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ABSTRACT With recent advances in single-molecule manipulation techniques, it is now possible to measure the mechanical
resistance of proteins to external pulling forces applied at specific positions. Remarkably, such recent studies demonstrated that
the pulling/stretching forces required to initiate unfolding vary considerably depending on the location of the application of the
forces, unraveling residue/position-specific response of proteins to uniaxial tension. Here we show that coarse-grained elastic
network models based on the topology of interresidue contacts in the native state can satisfactory explain the relative sizes of
such stretching forces exerted on different residue pairs. Despite their simplicity, such models presumably capture a fundamental
property that dominates the observed behavior: deformations that can be accommodated by the relatively lower frequency modes
of motions intrinsically favored by the structure require weaker forces and vice versa. The mechanical response of proteins to
external stress is therefore shown to correlate with the anisotropic fluctuation dynamics intrinsically accessible in the folded state.
The dependence on the overall fold implies that evolutionarily related proteins sharing common structural features tend to
possess similar mechanical properties. However, the theory cannot explain the differences observed in a number of structurally
similar but sequentially distant domains, such as the fibronectin domains.

INTRODUCTION

Processes in living cells depend on the mechanical properties

of biomolecules in addition to their chemistry (1). Biomol-

ecules are often subjected to functionally required mechani-

cal pressures, e.g., within muscle fibers, microtubules, and

molecular motors, in addition to their interactions with other

molecules in the cell. The evolution of biomolecules pre-

sumably led to an optimization of their mechanical behavior

to fit their biological function. A recent interesting example is

the direct relation between the functional mode of the action

of DNA gyrase and the applied mechanical stress (2).

Recent advances in single-molecule atomic force micros-

copy (AFM) and optical tweezers techniques allow us to

examine the response of proteins to uniaxial tensions (3–5).

The muscle protein titin, for instance, has been extensively

investigated using both AFM methods (6–8) and optical

tweezers (9,10). Experimental studies have also been con-

ducted on proteins such as T4 lysozyme (11), bacteriorho-

dopsin (12–14), a Na1/H1 antiporter (15), and others (16).

Unfolding forces in different pulling directions have been

measured for green fluorescent protein (GFP) (17), ubiquitin

(Ub) (18), and the lipoyl domain (E2lip3) of acetyl trans-

ferase subunit E2p (19). Strikingly, significant differences

have been observed between the responses of the same

molecule to pulling along different directions, which appar-

ently reflect path-dependent, nonequilibrium events, rather

than the passage over an energy barrier (DGunfolding), which is

theoretically expected to be independent of the unfolding

pathway (20).

The data collected using single-molecule force spectrom-

etry boosted the field and made it possible to examine the role

of structural features such as secondary structure composition

and orientation of hydrogen bonds in determining the un-

folding forces (14,18). However, not until recently was it

possible to obtain data on the mechanical behavior of proteins

in response to different deformation directions (induced by

exerting uniaxial tensions at particular pairs of residues) due

to the time and labor limitations of these complicated ex-

periments.

Molecular insights on the origins of mechanical responses

have been inferred to some extent from theoretical studies. In

particular, molecular dynamics (MD) simulations have been

advantageously employed for estimating the mechanical

unfolding forces and the unfolding paths triggered by forces

applied along well-defined pulling directions. Titin, in par-

ticular, became a model system for understanding the relation

between mechanical stability and biological function by

steered (21–24) and quasiequilibrium (20) MD simulations.

MD studies have been performed on other small globular

proteins as well, which drew attention to the strong depen-

dence of mechanical stability and unfolding pathways on the

linkage through which the force is applied (18,25). For a

comprehensive review of simulations to explore the molec-

ular origins of observed mechanical resistance and the pos-

sible relation to biological function, the reader is referred to

the recent article by Sotomayor and Schulten (5).

Notably, MD simulations highlighted the importance of

the native contact topology in determining the stress-induced

unfolding behavior of proteins (26). A reasonable agreement,

mainly qualitative, with experiments could indeed be ach-

doi: 10.1529/biophysj.107.120733

Submitted August 27, 2007, and accepted for publication December 5, 2007.

Address reprint requests to Ivet Bahar, Department of Computational Bio-

logy, University of Pittsburgh, W 1040, BST 200 Lothrop St., Pittsburgh

15261. Tel.: 412-648-3332; E-mail: bahar@pitt.edu.

Editor: Klaus Schulten.

� 2008 by the Biophysical Society

0006-3495/08/05/3424/12 $2.00

3424 Biophysical Journal Volume 94 May 2008 3424–3435



ieved even when using coarse-grained (residue-level) models

(27) or simple G�o potentials (28) based purely on native

contact topologies. An extensive survey of the responses of

Protein Data Bank (PDB) structures to uniaxial stretching at

their N- and C-termini, predicted by coarse-grained simula-

tions, was recently published by Sulkowska and Cieplak (16),

which also provides a comprehensive compilation of exper-

imental data (see http://info.ifpan.edu.pl/BSDB).

Here we demonstrate the use of an analytical methodology,

the anisotropic network model (ANM) (29,30), to construct a

complete map of the mechanical response of all residue pairs

in a given protein to uniaxial deformation. We present results

for three proteins (Table 1). The results illustrate how the

ANM, recently shown to serve as a useful tool for efficient

analysis and visualization of the conformational dynamics

and anisotropic fluctuations of PDB structures (31), also cap-

tures the experimentally observed anisotropic response of

proteins to external stresses. First, we present the use of the

ANM to derive the effective force constants associated with

uniaxial deformations along any pair of residues. Then, the

predictions are compared with available experimental data on

GFP from jellyfish, Ub from human, and E2lip3 domain of

pyruvate dehydrogenase (PDH) complex from Escherichia
coli. We discuss limitations of the approach, specifically the

lack of residue specificity and the dependence on equilibrium

structure. The former prevents its applicability to proteins

where the sequence identity, rather than the overall fold,

dominates the behavior; and the latter restricts the theory to

deformations near native state.

Most of the results presented here compare the unfolding

forces where the same protein is stretched in different di-

rections. The major utility of ANM indeed lies in providing

information on the relative mobilities of residues or on the

relative responses of different residue pairs under tension,

rather than predicting the absolute sizes/strengths of defor-

mation. The comparison of the results for different proteins is

complicated by the necessity to calibrate their spring con-

stants and by the varying conditions (e.g., pulling velocity) in

different experiments. Yet, some results on different proteins

are also presented and discussed.

Two major utilities of the approach are its computational

efficiency (it lends itself to deterministic assessment of stress-

strain behavior for all residue pairs) and its simplicity, which

allows a clear interpretation of the results. The theory essen-

tially delineates the behavior of the protein in the neighborhood

of its original (equilibrium state) or early stages of unfolding.

Yet a high correlation is observed between the computed re-

sistance to deformation and that which is experimentally ob-

served. This correlation is discussed in light of the shape of the

energy landscape near the original energy minimum and the

kinetic accessibility of particular deformation directions.

THEORY AND METHODS

Model

We represent the protein by a structure of N sites, the instantaneous position

vectors of which, Ri (1 # i # N) are identified by the Ca-atoms. Consider two

residues, i and j, originally separated by a distance vector:

R0

ij ¼ R0

j � R0

i ; (1)

where R0
j and R0

i are the equilibrium position vectors of the two residues

(Fig. 1). Suppose an external force (uniaxial tension) Fij is exerted on them to

increase the interresidue distance by a deformation vector dij:

dij ¼ ðRðFÞj � RðFÞi Þ � ðR
0

j � R0

i Þ[ DRðFÞij (2)

confined to the neighborhood of the original global energy minimum. Here

RðFÞj is the position vector in the presence of Fij.

In the absence of external forces, under equilibrium conditions, the

structure has 3N � 6 internal degrees of freedom and enjoys 3N � 6 normal

modes of motion. The changes in coordinates driven by these modes will be

denoted DRðkÞi ; 1 # k # 3N � 6. These modes are conveniently determined

by normal mode analysis (NMA), i.e., by the eigenvalue decomposition of

the Hessian matrix:

H ¼ +
3N�6

k¼1

lk uðkÞ uðkÞT (3)

TABLE 1 Experimental structures used in this study

Protein

PDB file and

residues Method and resolution Reference

GFP 1gfl, chain A x-ray, resolution 1.9 Å (74)

Ubiquitin 1ubi x-ray, resolution 1.8 Å (44)

E2lip3 1qjo, model 1 NMR (75)

Fibronectin
10FNIII

1fnf x-ray, resolution 2.0 Å (52)

Protein L 1hz6 chain A 2–64 x-ray, resolution 1.7 Å (76)

Titin I1 1glc chain A 2–99 x-ray, resolution 2.1 Å (77)

Spectrin 1u4q x-ray, resolution 2.5 Å (78)

Fibronectin
12FNIII

1fnh chain A 3–92 x-ray, resolution 2.8 Å (53)

Fibronectin
13FNIII

1fnh chain A 93–181

FIGURE 1 Schematic description of the position vectors at equilib-

rium, R0
i and R0

j ; and their instantaneous deformations induced by mode

k, DRðkÞi and DRj
ðkÞ: Stretching of residues i and j (green arrows) gives rise

to a deformation vector, dij, the direction of which coincidences with that of

the equilibrium distance vector, R0
ij: The distance vector induced by mode k

is designated RðkÞij :
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H is a 3N 3 3N matrix of the second derivatives of the potential with

respect to coordinates, lk denotes its kth nonzero eigenvalue, the superscript

T designates the transpose, and u(k) is the kth eigenvector given by

uðkÞ[

D�RðkÞ1

D�RðkÞ2

�
�

D�RðkÞN

2
66664

3
77775
; (4)

where D�RðkÞi ¼ DRðkÞi =jDRðkÞj is the normalized displacement of residue i

along mode k, and jDRðkÞj is the magnitude of the 3N-dimensional vector

DR(k) of all N displacement vectors induced by mode k.

The ANM lends itself to a simple formulation of H where the respective

off-diagonal and diagonal super elements (3 3 3 matrices) read (29–31)

Hii ¼ �+
jjj1i

Hij Hij ¼
g Gij

ðR0

ijÞ
2 R0

ij R0T
ij (5)

using the ANM potential

VANM ¼ g=2 +
jjj , i

ðGijÞðRij � R0

ijÞ
2
; (6)

where g is the force constant, assumed to be uniform for all springs, Rij and

R0
ij are the respective instantaneous and equilibrium distances between nodes

i and j, and Gij is ijth element of the Kirchhoff/Laplacian matrix G describing

the network topology (32) and is equal to 1 if nodes i and j are within rc,

0 otherwise. The value rc ¼ 13 Å, shown in previous work to yield optimal

agreement between theory and experiments (33), is adopted here. The

pseudoinverse of H scales with the covariance matrix, C:

C [ ÆDRðkÞDRðkÞTæ ¼ kBT

H�1 ¼ kBT +
3N�6

k¼1

1

lk

uðkÞuðkÞT; (7)

which conveys information on the mean-square (ms) fluctuations of indi-

vidual residues and their cross correlations. Here kB is the Boltzmann

constant and T is the absolute temperature.

The eigenvalue lk corresponds to the curvature of the potential along the

normal mode k, and hence takes on, in the mode space, the role of the spring

constant of the physical space (34,35). Evaluation of absolute lk values re-

quires knowledge of force constant g, whereas their relative values/disper-

sion and eigenvectors are independent of g. g is usually estimated from the

experimentally detected ms fluctuations of residues (e.g., B-factors in x-ray

structures or deviations in residue positions between NMR models) using the

relationships Bi ¼ (8p2/3) Æ(DRi)
2æ and Æ(DRi)

2æ ¼ trCii where trCii desig-

nates the trace of the ith diagonal superelement of C (32,34–37).

The frequency of the kth mode scales with l
1=2
k ; such that slower modes

make larger contributions to observed fluctuations (see Eq. 7). They also

define the directions of deformation that incur the lowest internal resistance.

If a pulling direction dij coincides with a relaxation mechanism favored by a

slow mode, then the work done against these relatively ‘‘soft springs’’ would

be expected to be smaller, and this will be reflected by an overall small ef-

fective ‘‘system-based’’ spring constant. In this respect, it is of interest to

examine the correlation cosine between the direction of the externally ap-

plied deformation dij and the change in interresidue distance, DRðkÞij ¼
DRðkÞj � DRðkÞi ; intrinsically favored by mode k:

cosaijðkÞ[
DRðFÞij � DRðkÞij

jDRðFÞij jjDRðkÞij j
: (8)

Noting that i), the deformation direction coincides with that of the equi-

librium distance vector R0
ij; and ii), DRðkÞij scales with the difference uðkÞij ¼

uðkÞj � uðkÞi between the jth and ith super elements (three-dimensional vec-

tors) of u(k) (Eq. 4), Eq. 8 may be rewritten as

cosa
ðkÞ
ij ¼

R0

ij � u
ðkÞ
ij

jR0

ijjju
ðkÞ
ij j
: (9)

The contribution dðkÞij of the kth mode to the deformation dij ¼ Sk dðkÞij

reads

dðkÞij ¼ ðkBT=lkÞ1=2
cosa

ðkÞ
ij jD�RðkÞj � D�RðkÞi j; (10)

and its contribution to the macroscopic force Fij that induces deformations

near the equilibrium state is

f ðkÞij ¼ lk dðkÞij : (11)

The macroscopic force Fij ¼ Ækijæ dij ¼ SðkÞ fðkÞij is written as a weighted

sum over all these contributions such that the effective force constant ac-

companying the observed deformation becomes

Ækijæ ¼ SðkÞ d
ðkÞ
ij lk=SðkÞ d

ðkÞ
ij : (12)

In the following, Ækijæ will be interchangeably referred to as effective

spring constant or mechanical resistance. We will examine how the values

predicted for three different proteins and different residue pairs in the same

protein compare with experimental data.

RESULTS

Green fluorescent protein

GFP is an a 1 b class protein of N¼ 238 residues originally

isolated from jellyfish, having a b-barrel structure of 11

strands and a helix that contains a chromophore. Its unique

property to fluoresce green light when exposed to blue light

makes it an extremely useful probe in biology. Its mechanical

properties have been examined in a series of studies (17,38,39).

In particular, the anisotropic response of GFP to uniaxial

tension along five different deformation directions (Fig. 2)

was determined using AFM (17) to observe a strong depen-

dence on the pair of residues on which the forces were ap-

plied. Unfolding forces were reported to vary in the range

116 # jFijj# 548 pN, the lower and upper limits corresponding

to the respective residue pairs (i, j) ¼ (Lys-3, Asn-212) and

(Asp-117, Tyr-182).

We calculated the contributions fðkÞij of all modes to the

macroscopic force for each pair of residues experimentally

examined using Eqs. 10 and 11. The dðkÞij values resulting

from all modes are displayed in the five panels of Fig. 2 as a

function of mode index. Clearly, the distributions among

different modes exhibit a strong dependence on the se-

lected pairs of residues where the external tension is applied.

Although in some cases the slower/softer modes make rela-

tively larger contributions (e.g., Lys-3–Asn-212 and Glu-

132–Asn-212), others exhibit more uniformly distributed

contributions from different modes (e.g., Tyr-182–Asn-212).

Notably, a single mode (first mode) is observed in the case of

the Lys-3–Asn-212 to induce a deformation of .1 Å along

3426 Eyal and Bahar
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the extension direction, whereas the contributions of indi-

vidual modes generally remain lower than 0.1 Å. Note that

the absolute size of the modes are based on the normalization

of the force constant after the B-factors (see Theory and

Methods). Fig. 2 thus provides a detailed description of the

deformations along selected directions inherently accessible

to GFP as a consequence of its natural vibrational motions in

the absence of external forces.

The filled circles in Fig. 3 show the correlation between the

theoretical Ækijæ (see Eq. 12) and the unfolding forces deduced

from experimental measurements (17). A correlation coeffi-

cient of 0.94 is observed between the two sets of data. Due to

the small number of points, the real correlation might be

weaker, yet p-value analysis indicates that it is still significant

(p¼ 0.01 to be obtained by chance). Evidently, when a given

deformation direction Rij can be accommodated by moving

FIGURE 2 Distribution of the deformations in the dis-

tance d
ðkÞ
ij contributed by each mode k (abscissa) in the

presence of extensional forces applied to residues i and j.

Each panel corresponds to a particular pair of GFP residues

examined in previous experiments (17): (A) 3–132, (B)

3–212, (C) 182–212, (D) 132–212, and (E) 117–182, shown

on the right panels. Note the distributions sharply skewed

toward the lowest frequency modes in B and D, the same

trend to a weaker extent in A, and the relatively uniform

distribution in C. The first two cases refer to deformation

directions that are more ‘‘yielding’’ as they can be accom-

modated by low-frequency modes. E, on the other hand,

points to the involvement of moderate-to-high frequency

modes and thereby the need to apply relatively stronger

external forces to induce the same level of deformation.

The ordinate scale refers to the force constant g¼ 0.25 kcal/

(mol Å2), and the profiles are independent of g. The cartoon

diagrams here and in all figures were generated using Jmol

(68).
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along relatively softer modes, Ækijæ takes on smaller values

and vice versa.

The same figure displays the results taken from the work of

Jimenez et al. (40) on enhanced yellow fluorescent protein

(EYFP) using the wild-type structure (shown by a star) and

two circular permutations (open circles). EYFP is structurally

equivalent to GFP. The two proteins differ by only five

substitutions. The two circular permutations each contain a

linker of six residues that connect the original C- and N-ter-

mini, whereas the peptide bonds at residues 144/145 and

173/174 are broken in the respective structures. These are

conceptually hard targets for our ANM-based approach be-

cause the forces are applied at residues that are originally

covalently bonded but now serve as chain termini. Note that

the introduction of a six-residue linker and the dissociation

of a peptide bond may have induced some structural changes

which would affect the model and predictions. To apply our

method to these cases, we have implicitly assumed that the fold

does not change with respect to the wild-type GFP structure.

The results show that the theoretical approach overesti-

mates the force in one of the circular permutations. This may

be due to some internal relaxation, succeeding the permuta-

tion, which the ANM does not incorporate. We also note that

the pulling velocity in the study of Jimenez et al. (40) was

considerably slower (0.4 mm/s vs. 3.6 mm/s) than that used

by Dietz et al. (17) for GFP. This difference implies that the

forces measured with EYFP would be lower than those

measured for GFP (17). However, this effect is relatively

small, due to the logarithmic dependence of changes in forces

on the ratio of pulling velocities. Therefore, the apparent

discrepancy between theory and EYFP experiments cannot

be explained by the difference in pulling velocities alone.

Although there is a good correlation between the relative

sizes of effective force constants and the multidirectional

unfolding forces obtained for GFP, the absolute values com-

puted by the ANM (ordinate in Fig. 3) are about one order of

magnitude smaller than those inferred from experiments

(abscissa). This difference may be attributed to the fact that

the former refers to small deformations near the folded state,

whereas the latter corresponds to unfolding events. Further-

more, this approach implicitly assumes that the observed

mechanical behavior is dominated by the equilibrium state

contact topology, and this may not be the case if the transition

state between the folded and unfolded state is not close to the

native state, or there may even be multiple states/barriers

involved in the unfolding event. A typical example is titin I27

which has been shown by Schulten and co-workers to unfold

in multiple steps (41,42). The approach here can be used to

examine first (closer to native state) transition (dissociation of

strands A-B), rather than events occurring at a later stage

(e.g., breaking the A9-G patch) in this case. Due to such ef-

fects, the difference in the magnitudes of the two sets of force

constants is not, therefore, surprising, but their high corre-

lation is, as will be further discussed below.

Using the ANM, we can readily construct a complete map

of the mechanical resistance in response to all possible

pulling directions (Fig. 4). Efficient assessment of such maps

is an advantage of analytical models such as the ANM over

numerical approaches such as steered MD or even coarse-

grained simulations. The map shows that the residues that

belong to secondary structural elements tend to exhibit rel-

atively strong resistance to deformation. The curve under the

FIGURE 3 Correlation between the theoretical effective force constant

Ækijæ (ordinate) and experimentally reported spring constants (abscissa)

(17,69) for the five studied extensions of GFP. Theoretical spring constants

are evaluated using Eq. 12. The theory yields spring constants that are about

10 times softer, attributed to local deformations, rather than those, global,

experimentally detected. Data points indicated by open circles refer to

experiments (40) performed with two permutations of EYFP (cut at 144/145,

higher point (outlier); 173/174, lower point). The gray circle refers to the

EYFP wild-type protein.

FIGURE 4 Mechanical resistance map for GFP obtained by calculating

the effective force constant Ækijæ in response to uniaxial extensional forces

exerted at each pair of residues. The secondary structure of the protein is

shown along the upper abscissa (arrow, b-strand; zigzag line, a-helix). The

profile at the lower part of the map displays the mean resistance of each

residue, averaged over all values in a given column.
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map displays the results averaged over all pairs for each

residue, which provides a profile of the mechanical resistance

of individual residues to deformation, in general. Some res-

idues, especially those lying at the loops connecting strands

10–11 and 8–9 are clearly more disposed than others to de-

formation, as indicated by this profile.

It is also interesting to see which molecular directions are

more mechanically resistant to uniaxial tension. Fig. 5 A
displays the distributions of effective force constants Ækijæ as a

function of the angular deviation of the exerted tension di-

rection away from the cylindrical axis of the b-barrel. For

clarity, the histogram for residue pairs that can be most easily

pulled (which exhibit the lowest 1% Ækijæ values) and that of

the most resistant (the top 10% Ækijæ) pairs are displayed. Only

pairs that are separated by more than 25 intervening residues

along the sequence and more than a 25 Å internode distance

and that are part of the ‘‘barrel’’ fold of the protein are in-

cluded. The protein is observed to be more easily deformable

along directions which coincide with its cylindrical axis,

whereas radial directions exhibit higher resistances. Exam-

ples of residue pairs that exhibit low mechanical resistances

are shown in Fig. 5 B.

Ubiquitin

Ub is another (a 1 b) protein that has been examined by

AFM (18) (Fig. 6 A). This is a compact (76 amino acids)

protein, highly conserved in evolution. It has some essential

roles, especially in targeting proteins to be degraded but also

in other cellular signaling processes (43). The unfolding force

of Ub when pulled at the C- and N-termini (Met-1–Gly-76)

was measured (18) to be larger than that along the (Lys-48–

Gly-76) direction (203 pN vs. 85 pN, respectively). The

ANM results for the effective spring constants Æk1,76æ and

Æk48,76æ, on the other hand, are 6.00 N/m and 4.23 N/m, re-

spectively. Calculations yield deformations of the order of

0.15 Å (average over all modes), using g ¼ 1.75 kcal

mol�1Å�2 deduced from the B-factors reported in the PDB

(1ubi (44)). The counterpart of Fig. 4 for Ub is presented in

Fig. 6 B.

Ub is particularly attractive for analysis since its mechan-

ical resistance is likely to be directly relevant to its biological

function. To tag proteins in the Ub-proteosome degradation

system, the C-terminal Gly of Ub forms an isopeptide bond

with a selected lysine on the target protein. Then, often, ad-

ditional Ub molecules attach by forming isopeptide bonds

between their C-terminal glycines and the surface lysine side

chains of the preceding Ub molecules. It was shown that the

linkage form of the poly-Ub chain determines the fate of the

target molecule in the proteasome. For example, K48-linked

chains usually attach to molecules targeted for degradation;

K29-linked chains and K11-linked chains do so also (45). On

the other hand, K63-linked Ub chains are attached to mole-

cules which are not eventually degraded and serve as a signal

for other cellular processes. Several nonspecific processes in

the proteasome, before the degradation, involve ATPase-

driven mechanical pulling and unfolding of the target protein.

The mechanical properties of the Ub chains play a role in

these events (46–48), and it is suggested that a minimal level

of mechanical resistance is necessary for a specific linkage to

be functional (18).

Fig. 6 A shows the five biologically relevant pulling di-

rections between the C-terminal glycine (Gly-76) and four

lysines (11,29,48,63) and the N-terminus (Met-1). The the-

oretically predicted Ækijæ values for these extension directions

are presented in Fig. 6 C. The pair G76–K48 exhibits a

moderate mechanical resistance, which is apparently strong

enough to maintain the poly-Ub chain intact, whereas the

target protein is processed by the ATPases in the 19S unit of

the proteasome. The G76–K11 direction, on the other hand,

shows relatively low resistance and its role in the process is

indeed questionable (45). The pairs (Gly-76, Met-1) and

(Gly-76, Lys-63) pairs exhibit relatively high resistances to

FIGURE 5 Relation between the mechanical resistance (Ækijæ) and the

direction of interresidue vector R0
ij with respect to the cylindrical axis of

GFP. (A) Two number distributions are shown for two sets of residue pairs

that exhibit opposite behavior: those yielding the lowest Ækijæ values in the

1% range (black bars) and those in the upper 10% Ækijæ range (gray bars).

Clearly, residue pairs which exhibit lower resistance to deformation are

oriented along the cylindrical axis (mean at 22�), whereas residue pairs

distinguished by their strong resistance are oriented at more perpendicular

directions (mean angle of 55� with respect to the cylindrical axis). (B)

Illustration of the location of some residue pairs that are predicted to exhibit

very low resistance against stretching.
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extension. Interestingly, no N-terminal linked and K63-

linked chains have been characterized to date among the poly-

Ub chains that target proteins for degradation. This suggests

that a strong resistance to uniaxial tension might not present a

suitable setup for the degradation machinery. As for the K29

linkage that is predicted to be equally resistant to deformation,

we note that although K29-linked chains exist and are in-

volved in proteasome targeting, they are proposed to switch to

K48 linkage during extension (45). The exact biological

functional role of K11-, K63-, and K29-linked as well as

N-terminal linked Ub chains remains to be further explored.

The analysis here suggests that overall an intermediate flex-

ibility, lending itself to conformational adaptability while

maintaining stability, may provide an optimal framework for

ubuiqitination reactions. Yet, many factors other than me-

chanical stability may affect the selection of the appropriate

linkage.

Finally, we note that atomic simulations performed for Ub

(18,25) show that the two pulling directions (N-C) and (48-C)

yield effective (maximal) forces of 2000 and 1200 pN, re-

spectively. These two relative values are in accord with the

ratio (6.0 vs. 4.2 N/m) of the force constants predicted here

(Fig. 6 C).

E2lip3

Yet another protein that has been investigated with respect to

its mechanical resistance in different pulling directions is

E2lip3, the lipoyl domain (E2p) of the PDH. This domain

forms the structural core of PDH and is responsible for the

transfer of an acetyl group in the complex. In a recent study

(19), its response to pulling in two different directions (Fig.

7 A) was studied. The mechanical resistance along the Met-

1–Lys-41 direction was shown to be significantly stronger

than that along the Met-1–Ala-80 direction (177 pN vs. ,25

pN). The unfolding force along the latter was so weak that it

was hardly detectable (19).

Our results are in qualitative agreement with these obser-

vations. The difference between the two directions is not,

however, as large as suggested by experiments, the respective

Ækijæ values being in the ratio of 1.25:1.

The orientation of hydrogen bonds with respect to the

pulling direction was suggested in previous work (19) to

explain the anisotropic mechanical response. The departure

of ANM results from experimental data may be attributed in

this respect to the effect of hydrogen bonds, which are not

explicitly taken into consideration in the ANM. On the other

hand, a steered MD study (19,49) yielded results similar to

those obtained by ANM, showing that the 1–41 direction is

more mechanically resistant to deformation but not by one

order of magnitude, as implied by AFM measurements.

To investigate the sensitivity of the results to the initial

coordinates, we repeated the calculations with various NMR

models of E2lip3. The first five models in the coordinates file

(PDB code 1qjo) yielded the same qualitative results with

force constant ratios with respect to the original model being

FIGURE 6 Mechanical behavior of Ub. (A) Cartoon representation of Ub. Pulling directions which are relevant to the biological function or examined by

Carrion-Vasquez and colleagues (18) are indicated, and the pulled residues are labeled. (B) Mechanical resistance map for Ub, equivalent to the one shown in

Fig. 4 for GFP. (C) The effective force constant Ækijæ for the extensions in the directions shown in (A).
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in the range 1.45 6 0.25. This shows that at least in this case

the results are insensitive to the resolution of the structure and

suggests that the method can be applied to low-resolution

models.

Fig. 7 B displays the mechanical resistance map for E2lip3.

The inset shows previous results obtained using a G�o model

(Fig. 7 in West et al. (27)). The comparison with the results

here (the lower triangular portion of the map indicated by the

black frame) reveals similarities at particular regions (e.g.,

relatively strong resistance to deformation for residue pairs

belonging to the respective strands 4 and 8), whereas other

regions (e.g., N-terminal) show different behavior.

Other proteins

In this study, we focused mainly on the relative responses of a

given protein to deformations along different pulling direc-

tions. However, such data exist for a few systems only. In-

deed, the large majority of experiments reported in this area

refer to stretching proteins at their C- to N-termini (16). The

comparison of our predictions with the unfolding forces re-

ported for different proteins is complicated by several factors.

First, to make a theoretical assessment, we need to know the

generic spring constant g corresponding to interresidue in-

teractions in each protein. In principle, this is an adjustable

parameter that uniformly rescales the absolute magnitude of

residue motions without affecting the shape of the normal

modes or the distributions of residue fluctuations and their

cross correlations.

Therefore the relative mobilities of residues are uniquely

computed for a given protein, but their absolute sizes depend

on the g. The usual approach for a quantitative comparison

with experiments is to evaluate g based on the average

B-factors reported for a given protein, and we adopt the same

approach here. Note that the B-factors may be sensitive to

experimental conditions (crystallization temperature, crystal

form/symmetry group) and refinement errors. We also note

that the effective forces increase with the pulling velocity,

which varies between experiments. This dependence is, how-

ever, logarithmic for a given extension (50), which may be

comparable to the range of uncertainty in the predictions.

In view of these problems, we restricted our analysis to a

subset of proteins that have i), available x-ray structures, and

ii), recorded pulling velocities in the relatively narrow range

of 0.3–0.6 mm/s. The results are shown in Fig. 8. Each point

refers to a different protein (see the caption) except for fi-

bronectin, three different domains/repeats of which are dis-

played: the labels c, f, and g, correspond to the respective

FIGURE 7 Mechanical resistance of E2lip3. (A) Cartoon

representation of E2lip3. Pulling directions examined by

Brockwell and colleagues (19) are indicated, and the pulled

residues are labeled. (B) The complete resistance map for

E2lip3. The secondary structure of the protein is shown

along the upper abscissa and right ordinate (arrow, b-strand;

zigzag line, a-helix). The mean resistance of each residue is

shown in the profile at the lower part of the map. The inset in

the top right corner shows the equivalent resistance map

obtained with a G�o potential in coarse-grained MD simula-

tions (27). The color code of the matrix is as in Fig. 4, and in

the inset, yellow to blue colors indicate high to weak

mechanical resistance, respectively (27). The portion of

the map corresponding to the diagram in the inset is indicated

by the black triangle.
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domains 10FNIII, 12FNIII, and 13FNIII. We have not shown

the results for Ub as the corresponding data (6.0 N/m vs. 203

pN) lie outside the range of the figure. Calculations per-

formed using the high-resolution structure of 10FNIII avail-

able in the PDB yield good agreement with the measurements

of Oberdorfer et al. (51) (c), more or less consistent with the

relative unfolding forces observed for other proteins (titin,

spectrin, EYFP, and protein L). On the other hand, the the-

oretical forces appear to be weaker than those observed in

experiments for the other two repeats, 12FNIII and 13FNIII. In

these two cases, we used the coordinates from the relatively

higher (2.8 Å) resolution crystal structure of heparin and integrin

binding segment of human fibronectin structure (52,53).

As the structures of the two repeats are very similar (root

mean-square deviation of 1.4 Å), the predicted unfolding

forces are very similar (Fig. 8, open circles). The experi-

mental unfolding forces differ, however (89 vs. 124 pN),

presumably due to their difference in sequence. Despite the

strong structural similarity, the two domains indeed share

only 25% sequence identity. This example illustrates a case

where the theory here fails. In fact, the ANM exclusively

depends on the fold (or contact topology); and as such,

structurally homologous structures that exhibit different un-

folding forces (due to their different sequences) cannot be

explained by the ANM-based model. We note that the dif-

ferent values in this case for 10FNIII, 12FNIII, and 13FNIII

originate partly from their different fluctuation amplitudes

indicated by their B-factors. The B-factors experimentally

measured for 10FNIII (1fnf) average out to 36 Å2 as opposed

to the mean values of 55 Å2 for the other domains (1fnh).

DISCUSSION AND CONCLUSION

The analysis here is based on the basic premise that the in-

trinsic dynamics of a protein near equilibrium conditions has

an impact on its anisotropic mechanical behavior. To eluci-

date the intrinsic, structure-encoded dynamics, we resorted to

an NMA with a coarse-grained (anisotropic network) model.

NMA yields an ensemble of modes of motion that the protein

enjoys under equilibrium conditions, some more easily ac-

cessible than others (as implied by their low eigenvalues/

force constants). The externally observed (macroscopic) force

to initiate a deformation would be expected to be small, to the

extent that the external stress complies with those ‘‘easier’’

movements. So, the problem reduced to the examination of

the correlation between the direction of the externally applied

force and that of the modes inherently induced/favored by the

individual structures to make an assessment of the kinetic

accessibility of extensions along particular directions.

Clearly, NMA describes the motions in the neighborhood

of an energy minimum approximated by a harmonic well.

Those motions, which require a transition over an energy

barrier or involve any nonlinear effects, cannot be theoreti-

cally accounted for by NMA. Therefore, one might not ex-

pect to see a correlation between predictions made with a

simple NMA (ANM) and the unfolding forces observed for

proteins. Yet, a correlation of 0.94 is observed between the

two sets in Fig. 3, and qualitative features observed for other

proteins are confirmed by the NMA predictions.

Why do results from NMA exhibit a correlation with the

data upon ‘‘unfolding’’? Does the preferential dynamics of

the protein near its original (folded) state also affect, if not

dominate, the evolution of motions beyond the early stages of

deformation? Does a small curvature in the energy landscape

along a particular mode direction also entail a lower barrier to

be surmounted in many cases? We are not in a position, yet,

to answer all these questions; but we present results from

simple calculations that suggest that the resistance to defor-

mation experienced at early stages (along a given direction

away from the original energy minimum) affects to a large

extent the behavior at longer times or larger deformations, at

least in the examined cases. The slow modes appear to con-

stitute ‘‘nucleation seeds’’ for unfolding and their stiffness

presumably correlates to some extent with the effective forces

experimentally measured.

Coarse-grained NMA (e.g., ANM) has been observed in a

number of recent applications to sample structural changes

beyond those that would be confined to an energy minimum

in the full atomic description of the protein, e.g., passages

between substates separated by relatively low energy barriers

within a given global energy minimum. Classical examples

are the transitions between the T and R states of allosteric

proteins such as hemoglobin (54,55) and aspartate trans-

carbamylase (56,57), and many other examples can be found

in the literature (58–61). Interestingly, the intrinsic flexibil-

ities of amino acids predicted by the Gaussian network model

FIGURE 8 Comparison of theoretically predicted force constants (ordi-

nate) and experimentally measured unfolding forces (abscissa) for a series of

proteins resolved by x-ray crystallography and subjected to pulling exper-

iments at their N- and C-termini, with a velocity of 0.3–0.6 mm/s. Results are

presented for (a) Spectrin (70,71), (b) EYFP (40,72), (c) Fibronectin repeat/

domain 10 (10FNIII) (51), (d) Titin (I1) (73), (e) Protein L (72), (f) 13FNIII

(12), and (g) 12FNIII (12). See Table 1 for the PDB structures used in ANM

calculations. The coordinates for 12FNIII and 13FNIII are taken from the

same crystal structure (1fnh), whereas those of 10FNIII refer to a different

PDB structure (1fnf) with considerably smaller temperature factors (52,53).
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were also shown to correlate with the hydrogen-deuterium

exchange free energy costs observed in a series of proteins,

although experiments were conducted under denaturing con-

ditions (62). There is also a large body of literature in which

the native contact topology or associated G�o potentials are

utilized to examine folding/unfolding kinetics and mecha-

nisms. We note that in previous studies, such as those of

Kleiner and Shakhnovich (28) and Cieplak (63–65), realistic

results were obtained for unfolding pathways and associated

forces, despite the assumption of the ground state of the

protein located at the native structure and the simple G�o-type

potentials adopted in simulations.

These studies, and observations here, point to the utility of

examining the dynamics of proteins intrinsically favored by

their fold using coarse-grained models. The models that lend

themselves to a unique analytical solution such as the ANM

also provide the advantage of a thorough sampling of the

energy landscape near the original energy minimum, on a low

resolution but broad scale. The results here also reveal that

the overall topology of the protein plays a major role in de-

termining the anisotropic mechanical resistance. This also

implies that evolutionary related proteins are expected to

show similar qualitative mechanical behavior in general.

We should, however, bear in mind that the theoretical data

obtained with such coarse-grained models essentially provide

a qualitative assessment of the relative behavior of different

residues or residue pairs. Effective force constants or dis-

placements were reported not to make a quantitative com-

parison with their counterparts derived from unfolding

experiments but to give an estimate of the stress-strain de-

pendence at early stages of deformation (or uniaxial tension).

Besides, we note that the experimentally detected forces

increase with pulling (constant) velocity applied in AFM

measurements. And, MD simulations, which necessarily de-

form the protein within timescales much shorter than those

occurring in experiments (due to the timescale of simula-

tions), usually yield effective forces that are one order of

magnitude larger than those experimentally measured (16).

The discrepancy with experimental values decreases only if

simulations are conducted under quasiequilibrium conditions

(20). In view of these uncertainties in absolute values, we

have focused mainly on relative forces (or force constants)

associated with different pairs in a given protein.

A major practical advantage of the approach here is its

computational efficiency. In molecular simulations, even

those which utilize coarse-grained models and simple po-

tentials (16), the estimation of the unfolding force in a given

direction takes hours at least. In the approach here, on the

other hand, we can estimate the effective force constant, Ækijæ
for all pairs of residues within seconds. This type of infor-

mation can be readily tested by AFM and optical tweezers,

which may permit us to improve our model and gain a better

understanding of the molecular origins of observed behavior.

The fast computation time makes it feasible to easily estimate

the mechanical resistance in proteins for which there are no

experimental data, as well as to generate the complete me-

chanical resistance maps for proteins of interest. One utility

of constructing such maps would be the possibility of care-

fully designing AFM pulling experiments, i.e., selecting the

residues where the external forces should be applied, based

on the computational data that can be readily evaluated for

any PDB structure.

Despite the relative success of the ANM-based approach

here, it is important to stress its limitations. First, rather than

predicting an absolute force for deforming a protein, the

theory provides a reasonable description of the relative (an-

isotropic) responses to deformations along different direc-

tions in a given protein. The comparison of the unfolding

forces of different proteins, on the other hand, is complicated

by the differences in the intrinsic (generic) force constants

that best reproduce the mechanical behavior of each protein,

and by the differences in experimental setups, with the pulling

velocities playing a role. Second, the theory is based purely

on the contact topology, irrespective of the identity of amino

acids.

Although we maintain the view that the overall topology

plays a crucial role in mechanical response, as proposed in

earlier studies (50,66), it should also be recognized that there

exists cases where sequence details become important, and

even dominant, such as the fibronectin domains (Fig. 8), the

immunoglobulin domains, and recombination of immuno-

globulin fragments (67). The theory here cannot explain the

differences in the mechanical behavior of proteins that have

the same fold but exhibit mechanical responses to deforma-

tion. Finally, because the models utilize native state coor-

dinates, the predictions would be expected to agree with

experiments to the extent that the transition state is close to the

original equilibrium state. Events far from the original state,

or transitions that involve multiple barriers and/or interme-

diates (such as those observed by Schulten and collaborators

for titin (41,42)), are beyond the applicability range of the

theory.
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