterium tuberculosis (Tb-MscL) (7,8)

shows a pentameric assembly of subunits with two trans-

membrane (TM) domains near its closed state (Fig. 1). The

Tb-MscL subunit has both its N- and C-termini in the cyto-

plasmic side and traverses the membrane twice in the form of

TM1 and TM2 a-helices with a periplasmic loop region in

between, and ends as a third helical domain (S3) inside the

cytoplasm. From the N-terminus, the structural components

are arranged in the order S1-TM1-Loop-TM2-S3. According

to the recent crystal structure 2OAR (8), the N-terminal S1

helices stem from TM1 near the bottom of the transmem-

brane region and point outward between TM2 helices of two

other monomeric units of MscL. The pore is lined with five

TM1 helices and constricted near the cytoplasmic side by the

Ile14 and Val21 residues of the TM1 domain, and has a di-

ameter of ;3 Å. Despite their close sequence homology,

Eco-MscL gates at a significantly lower tension (;12 dyn/

cm) (9) than Tb-MscL (.20 dyn/cm) (10). These tension

values are near or beyond the lytic limit of many phospho-

lipid bilayer membranes (11).

Based on experiments on the spin-labeled (12,13) and

cysteine-substituted (14,15) Eco-MscL and computer mod-

eling, the open state was suggested to have some 45–70� tilts

in the TM1 and TM2 helices relative to the pore axis, the

pore still being lined with TM1 helices, and the membrane-

normal-projected length of TM2 reduced from 35 to 25 Å.

Thus, the identity and composition of the lipids influences the

gating behavior of MscL as a result of the hydrophobic

mismatch and modified lateral pressure profile (16,17). In

particular, the asymmetric incorporation of lysophosphati-

dylcholine (LPC) into either leaflet of the bilayer membrane

has induced a spontaneous opening of Eco-MscL (12,13),
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indicating the crucial effect of asymmetric lateral pressure

distribution on gating. On the other hand, reduction of the

lipid chain length from 18 to 16 or 14 carbons did induce

protein structural changes, but this state was still noncon-

ducting (12,13). Between the closed and open states, several

states with intermediate conductance have also been identi-

fied (9) whose transition to the fully open state is largely

tension-independent. The gating of MscL is generally be-

lieved to progress in a smooth irislike fashion (15). However,

the importance of asymmetric movements of the five subunits

in MscL gating has also been noted (18).

There have been numerous efforts to understand mecha-

notransduction using theoretical modeling and atomistic

simulations. Early molecular dynamics (MD) simulation

studies employing the crystal structure of Tb-MscL (7) ex-

plored the equilibrium structure in the membrane environ-

ment (19,20), the behavior of gain-of-function mutants (20),

and limited channel gating under tension or external force

(19,21). Kong et al. (22) applied targeted MD on model

structures of Eco-MscL (23). Elmore and Dougherty looked

at the effects of lipid headgroup identity and lipid chain

length (24) on the equilibrium behavior of Tb-MscL. Using a

similar atomistic model of Tb-MscL in explicit membrane,

Colombo et al. (25) observed a deformation and partial

opening of the protein under a large negative lateral pressure

corresponding to a tension of 500 dyn/cm. Gullingsrud and

Schulten (26) studied the gating of a homology model of Eco-

MscL with and without membrane by applying steering

forces on a few specific residues and noted the largest effect

when residues on the cytoplasmic side were pulled. Meyer

et al. (27) observed a restructuring of the loop region of Eco-

MscL placed in a curved membrane. The effect of electric

field has also been studied on the mechanosensitive small-

conductance (MscS) channel (28). The equilibrium MD

studies and a normal-mode analysis (29) generally indicate

the smallest fluctuations near the channel constriction region.

However, among the TM2 helices, the cytoplasmic side ex-

hibits larger amplitude of the slow modes than the peri-

plasmic end (29). At the continuum mechanics level (30–32),

the MscL-protein interaction has been usually formulated in

terms of three major components: 1), the membrane lateral

tension coupled to the in-plane area of MscL; 2), the bending

mode of the membrane coupled to the shape change of the

protein; and 3), the hydrophobic mismatch, that is, the thick-

ness of membrane coupled to the height of the protein. This

approach provides a theoretical framework with which exper-

imental or simulation results can be interpreted, although it

usually omits the hydration effect, and the relative contribution

of energetic components is difficult to quantify due to insuffi-

cient information on the material properties of the relevant

system. Recently, an intermediate approach was reported (33)

that employs finite element models of the MscL membrane

system with parameters gleaned from atomistic simulations.

In this article, MD simulation methods are applied to the

problem of MscL mechanotransduction with a focus on the

effect of the membrane under several different physical

conditions. Three different methods are applied to the at-

omistic models of Tb-MscL embedded in a palmitoylo-

leoylphosphatidylethanolamine (POPE) bilayer membrane.

First, the MscL structural changes in equilibrium with and

without lateral tension are studied by equilibrium MD under

different lateral pressures. The effect of membrane asym-

metry on the structure is also investigated by employing

membranes with different numbers of lipid molecules in the

upper and lower leaflets of the bilayer. Second, the modifi-

cation of the in-plane elastic properties of the membrane due

to the presence of MscL is investigated by nonequilibrium

MD (NEMD) simulation of the membrane area expansion

(34). Third, large-scale structural changes during gating are

directly monitored by applying a radially outward bias force

to MscL with applied tension, and in both symmetric and

asymmetric membranes. This approach is distinguished from

existing studies of a similar nature (22,26) in that 1), the

applied force is uniformly distributed to all atoms of each

subunit in a mass-weighted way; and 2), the incremental

effects of membrane configuration are investigated as well.

Although a uniform bias force does not reflect the membrane

pressure profile or specific lipid-protein interaction, it is the

simplest possible protocol and can reveal which parts of MscL

are expanded easily and which parts resist opening. This pro-

vides an insight into MscL expansion that is complementary

FIGURE 1 Structure of MscL in the crystalline state. The crystal structure

(PDB code 2OAR) is shown with structural components rendered in differ-

ent colors. All components shown were included in the full MscL simula-

tions, whereas C-terminus B was excised in truncated MscL simulations.

The components, with their residues, were: the whole protein (Met1–

Asn125), S1 (Met1–Arg11), TM1 top (Leu30–Ile43), TM1 bottom (Val15–

Ala29), TM2 top (Leu69–Phe79), TM2 bottom (Phe80–Leu89), the loop region

(Asn44–Asp68), C-terminus A (Val90–Asp108), and C-terminus B (Thr109–

Asn125). Note that the definition of TM2 (bottom) does not include some

residues of the helix to make it consistent with the old 1MSL analysis where

TM2 helix is much shorter. The image was prepared with the software

package VMD (57).
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to steered MD studies (26) where only a small number of

atoms are pulled. The effect of membrane is partly accounted

for in the radial bias force simulations because the membrane

always interacts with the MscL during force application and

modulates its response.

The results presented here suggest a close interplay be-

tween the membrane physical state and MscL opening. For

example, the membrane elasticity is enhanced by MscL and,

in turn, the partial opening and wetting of MscL is facilitated

by asymmetric configurations of the membrane where one

leaflet is denser than the other one. Thus, the asymmetric

lateral pressure profile is shown to be an important factor in

MscL gating, consistent with a similar effect from LPC in-

corporated in the upper leaflet of the otherwise symmetric

membrane (12,13). In addition, during an equilibrium MD

simulation under zero and negative lateral pressures (0 to

�1000 bar), MscL contracted to a conformation with a

smaller radius of gyration about the membrane normal axis,

confirming a previous experimental finding that the crystal

structure of Tb-MscL is in a partially expanded state (35–37).

Finally, these MD results include the first such results ob-

tained with the new 2OAR MscL structure.

METHODS

Computational models and system preparation

A single POPE lipid structure was obtained from Tieleman and Berendsen

(38) and replicated to form a bilayer composed of 392 lipids. Although the

presence of phosphatidylethanolamine (PE) lipid is known to increase the

tension threshold of MscL gating in membranes composed of phosphati-

dylcholine (PC) (39), POPE was chosen because PE is a predominant lipid

headgroup of the bacterial membrane. The structure was hydrated with

;10,000 simple-point-charge (SPC) water molecules (40), subjected to en-

ergy minimization, and equilibrated at 308 K and 1 bar for .10 ns (see

Supplementary Material for further details). The resulting configurations

(PWE1-PWE4; see Supplementary Material) were used in the NEMD sim-

ulations of the membrane-water (POPE) system. The Tb-MscL crystal

structure was obtained from the PDB file 2OAR (8) and placed in a cylindrical

membrane hole generated by removing ;100 lipids from an equilibrated

membrane PWM0 (cf. Supplementary Material). Residues 126–151 were not

resolved in 2OAR, leaving 125 residues (Met-1 to Asn-125) per monomer in

the simulated MscL. Residues were in a standard charged state and terminal

groups were modeled as uncharged. This makes the modeled protein neutral.

This structure was then energy-minimized and a short 0.05-ns constant NVT

simulation was performed with the protein heavy atoms restrained. This

initial configuration of the MscL-POPE system will be referred to as MPW0.

System MPW0 had one MscL pentamer, 284 POPE lipids, and ;20,000 SPC

water molecules (;80,000 atoms in total). This system was then equilibrated

for ;6 ns (Table 1, E1R, E2, and E3) under constant NPT conditions. The

system size at the end of the E3 simulation was 94.7 3 93.8 3 115.2 Å3. To

examine the protein-lipid interaction in the long timescale, a separate series of

equilibrium simulations (Table 1, F1R–F4B) was performed with 5 or 10 ns

of simulation with restraints on protein followed by 30 or 20 ns of unre-

strained dynamics. To reduce computational cost, a truncated MscL system

was also prepared by removing C-terminal residues 109–125 (Fig. 1) and

;5000 water molecules from the output of the E3 simulation, leaving

;64,000 atoms in a box of size 95.6 3 93.5 3 94.3 Å3 after 1 ns equilibration

(Table 1, SE). Residues in the truncated MscL have the same charges as in the

whole protein, except for the C-terminal carboxyl group, which was modeled

as deprotonated to make the protein neutral. Experimental studies indicate

that partial deletion of C-terminal residues does not affect MscL conductance

significantly (41). Asymmetric membranes were prepared by removing four

lipids at a time from one of the two leaflets of the bilayer accommodating

MscL with multinanosecond equilibrations in between (Table 1, SEC–SEF).

The bias potential runs (see below) were performed on a symmetric (142/142

lipids in the upper/lower monolayer (see Table 3, RS)) and two asymmetric

membranes (134/142 and 142/134 lipids (see Table 3, RSE and RSF)).

Parts of the simulations presented above were also performed starting

with the older PDB structure 1MSL (Ala10–Arg118 (7)). Since the results with

the 1MSL structure are not much different from those obtained with the

2OAR structure, only the 2OAR structure results will be presented in most

cases. However, comparison of the radial bias force simulations with the two

structures provides insight into the role of S1 helices in the gating of MscL.

Also, the NEMD and constant NPAT simulations in Table 2 were carried out

only with the 1MSL structure, since the focus there is the protein-induced

modification of membrane rigidity and the two crystal structures are similar

in the outer TM2 region in contact with the membrane.

Force-field parameters for POPE were those of Berger et al. (42) (lipid.itp)

available at GROMACS website (http://www.gromacs.org). For MscL, the

GROMACS force field (ffgmx.itp) was employed. All bonds were con-

strained to their equilibrium lengths with the LINCS algorithm. For the rigid

SPC water, the SETTLE algorithm was used. All simulations used the pe-

riodic boundary condition, and the closest distance between MscL images

was at least 20 Å at equilibrium.

Computational methods

MD simulations were performed with GROMACS 3.3.1 in most production

runs and partly with 3.2 or 3.3b (43,44), with modifications for the NEMD

and radial bias force runs. For temperature and pressure controls, the Nose-

Hoover (45,46) and Berendsen (47) algorithms, respectively, were used as

implemented in the GROMACS program, with relaxation times of 0.5 and

1.0 ps, respectively, in most cases. Equilibrium simulations with zero tension

were performed using the anisotropic pressure control with target pressure of

1 bar in all directions. Simulations under negative lateral pressure were also

carried out using the same algorithm. The employed target pressures were

1 bar in the membrane normal (z) direction and �100 or �1000 bar in the

lateral (in-plane; x and y) direction. The corresponding tension values are

;100 or 1000 dyn/cm. Thus, in the initial stages of simulation, the system

was generally in a nonequilibrium state. To see how the barostat parameters

affect the pressure relaxation from these initial states, several different bar-

ostat relaxation times and compressibility parameters have been used. The

employed values are given in Tables 1–3. The Lennard-Jones (LJ) interac-

tions were cut off at rLJ
cut: The POPE membrane simulations with rLJ

cut ¼ 10 Å

resulted in the separation of two monolayers. Thus, rLJ
cut ¼ 15 Å was used in

the early stages of the POPE membrane simulation (Supplementary Material)

and was reduced to 12 Å in the majority of production simulations. The

particle-mesh Ewald method (48) was used to treat long-range electrostatic

interactions with a real-space cutoff radius of 10 Å and grid spacing of 1.2 Å.

The time step size was 2 fs in all cases and trajectories were saved every 2 ps

for analysis in most cases.

For membrane channel proteins, the radius of gyration about the channel

symmetry axis, Rz
g; provides a useful measure of the lateral size of the pro-

tein. It is calculated as

R
z

g ¼ +
i

mir
2

i

�
+

i

mi

� �1=2

; (1)

where mi is the mass of atom i and ri is the distance of atom i from the

symmetry (z) axis. For simplicity, the channel symmetry axis is taken as the z
axis, which is normal to the membrane in the initial configuration. The root

mean-square deviation (RMSD) of the MscL from a reference structure pro-

vides additional information on the structural change. RMSDs of all atoms in

MscL were computed after least-square fit of each MD structure to the crystal

structure.
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The membrane thickness was determined as the mean distance along the z

axis between the phosphorus atoms belonging to each leaflet of the bilayer. In

MscL-POPE systems, the thickness was also calculated for lipids located

within ;10 Å of MscL (33 lipids in each monolayer) and the rest. The lipid

order parameter was determined as described in Supplementary Material and

its values for the lipids near and far away from MscL were separately cal-

culated. The two groups of lipids were prepared with the initial configuration

and not updated again because the lipid diffusion was not large on the MD

timescale. Pore radius of MscL was calculated with the HOLE program (49).

The deuterium order parameter SCD of the palmitoyl chains of the POPE

bilayer was determined from the orientation of C-C bonds assuming tetra-

hedral configuration (50), since the united atom model was used.

The NEMD simulation for the area change was carried out by instanta-

neously expanding the area of equilibrium systems at 1 bar pressure and then

monitoring the lateral stress response while keeping the normal pressure at

1 bar, as described in Jeon and Voth (34). For a stepwise strain of the form,

ulatðtÞ ¼
0 ðt , t0Þ;

u
0

lat ðt $ t0Þ
;

�
(2)

the apparent lateral relaxation function G2D(t) is obtained from

slatðtÞ ¼ 2u
0

latG2Dðt � t0Þ; (3)

where slatðtÞ ¼ ðsxx 1 syyÞ=2 is the observed lateral stress and the condition

of constant normal pressure of 1 bar is implicitly assumed. G2D(t) is related to

the area compressibility (or expansibility, depending on the sign of u0
lat)

modulus KA via a Fourier transform,

KAðvÞ ¼ Leq

z ½ivG̃2DðvÞ�; (4)

where Leq
z is the equilibrium size of the system along the membrane normal

(including the water layers) and ‘‘;’’ denotes a half Fourier transform. Note

that KA relates the areal strain to the tension, whereas G2D specifies the stress

response. Thus, KA remains largely constant regardless of the water content

of the system, whereas G2D will be roughly inversely proportional to the

thickness of the water layer, which cannot produce an elastic response and

‘‘dilutes’’ the total elastic response of the system. (In this study, the POPE

system has a thickness Leq
z of ;76 Å and the MscL-POPE system has Leq

z ffi
120 Å) (see Jeon and Voth (34) and Evans and Needham (51) for details).

TABLE 1 Summary of equilibrium MD simulations performed

Label

Starting configuration (lipid number in the upper/

lower leaflet) Duration (ns) Barostat* (PTarget
? ; tp)

Full MscL 1 symmetric membrane

E1Ryz MPW0 (142/142) 0.05 B (1 bar, 1 ps)

E2 E1R output 0.9 B (1 bar, 1 ps)

E3 E2 output 5 B (1 bar, 1 ps)

F1Ryz MPW0 (142/142) 0.05 B (1 bar, 10 ps)

F2Rz F1R output 2.95 B (1 bar, 1 ps)

F3R§ F2R output 7 B (1 bar, 1 ps)

F4 2 ns F3R 30 B (1 bar, 1 ps)

F4B 7 ns F3R 20 B (1 bar, 1 ps)

Full MscL 1 symmetric membrane with negative lateral pressure{

NE E3 output 5 B (�1000 bar, 500 ps)

NF 15 ns F4 5 B (�1000 bar, 500 ps)

Truncated MscL 1 membrane

SEk E3 output (142/142) 1 B (1 bar, 1 ps)

SEC** SE output (138/142) 2.1

SED** SE output (142/138) 2.1

SEE** SEC output (134/142) 2.1

SEF** SED output (142/134) 2.1

SF1yy F4B output (142/142) 0.05

SF2 SF1 output (142/142) 20

Truncated MscL 1 membrane with negative lateral pressure{

NS SE output (142/142) 7 B (�1000 bar, 500 ps)

NSE SEE output (134/142) 6 B (�1000 bar, 500 ps)

NSF SEF output (142/134) 6 B (�1000 bar, 500 ps)

NSB1 5 ns SF2 (142/142) 20 B (�100 bar, 50 ps)

NSB2 5 ns NSB1 (142/142) 13 B (�100 bar, 1 ps)

All simulations were based on the new 2OAR crystal structure (8). In addition, simulations E1R–E3, NE, SE–SF1, and NS–NSF also were carried out with the old

1MSL structure (8). If necessary, these simulations will be referred to with the extra letter ‘‘Z’’ (e.g., ‘‘ZE3’’ for the 1MSL equivalent of E3). Temperature was

maintained at 308 K by the Nose-Hoover thermostat (tp¼ 0.5 ps) in all cases except for E1R, E2, and F1R–F4B, which used the Berendsen thermostat (tp¼ 1 ps).

*Normal pressure was maintained at 1 bar, with tp ¼ 1 ps in all cases. B, Berendsen barostat.
yThe starting configuration MPW0 was prepared from the crystal structure (2oar.pdb), as described in text, via energy minimization and 0.05 ns of dynamics.
zProtein heavy atoms were restrained to the crystal structure with force constant 1000 kJ mol�1 nm�2.
§The protein alpha carbons were restrained to the crystal structure with force constant 1000 kJ mol�1 nm�2.
{The normal pressure was effectively controlled with tp ¼ 1 ps by increasing the normal component of the barostat compressibility parameter.
kResidues 109–118 were removed in the starting configuration and then energy minimization was carried out before running the MD simulation.

**After removal of four lipid molecules, 0.1 ns of the simulation was run with the protein heavy atoms restrained to the initial coordinates, followed by 2 ns

without restraints.
yyThe system was prepared as in the SE run. During the energy minimization and dynamics, the protein heavy atoms were restrained to the starting

configuration with force constant 1000 kJ mol�1 nm�2.
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The experimentally determined static limit (v/0) of KA is reported in

Rawicz et al. (52) for membranes of various lipid compositions. The

application of the stepwise strain in Eq. 2 was accomplished by a modifi-

cation of the GROMACS routine ‘‘deform’’. The Berendsen barostat was

used to maintain the normal pressure at 1 bar. Further details on the employed

NEMD algorithm are provided in Supplementary Material. For a summary of

NEMD simulations performed, see Table 2. The equilibrium lateral pressure

Peq
lat; required to obtain slatðtÞ ¼ �½PlatðtÞ � Peq

lat�; was determined from a

separate equilibrium constant-area (NPAT) simulation with the same area as

the initial (equilibrium) value of the NEMD run and a normal pressure of

1 bar. In the evaluation of slat(t), average data from three to four independent

trajectories were used. The amplitude of strain was u0
lat ¼ 60:015; repre-

senting expansion (1) or compression (–) of the membrane area. The

resulting G2D(t) was then fit to a multiexponential function of the form

G2DðtÞ ¼ G
0

2D 1 +
n¼1

G
n

2Dexpð�t=tnÞ: (5)

Using this function, the area expansibility modulus in Eq. 4 becomes

KAðvÞ ¼ L
eq

z G
0

2D 1 +
n¼1

G
n

2D

v
2
t

2

n

1 1 v
2
t

2

n

� �
: (6)

The static value G0
2D is not easy to determine reliably from a finite-length

simulation, mainly because of its small magnitude comparable to Peq
lat:According

to our previous study (34), it was obtained from G0
2D ¼ s0

lat=ð2u0
latÞ;where the

static limit s0
lat is replaced by the average of the lateral stress over the last 2.5 ns

of 10-ns-long NEMD trajectories.

The radial bias potential was applied to induce lateral expansion of MscL.

The potential had the harmonic form

VbiasðjÞ ¼ ðkbias=2Þðj � j0Þ
2
; (7)

where the reaction coordinate, j, is the average lateral distance between

centers of mass of each pulled group, to which the bias force was applied, and

the reference group, i.e.,

j ¼ ð1=5Þ +
5

n¼1

jrCM

n � rCM

0 j: (8)

Here, rCM
n and rCM

0 are the in-plane projections of the centers of mass of the

nth pulled group and the reference group, respectively. The pulled groups

were chosen here as five subunits of MscL and the reference group was the

collection of five pulled groups. The force on a pulled group was distributed

to every atom of the group in a mass-weighted fashion. Because the pulled

group is part of the reference group, the reaction force was not applied to the

reference group, unlike in the original GROMACS implementation. The

forces due to Vbias were implemented in the ‘‘AFM pulling’’ and ‘‘umbrella

sampling’’ routines of GROMACS. In the AFM pulling method, a simpler

scheme was used in which five distances between pulled groups and the

reference group are treated independently (instead of averaged, as in Eq. 8)

and the center of bias potential, j0; in Eq. 7 was increased linearly in time to

expand five MscL subunits in the radially outward direction in the plane of

the membrane. The bias potential did not affect the motion in the z direction.

This method was used on the three MscL-POPE systems defined in Table 3 to

obtain an expanded structure. The free-energy profile along the channel

expansion coordinate based on the umbrella sampling method described

above will be the subject of future work. The modified GROMACS source

codes for the NEMD and bias force simulations are available from the

authors upon request.

RESULTS

Contraction of MscL during equilibrium
simulations without tension

The crystal structure of MscL (2OAR) has an Rz
g of 17.4 Å.

Table 4 shows the Rz
g of the crystal structure and three

equilibrium trajectories in Table 1. The three trajectories are

different in their lengths of simulation and, more importantly,

in the amount of equilibration with restraints on the protein.

TABLE 3 Summary of simulations with the radial bias force

Label

Starting configuration*

(lipid number upper/lower

leaflet) Duration

Barostat

parameters (PTarget
? ; tp)

RS NS output (142/142) 10 ns

RSE NSE output (134/142) 9 ns B (�200 bar, 100 ps)

RSF NSF output (142/134) 9 ns

In all cases, five virtual sites are harmonically connected to the centers of

mass of five subunits of MscL (force constant 1.0 3 105 kJ mol�1 nm�2).

The sites were pulled in radially outward directions on the xy plane at the

rate of 1.0 Å/ns. The normal pressure was kept at 1 bar. Temperature was

maintained at 308 K by the Nose-Hoover thermostat (tp ¼ 0.5 ps) in all

cases. B, Berendsen barostat.

*See Table 1 for descriptions of simulations NS, NSE, and NSF.

TABLE 2 Summary of the NEMD and constant NPAT

simulations performed

Label Starting configuration Duration Method

POPE (192/192 lipids)

SP1-SP4 PWE1-PWE4* 10 ns each NEMD

AP1-AP4 PWE1-PWE4* 5 ns each NPAT

MscL(1MSL)y-POPE (142/142 lipids)

SM1-SM3 1-2 ns ZE3y 10 ns each NEMD

AM1-AM3 1-2 ns ZE3y 5 ns each NPAT

The system area was kept constant in the NPAT runs, whereas it was

expanded instantaneously by 3% in the NEMD runs. All simulations used the

Nose-Hoover thermostat at 308 K and the Berendsen barostat to control the

normal pressure at 1 bar with tp¼ 1 ps. The lateral component of compress-

ibility was set to zero in all cases to prevent area changes due to the barostat.

*Systems PWE1–PWE4 were prepared as described in Supplementary

Material.
yZE3 is an equilibrium simulation based on the old 1MSL structure (7),

equivalent to simulation E3 of Table 1.

TABLE 4 Lateral dimensions of MscL and its components in

the crystal structure and averages over equilibrium simulations

Rz
g (Å)

1MSL 2OAR E3 F4 F4B

Whole protein 15.37 17.39* 16.73 (0.07) 16.80 (0.07) 16.69 (0.06)

S1 — 20.46 19.46 (0.13) 20.02 (0.12) 19.23 (0.16)

TM1 (top half) 16.95 17.14 16.17 (0.17) 15.93 (0.13) 16.32 (0.13)

TM1 (bottom half) 9.51 9.41 9.30 (0.10) 9.12 (0.07) 9.21 (0.08)

TM2 (top half) 18.16 18.01 17.32 (0.11) 17.27 (0.10) 17.24 (0.12)

TM2 (bottom half) 19.36 20.14 18.88 (0.11) 19.47 (0.10) 19.41 (0.13)

Loop 17.22 21.75 20.27 (0.20) 20.04 (0.15) 20.50 (0.12)

The radii of gyration about the MscL symmetry axis, Rz
g; for the crystal

structures (1MSL and 2OAR) and three equilibrium simulations (E3, F4,

and F4B (see Table 1)), employing the 2OAR structure. The averages over

the last 5 ns are presented for each simulation result. SD is given in

parentheses. For a definition of each component, see Fig. 1.

*Truncated MscL (residues Met1–Asp108) has a Rz
g of 17.10.
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Simulation E2-E3 followed only 0.05 ns of equilibration with

restraints (E1R in Table 1), whereas F4 and F4B were started

from 5 and 10 ns of restrained simulations (F1R–F3R in

Table 1). Despite these differences, the Rz
gs of the three tra-

jectories over the last 5 ns are similar, and they all exhibit a

contraction of MscL from the crystal structure by 0.6–0.7 Å.

Individual components showed different degrees of con-

traction. A large change of more than 1 Å was observed in the

top half of TM1 and loop regions. On the other hand, the

bottom half of TM1, which contains the constriction point of

the channel, showed a ,0.3-Å decrease in Rz
g: Fig. 2 a shows

the Rz
g of the whole protein as a function of time for the three

simulations. This clearly shows that the contraction of MscL

took place within 1 ns after release of MscL restraints. The

structural relaxation is much faster in E2-E3 than in F4 and

F4B. This indicates that in simulations F4 and F4B, the lipids

are better stabilizing the starting crystal structure thanks to

longer simulation time with restraints on the protein. The

short-range protein-lipid interactions are also stronger in F4

and F4B than in E3. The average of short-range LJ plus

Coulomb interactions between POPE lipids and MscL are

�2970, �3601, and �3802 kcal/mol for the last 5 ns of

simulations E3, F4, and F4B, respectively. Despite this, the

protein lateral dimensions in three simulations tend to con-

verge with the nanosecond timescale as can be seen in the

long-time behavior of Fig. 2 a. Fig. 2, b and c, shows relative

Rz
g changes of MscL components from the crystal structure

(2OAR) during 30 ns of simulation F4. The top half of TM1

and the loop region are easily identified as having the largest

contraction, of ;8%, whereas the rest of the components

show only a 2–4% decrease in Rz
g: Similar analysis of all three

simulations puts the relative lateral contraction in the fol-

lowing order, from smallest to largest: bottom TM1 , S1 �
TM2 , top TM1 � loop. Although not shown here, equi-

librium simulations on the older 1MSL structure also result in

somewhat larger contraction.

Fig. 3 a shows the RMSD of the whole protein from the

crystal structure for the three equilibrium trajectories E2-E3,

F4, and F4B. The whole-protein RMSD is in the 3–3.5 Å

range and it might not have fully converged after 30 ns (F4).

The sharp initial increase in RMSD for trajectory E2-E3 is

consistent with the rapid contraction observed in Fig. 2 a. In

contrast, the RMSDs for trajectories F4 and F4B show a

slower rise and have lower value (3–3.3 Å) at the end of

simulation than in E2-E3 (3.5 Å). Fig. 3, b and c, displays the

RMSD of individual components calculated from trajectory

F4. Fig. 3 b shows that the transmembrane parts of MscL

(TM1 and TM2) have RMSDs of ,2.6 Å. In particular, the

bottom half of TM1 (TM1B) shows the smallest RMSD, only

1.5 Å, consistent with the small Rz
g observed in Fig. 2 b. The

largest RMSD, .4 Å, is found in the loops (Fig. 3 c), whereas

all the other components in Fig. 3, b and c, show RMSD

smaller than the whole protein value of 3.3 Å. Thus, the

water-exposed regions of MscL, the loops and the C-terminal

S3 helices, are the most mobile parts of MscL.

These equilibrium MD trajectories clearly show that the

MscL embedded in membrane has a smaller lateral dimen-

sion than the crystal structure (both 1MSL and 2OAR). This

supports previous experiments by Blount and co-workers

indicating that the 1MSL crystal structure is not in a fully

closed, but in a partially closed, state (35–37).

Effects of membrane asymmetry and lateral
tension on the MscL structure

The opening of MscL requires an external driving force either

from tension on the membrane or asymmetric incorporation

FIGURE 2 Change of MscL lateral dimensions during equilibrium MD

under zero tension measured by the radius of gyration about the symmetry

axis Rz
g: (a) Rz

g of the whole protein for the three trajectories—E2-E3, F4,

and F4B—described in Table 1. (b and c) Relative changes in Rz
g from the

crystal structure (2OAR) for the six components defined in Fig. 1. The data

is from trajectory F4.
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of single-chain lipids such as LPC. To simulate such external

driving forces, MD simulations were performed with nega-

tive lateral pressure and/or asymmetric membranes with

different numbers of lipids in the two monolayers, the latter

mimicking the effect of incorporating amphipath (12,13) by

producing an asymmetric pressure profile across the mem-

brane.

Simulations with negative lateral pressure are summarized

in Table 1. Simulations with full MscL (NE and NF) used

target pressure PTarget
? ¼ �1000 bar with barostat relaxation

time, tP, of 500 ps. The large tP value was employed to

expand the area slowly and allow the system to equilibrate to

the increased area. In all cases, the target pressure in the

membrane normal, PTarget
? ;was kept at 1 bar. Since the system

thickness, Lz; is ;10 nm, the employed target pressure cor-

responds to a lateral tension, g (Lz(Pz� P?)), of ;1000 dyn/

cm. However, the actual lateral pressure never came close to

the target and it reached a steady value of about �100 bar

after 3 ns (Fig. 4 a). During this time, the system area con-

tinued to increase (Fig. 4 b). Thus, the system approaches a

nonequilibrium steady state in 3 ns. The average lateral

pressure between 3 and 5 ns is�96.9 bar for NE and�103.8

bar for NF. Trajectory NF was started from the 15-ns con-

figuration of run F4 (Table 1) and therefore better equili-

brated than NE. This explains the slightly lower lateral

pressure for NF in the steady state. As also shown in Fig. 4, a

similar behavior is observed in the systems with truncated

MscL and symmetric or asymmetric membrane configura-

tions (simulations NS, NSE, and NSF in Table 1). The

steady-state lateral pressures of NS, NSE, and NSF are

�118.3,�130.2, and�126.8 bar, respectively. These values

cannot be compared directly with the full MscL results be-

cause the truncated system has a thinner water layer and

smaller system thickness, Lz, than the full MscL systems.

Instead, the effective tension in the steady state (calculated

from actual system pressure and size) should be used for

comparison. The average tension values over the last 2 ns are

99.1 (NE), 107.0 (NF), 97.7 (NS), 112.0 (NSE), and 107.5

(NSF) dyn/cm. This shows that the MscL-POPE system can

sustain lateral tension of ;100 dyn/cm in the MD timescale,

but not much more. Also, it can be seen that better equili-

bration (NF) can yield somewhat larger tension in the non-

FIGURE 3 RMSD of MscL from the crystal structure during equilibrium

MD under zero tension. (a) RMSD of the whole protein for the three

trajectories, E2-E3, F4, and F4B, described in Table 1. (b and c) RMSDs of

individual components from trajectory F4. The six components are defined

in Fig. 1.

FIGURE 4 Changes in (a) the lateral pressure P? ¼ ðPxx 1 PyyÞ=2 and

(b) the lateral dimension L? ¼ ðLx 1 LyÞ=2 during the simulations with

negative lateral pressure. Trajectories NE and NF are for the whole MscL,

and NS, NSE, and NSF are for the truncated MscL. The target lateral

pressures are �1000 bar in all cases. See Table 1 for further details.
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equilibrium steady state when compared with results from

shorter equilibration (NE and NS). In addition, asymmetric

membranes (NSE and NSF) can achieve similarly larger

tension because there are eight fewer lipids in the system.

To further study the long-time system behavior under sus-

tainable lateral pressure, longer simulations, with PTarget
? ¼

�100 bar, were performed (NSB1 and NSB2) starting from a

truncated system prepared with longer equilibration totaling

.35 ns (F1R-F3R, F4B, SF1, and 5-ns SF2). In NSB1, the tP

was 50 ps, and this was reduced to 1 ps in the NSB2 run that

starts from the 5-ns configuration of NSB1. As shown in

Supplementary Material, Fig. S3, these trajectories, which do

not seem to have converged even after 10 ns, exhibit much

slower area expansion. The lateral pressures for these tra-

jectories in Fig. S3 show that due to slow area expansion

trajectory NSB1 did not reach the target pressure of �100

bar. However, trajectory NSB2 lateral pressure reached the

target value immediately, due to faster barostat relaxation.

Since the system area was still expanding, NSB2 also can be

regarded as being in a nonequilibrium steady state rather than

in full equilibrium. This indicates that achieving a full equi-

librium state of a protein-membrane system with the largest

sustainable tension can take at least tens of nanoseconds.

The MscL structural changes under negative lateral pres-

sure are shown in Fig. 5 for five systems with truncated MscL

(NS–NSB2 in Table 1). The radius of gyration, Rz
g; for the

whole protein increases in all five trajectories (Fig. 5 a). With

a PTarget
? of �1000 bar (NS, NSE, and NSF), Rz

g increases

much faster than with a PTarget
? of �100 bar (NSB1 and

NSB2). The unconverged values of Rz
g at the end of simu-

lations are between 18.1 and 18.4 Å, well above the crystal

structure value (17.10 Å for the truncated 2OAR, as seen in

Table 4) but not enough to produce large structural changes

in MscL. In fact, the Rz
g of MscL components (Fig. S4) shows

that none of the components are more expanded than in the

crystal structure. Thus, the expansion of the whole protein is

mainly attributed to the C-terminal regions not included in

the component analysis. The truncation of C-terminal S3

helices must have caused some fraying of C-terminal resi-

dues, giving a large Rz
g for the whole protein. Most impor-

tantly, the constricted TM1 bottom half does not expand and

even contracts somewhat, as observed in Fig. 5 b for all

simulations except NSF. Pore radius profiles of MscL in Fig.

S5 also show that the constriction region is narrower under

tension than in the crystal structure. This indicates that the

constriction region is not directly coupled to the applied

tension in the initial stage of gating and its lateral expansion

needs to be triggered by the structural changes of the protein

outer region.

Thickness and lipid order parameter of the membrane

surrounding MscL are displayed in Fig. 6 for SF2 (zero

tension) and NSB1/NSB2 (negative lateral pressure) trajec-

tories (cf. Table 1). It shows that the membrane thickness is

smaller and the lipid more disordered in the vicinity of MscL

than in the remote region. Also, by comparing Fig. 6 with

Table S1 and Fig. S2, it can be seen that the POPE membrane

with embedded MscL is thinner and more disordered than

pure POPE membrane, even in the remote region. This in-

dicates that POPE lipid is compressed in the normal direction

to accommodate MscL. Under negative lateral pressure,

however, the lipids adjacent to MscL maintain their thickness

and order much better than the remote lipids (Fig. 6). Thus,

the membrane near MscL can be more resistant to expansion

despite being less ordered than in bulk, due to protein-lipid

interactions. This is consistent with a recent study suggesting

the effective buffering of bulk lipid properties by the lipids in

direct contact with MscL (53).

The insensitivity of MscL to the large applied tension is a

puzzling result. First of all, it should be noted that the system

never exhibited the prescribed pressure and was still ex-

panding when the simulation was terminated. Even under a

relatively mild condition with PTarget
? ¼ �100 bar, the system

size did not fully converge in 20 ns (Fig. S3). This clearly

indicates that the simulation time is not long enough to cover

the intrinsic response time of the MscL membrane to applied

tension. Under applied tension, the membrane needs time to

equilibrate to the increased area/lipid to fully exhibit the in-

tended negative internal pressure. Failure to do this means

that the protein never feels the stretching force prescribed by

the target lateral pressure. Moreover, the overall path from

FIGURE 5 Changes in the MscL radius of gyration Rz
g during the

simulations with negative lateral pressure. (a) Rz
g of the whole protein. (b)

Rz
g of the constricted bottom half of TM1. Trajectories NS–NSF have target

pressure PTarget
? ¼ �1000 bar. NSB1 and NSB2 have PTarget

? ¼ �100 bar.

The trajectories are described in Table 1. Note that NSB2 starts at 5 ns of

NSB1.
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the closed to the open state of MscL may be downhill under

adiabatically applied tension, but it can still have many local

barriers due to the ruggedness of the free-energy landscape.

Thus, even under full stretching force from the membrane,

MscL must overcome many small barriers, which takes time.

In addition, the strength of the protein-lipid interaction in-

creases with longer equilibration and in turn yields larger

tension under stretching conditions, as was observed in the

comparison of trajectories NE and NF above. There are other

issues, such as the quality of the force field, but the most

critical issue seems to be the mismatch in timescales between

the simulation and the system response. Quantifying the latter

time and reproducing adiabatic MscL gating from membrane

tension will be an important computational challenge for the

future, as is true with the sampling of the conformational

states of many biomolecular systems.

Elastic modulus of the MscL-membrane system

The results in the preceding section demonstrate that the

membrane tension and/or the structural asymmetry of the

membrane is rather ineffective in inducing MscL structural

changes on the timescale of tens of nanoseconds. To better

understand the system response to these driving forces, the

dynamic elastic modulus of the hydrated POPE membrane

and MscL membrane systems were calculated with NEMD.

For each system, the lateral stress was calculated by aver-

aging results of three to four independent 10-ns NEMD

simulations with the stepwise strain, as described in Methods

and Table 2. From these calculations, the relaxation function,

G2D(t), was determined using Eq. 3. In this process, the

equilibrium pressure, Peq
lat; �4.035 (POPE) and �11.803 bar

(MscL-POPE) as determined from separate NPAT runs (see

Methods), was subtracted from the NEMD lateral pressure to

obtain the lateral stress, according to slatðtÞ ¼ �½PlatðtÞ �
Peq

lat�: Table 5 summarizes the results of a multiexponential fit

of the G2D(t) according to Eq. 5. It shows relaxation modes

spanning the subpicosecond to nanosecond timescale, with

some difference between the POPE and MscL-POPE sys-

tems. This difference comes from the different thickness of

the water layer in the two systems, as well as the intrinsic

changes arising from MscL-lipid interactions (34). In par-

ticular, the static modes, with n ¼ 0; have similar amplitude

G0
2D of ;1.5 kbar despite the fact that the water layer is much

thicker in the MscL-POPE system than in the POPE system

(see Methods). The difference due to material property

changes can be isolated by considering the area expansibility

modulus KA(v). Using the system thickness (Leq
z ¼ 77:8 and

118.6 Å, respectively, for the POPE and MscL-POPE sys-

tems) determined from the aforementioned NPAT simula-

tions, Eq. 6 yields the frequency-dependent KA(v), as shown

in Fig. 7. It is evident that MscL inclusion noticeably en-

hances the rigidity of membrane against area expansion at the

frequency range considered. In particular, the static limit at

small v (KA(0)¼ 1.08 6 0.28 N/m for the POPE and 1.31 6

FIGURE 6 Membrane thickness and lipid order parameter of the palmi-

toyl chain for lipids within ;10 Å of MscL (Near) and the rest of the lipids

(Far). (a) The normal distance between phosphorus atoms from the two

leaflets of the bilayer is displayed for simulations under zero tension (0–5 ns,

trajectory SF2) and negative lateral pressure of �100 bar (5–10 ns, NSB1;

10–23 ns, NSB2). The vertical lines at 5 and 10 ns mark the beginning of

NSB1 and NSB2 simulations, respectively. (b) The lipid order parameters.

The tension is zero in simulation SF2 and about 100 dyn/cm in NSB1/NSB2.

The order parameters were calculated from the 4–5 ns (SF2) and 22–23 ns

(NSB2) parts of the trajectory shown in a. See Table 1 for other details of

simulations SF2, NSB1, and NSB2.

TABLE 5 Multiexponential decomposition of G2D(t ) after

expansion of the system area by 3% (u0
lat ¼ 0:015) obtained

with NEMD

POPE MscL-POPE

n Gn
2D ðkbarÞ tn ðpsÞ Gn

2D ðkbarÞ tn ðpsÞ

1 71.87 0.0107 73.82 0.0114

2 14.29 0.618 0.5615 0.123

3 12.27 5.06 12.80 0.261

4 3.528 28.6 15.65 3.81

5 1.463 221 3.030 20.4

6 0.5349 1100 1.336 223

0 1.517 N 1.500 N

‘‘POPE’’ is from the hydrated POPE membrane and ‘‘MscL-POPE’’ is

from the system with embedded MscL. Gn
2D and tn are, respectively, the

amplitude and relaxation time of the nth mode of the relaxation function

(Eq. 5).
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0.25 N/m for the MscL-POPE system) shows that the MscL-

POPE system is 22% more difficult to expand than pure

POPE membrane. Although the absolute value of KA(v) for

the POPE system is around four times larger than the ex-

perimental values for many phosphatidylcholine mem-

branes (52), the observed relative difference between the

POPE and MscL-POPE systems should have a much

smaller uncertainty. The area fraction of MscL in the MscL-

POPE system is estimated to be 0.16 by comparing the areas

of the two systems. Assuming that the rigidity of MscL is

much larger than the membrane region, this area fraction

accounts for the majority, but not all, of the 22% enhance-

ment in KA(v).

In Fig. 6, the lipids in the vicinity of MscL were observed

to be thinner and more disordered than remote ones under

zero tension, whereas they maintained their thickness and

order much better when the membrane was stretched. The

observed enhancement of the membrane elastic response

upon incorporation of MscL can be partly attributed to these

lipids near MscL that exhibit the unusual property of being

more resistant to expansion despite being less ordered.

Opening of MscL channel by the application of
radial bias force

The three bias force simulations described in Methods and

Table 3 all yielded open MscL structures in 9–10 ns of ex-

pansion at the rate of 1.0 Å /ns. Fig. 8 a shows MscL at 0, 5,

and 9 ns of simulation RS in symmetric membrane. The

initially constricted channel is partially opened and a chain of

water forms across the channel at 5 ns. (The formed water

channel resembles the one in Fig. 8 b, taken from simulation

RSE.) Further expansion results in a wide channel with

radius;10 Å at 9 ns, as shown in Fig. 9. During the expan-

sion, the transmembrane a-helices maintain their structure

quite well except for a few breakages of long helices into two

to three smaller ones.

Fig. 10 displays the changes in Rz
g from trajectories RS-

RSF for (a) the whole protein and (b) the constricted bottom

half of TM1. The whole protein Rz
g shows an almost linear

increase but the TM1 bottom shows two stages of expansion,

with an initially slow expansion followed by a fast increase in

Rz
g beginning at ;4 ns (Fig. 10 b). The evolution of the

minimum pore radius in Fig. 11 shows that this accelerated

expansion coincides with a sudden increase in minimum pore

radius at 4–4.5 ns. Inspection of each trajectory at 2-ps in-

tervals reveals that the formation of a persistent water chain

takes place at 4.56, 4.07, and 4.45 ns in RS, RSE, and RSF,

respectively. One such water chain from simulation RSE is

shown in Fig. 8 b. Thus, three important events in the MscL

gating, i.e., the increase in channel expansion rate, the sudden

jump in minimum pore radius, and the water chain formation

across the channel, all take place at the same time. It is dif-

ficult to discuss the cause-effect relations among them, but it

is expected that they will provide positive feedback to each

other. For example, the increased pore radius will facilitate

water chain formation, and vice versa. This in turn will lead to

stabilization of the open structure and accelerated expansion.

It is worthy of note that the channel opening proceeds in an

almost stepwise manner. As Figs. 9 and 10 show, the pore

remained closed for the initial 4 ns and then expanded

steadily for the rest of the simulation, whereas the average

lateral dimension of the whole protein increased at a fairly

uniform rate over the entire simulation.

The S1 helix plays an important role in MscL opening. To

illustrate this, the old 1MSL structure, which has no S1 helix,

was used in the radial bias force simulations with almost

identical conditions. These resulted in a pore of ;3-Å radius

for 4 ns of radial bias force simulation but at longer times the

MscL structure became distorted and the fivefold symmetry

was lost. In contrast, simulations using the 2OAR structure

preserved the protein symmetry and structure up to the end,

FIGURE 7 (a) Frequency-dependent area expansibility modulus, KA(v),

of hydrated POPE membrane and POPE membrane with embedded MscL

protein. (b) The change in KA(v) of MscL-embedded membrane relative to

the POPE membrane system.
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with a pore of radius 10 Å. Fig. 8 a shows that the S1 helices

initially point outward radially and make contact with two

TM2 helices from other monomeric units that are ahead of it

in a clockwise direction. This presumably provides a better

contact and stability among monomeric units. In the highly

expanded state (t ¼ 9 ns in Fig. 8 a), however, the S1 parts

rotate so that it is aligned in the tangential direction on the

cytoplasmic periphery of the protein. This enables the S1

units to maintain their interaction with other TM2 helices

even with a wider gap between the latter helices. In addition,

the loop region seems to contribute to the stability of MscL

during the opening. It makes contact with the TM1 and loop

from an adjacent monomeric unit in the counterclockwise

direction. This contact was preserved during the expansion.

The fact that the loop and S1 are directed oppositely and

make contact with other monomers in the opposite directions

would contribute to stabilizing the open structure, because

transmembrane helices tilt significantly. Had they been

aligned in the same direction, the structure would be more

prone to falling apart. The behavior of individual components

during the MscL opening is summarized in Fig. S6. Most of

the components show a steady increase in lateral dimension.

In particular, the top half of TM1 (Fig. S6 a) expands faster

than the top half of TM2 (Fig. S6 c), and they have a com-

parable lateral dimension at the end of simulations. It is also

interesting to note that the S1 helices (Fig. S6 f) do not ex-

pand much initially but exhibit rapid increase in lateral di-

mension after 4 ns, coincident with the channel opening. A

FIGURE 8 Structural changes of MscL during channel

opening. (a) Top view (upper row) and side view (lower

row) of structures in a symmetric membrane at 0, 5, and 9

ns of simulation RS, from left to right, respectively. Blue

tubes represent TM1, red tubes TM2, and green ribbons S1

helices; the remainder of MscL is shown in yellow. (b) The

initially formed water chain at 4.08 ns of simulation RSE.

Water molecules near the constriction region are shown as

red and white spheres, red licorice represents hydrophobic

Val21 residues, and blue licorice represents hydrophilic

Asn13 and Asp16 residues that stabilize the water chain from

below the constriction region. See Table 3 for details of

simulations RS and RSE. The images were prepared with

the software package VMD (57).
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similar transitional behavior around 4 ns can be identified in

TM2 bottom (Fig. S6 d) and in the loop region (Fig. S6 e).

This indicates that the channel opening involves a concerted

motion of these subunits. The plateau found at 7–8 ns in S1

helices (Fig. S6 f) can be explained by the aforementioned

rearrangement of S1 from radial to tangential directions.

Simulations RSE and RSF with asymmetric membranes

exhibit interesting differences from simulation RS, which has

a symmetric membrane. According to Fig. 11, the channel

opening in RSE and RSF is initiated earlier by ;0.5 ns than

in RS. Also, Fig. 9 b shows that the minimum pore radii in

RSE and RSF are ;1 Å larger than in RS at 5 ns. Thus, the

membrane asymmetry can lower the threshold tension for

channel opening significantly. This can be caused by the

protein structural changes induced by membrane asymmetry

or higher lateral tension arising from the fewer number of

lipids in the asymmetric membrane. The relative importance

of the two is difficult to gauge at this point. The membrane

asymmetry is also reflected in the Rz
g of individual compo-

nents shown in Fig. S6. For example, RSE has a larger lateral

dimension than RS or RSF in the loop region (Fig. S6 e),

because its upper leaflet has low density. On the other hand,

the TM2 bottom half (Fig. S6 d) is generally more expanded

in RSF, which has fewer lipids on the lower leaflet.

It is remarkable that the partially open state of MscL in Fig.

8 b shows little interaction between water molecules at the

bottleneck region of the channel and nearby hydrophilic

residues. As shown in the figure, the only hydrophilic as-

sistance comes from Asn13 and Asp16 on the cytoplasmic side

of TM1. These residues make contact with water molecules

on the lower side of the channel and can possibly stabilize the

water chain once one is formed. However, these residues are

distant from the Val21 that forms the hydrophobic lock and

cannot move into the constriction region to directly induce

water chain formation. Inspection of trajectories around the

initial channel opening at 2-ps intervals revealed that inter-

mittent water chains keep appearing and disappearing for a

few tens of picoseconds without direct involvement of pro-

tein hydrophilic residues before a persistent chain is formed.

This suggests that the driving force for water chain formation

FIGURE 9 Pore-radius profiles of MscL under radial bias force. (a) Radii

of the crystal structure and three configurations at 0 ns of radial bias force

simulations in symmetric and asymmetric membranes. (b and c) Radii of the

three configurations at 5 and 9 ns of their trajectory. Simulations RS, RSE,

and RSF are described in Table 3. Note that RS–RSF used truncated MscL

and thus no radius is defined beyond 80 Å in the vertical axis.

FIGURE 10 Radial expansion of MscL by the application of radial bias

force under negative lateral pressure of�200 bar (tension of ;200 dyn/cm).

(a) Radii of gyration, Rz
g; for the whole protein. (b) Rz

g for the constricted

TM1 bottom. The system in RS has a symmetric membrane, whereas

systems in RSE and RSF have asymmetric membrane configurations (Table

3). The center of radial bias force, j0 (see text), moved at a rate of 1 Å/ns.
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does not come from the movement of hydrophilic residues to

the constriction region. Instead, the connection of the water

channel and its subsequent growth may be driven by the

hydrophobic interaction between the channel water and the

pore residues that makes the disconnected channel water

clusters increasingly unstable as their size grows. With no

available hydrophilic residues to stabilize the surfaces of

water clusters facing the constriction region, this force can be

relieved only by the connection of the clusters. The impor-

tance of hydrophobic interactions in channel gating has been

demonstrated previously by hydrophilic mutations of the

MscL and MscS constriction regions (54,55) and a dewetting

transition in melittin tetramer (56). However, a more quan-

titative study of the hydrophobic effect over a wider range of

gating behaviors would be necessary to resolve this issue.

We note that the bias potential used in the radial bias force

simulations can be used as an umbrella sampling potential in

the calculation of a free-energy profile along the channel

expansion coordinate. A full investigation of the quantitative

free-energy profile of MscL gating will be the subject of

future work. Several other issues to be explored in the future

include the possible roles of both long-wavelength mem-

brane motions (not captured in an atomistic MD simulation

box) and lipid rafts in stabilizing the proposed open-channel

state.

CONCLUSIONS

In this article, the gating of the mechanosensitive channel

protein MscL has been studied using equilibrium and non-

equilibrium MD simulations. The equilibrium MD on the

crystal structure of MscL resulted in even further contraction

and supported the notion that the crystal structure is in a

partially open state. Through the NEMD simulation of

membrane area expansion, the inclusion of MscL is found to

increase the rigidity of the membrane by 22% against area

expansion, larger than the area fraction of MscL (0.16) in-

dicates. This could be attributed to lipids adjacent to the

protein which maintain their structure and order under ten-

sion due to protein-lipid interaction. Channel opening and

large water column formation across the protein could be

observed by applying radial bias forces on the MscL-mem-

brane system under large negative lateral pressure. It was

shown that the channel pore expansion is concurrent with the

water chain formation across the channel. Also, consistent

with previous experimental studies on the asymmetric LPC

incorporation (12,13), the asymmetric membrane is shown to

facilitate channel opening significantly. A recent study (53)

showed that the lipid chain length dependence of MscL-lipid

binding constant differs on the two sides of the membrane,

again pointing to the importance of membrane asymmetry in

MscL-lipid interaction. Finally, the water chain formation

across MscL was found to take place without direct in-

volvement of hydrophilic residues of MscL. This indicates an

important role of hydrophobic forces on the MscL gating.

Although not pursued in detail here, a direct computation of

the free-energy profile along the channel gating pathways

may become a viable approach in a large class of membrane

channel proteins with the proper refinement of the current

method in terms of the choice of parameters and application

of bias potentials.
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