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ABSTRACT Fundamental to the analysis of protein polymerization is the free energy of association, typically determined from
solubility. It has been previously shown that concentrated 70 kDa dextran lowers the solubility of sickle hemoglobin, due to
molecular crowding, and provides a useful ranking tool for the effects of inhibitors and molecular modifications. Because
hemoglobin occupies a substantial volume as well, crowding effects of both hemoglobin and dextran contribute to the nonideality
of the solution. We show how scaled-particle theory can be used to account for both types of crowding, thus allowing the
determination of solubility in the absence of dextran, given data measured in its presence. The approach adopted approximates
dextran as a sphere with a volume that decreases as the concentration of dextran increases. We use an asymptotic relation to
describe the volume, which decreases nearly linearly by a factor of two over the range studied, from 60 to 230 mg/ml. This
compression is similar to previously observed compression of sephadex beads and ficoll solutions. In the limit of low hemoglobin
concentrations, the theory reduces to the previously-used approach of Ogston. Our method therefore provides a means of
measuring the free energy of association of molecules that occupy significant volume fractions, even when assisted by the
crowding of dextran and we present a tabulation of all known free energies of polymerization of sickle hemoglobin measured in the
presence of dextran.

INTRODUCTION

The pathology of a number of diseases, of which perhaps the

most prominent members are Alzheimer’s and Mad Cow

disease, is related to protein assembly into large, fibrous struc-

tures. Fundamental to understanding protein assembly dis-

eases is a measure of the interaction of the molecules within

the aggregate, and the free energy of interest can be learned

from the measurement of solubility. The formation of aggre-

gates may also occur in crowded environments (1), a finding

that has inspired the study of assembly in the presence of

crowding agents such as high-molecular-weight dextran.

Moreover, it is possible by adjustment of crowding condi-

tions to promote aggregation (2–4) and thus induce aggre-

gation under conditions that might otherwise not be amenable

to protein association. Although crowding may be a natural

part of some processes, a molecular understanding requires

that energetics of the assembled polymer or fibril be known

independent of the crowding process.

Sickle hemoglobin polymerization is the basis of the oldest

known assembly disease, sickle cell disease, and occurs once

the concentration of monomers exceeds a concentration var-

iously designated as csat or as solubility, cs. Under conditions

near physiological, this solubility is ;160 mg/ml (5). Inves-

tigation of the propensity to form such polymers therefore

typically requires a significant mass of hemoglobin, and, par-

ticularly if mutant proteins are to be studied, this requirement

can be difficult to achieve. Smaller amounts of protein can

be employed if the solubility is reduced by dramatically in-

creasing the ionic strength of the solution, (6,7) but such a

strategy often raises questions of whether intrinsically impor-

tant ionic interactions have been modified by the changed ionic

strength. An alternative is to adjust the protein activity by

adding inert molecules, thus crowding the solution, and al-

tering the activity coefficients that formally account for solu-

tion crowding. By using 100–120 mg/ml of 70 kDa dextran,

the HbS solubility can be reduced to 30–40 mg/ml, in striking

validation of the concept (4). The fibers produced in the

presence of the dextran are indistinguishable by electron mi-

croscopy from those found in its absence (4).

Despite the utility of the approach, as evidenced by its

widespread use (4,8–11) and the conceptual clarity of its

origin, no quantitative thermodynamic connection has been

shown between solubility measured without dextran and

solubility determined in the presence of this crowding agent.

Dextran has been used in other studies on protein association

and folding (3,12–14), and in those studies it has typically

been successfully described by a model developed by Ogston

(15). However, in Ogston’s model it is assumed that only the

dextran has significant volume crowding, and thus the theory

cannot be employed when any other species occupies a

substantial volume as well, as is the case in hemoglobin

polymerization. The absence of a successful theory for dex-

tran effects on hemoglobin polymerization is particularly

limiting if one wishes to deduce free-energy changes, in

which case activity coefficients must be known. Moreover, it

is important if experiments executed under one set of con-

ditions need to be compared to those executed under another

set. For example, a mutant Hb that might be a candidate for
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gene therapy could be assayed in the presence of dextran, but

its actual efficacy needs to be known under physiological con-

ditions. Although the dextran results provide a proper ranking

tool (showing what changes increase or decrease solubility, for

example), the thermodynamic connection is not present.

In this article, we use scaled-particle theory, a particularly

successful theory for relating hard-sphere exclusion between

spheres of any size, to account for solution crowding of

dextran and hemoglobin molecules in the same solution in

which solubility is measured. In using the hard-sphere cal-

culation it is necessary to vary the volume of the dextran

particles, depending on the final dextran concentration. This

is rationalized as the consequence of interpenetration of the

dextran.

MATERIALS AND METHODS

Hemoglobin was purified chromatographically, as described elsewhere (16).

Buffers were 0.15 M phosphate, pH 7.35. Dextran was obtained from Sigma,

and used without further preparation. Hemoglobin concentrations were ob-

tained by measuring optical absorption spectra in the Soret region (400–450

nm), and fitting the entire spectrum to known standards. For one set of ex-

periments, C-14 was used to track the composition of the supernatant.

A series of experiments was analyzed, for which results have been pre-

viously reported, in which conventional centrifugation methods were used to

separate the gel formed in dextran (4). In addition, we employed a newly

developed photolytic method (17). This procedure uses an emulsion of

COHbS in castor oil placed between microscope coverslips. A particular

droplet is selected and subjected to continuous laser photolysis except for a

small spot at the droplet center. This spot serves as a reservoir from which

monomers will be drawn into the photolyzed, polymerizing region until

solubility in the reservoir is reached. Droplets were 200–300 mm in diameter

and a few micrometers thick, and the masked area at their center is 4–5% of

the total area. The spectrum of the reservoir is measured using an Ocean

Optics (Dunedin, FL) 2000 spectrometer. Photolysis is achieved using a

Lambda-Pro green solid-state laser. The sample is observed with 153 re-

flecting microscope optics (Ealing, Holliston, MA). As shown below, the

new method gives results that agree with the conventional approach. How-

ever, the new method uses only a few microliters of sample per experiment,

can be repeated a number of times, and can readily measure solubility at a

number of different temperatures.

Theory

The central theoretical concept is that solution monomers with chemical

potential mS, are in equilibrium with a polymer phase of chemical potential

mP. This implies equality of the chemical potentials, i.e.,

mP ¼ mS: (1)

The polymers are treated in a crystal approximation (18), and thus

mP ¼ mPC 1 mPV; (2)

where PC denotes the contribution from molecular contacts and PV the

contribution from vibrations of the molecules in polymers, moving about

their center of mass. The solution has translational and rotational freedom,

and thus

mS ¼ mTR 1 RT lngScS; (3)

where S subscripts have been added, anticipating that we are considering the

solution at solubility. g is an activity coefficient that depends on concentra-

tion, and thus has an S subscript as well. We have found that for hard spheres

such as hemoglobin, a simple yet accurate expression is (19)

ln g ¼ 8f=ð1� fÞ2; (4)

where f is the volume fraction, which is given for simple hemoglobin (Hb)

solutions by the equation f ¼ VHbc.

Thus, the monomer-polymer equilibrium is described by a solubility, cS,

which satisfies the equation

ln gScS ¼ ðmPC 1 mPV � mTRÞ=RT: (5)

Since the righthand side of this equation does not change as the solution is

crowded, it is evident that changes in the activity coefficient are offset by

changes in solubility. If g9Sc9S represents activity in a crowded milieu, then

g9Sc9S ¼ gScS: (6)

To calculate g9S requires a specific prescription for incorporating crowding.

An effective way is scaled-particle theory, which allows similarly shaped

particles to be employed in the calculation of their mutual crowding (20). The

activity coefficient for Hb, taken as a hard sphere in the presence of dextran,

also taken as a spherical crowding agent, is denoted as gsp and is given by

Minton (20) as

ln gsp ¼ �lnð1� YÞ1 B
RHb

1� Y
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1
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(7)

in which Y is the fraction of space occupied, and is given by

Y ¼ VHb½Hb�1 Vdex½dex�; (8)

and the auxiliary constants A and B are given by

A ¼ RHb½Hb�1 Rdex½dex� (9)

and

B ¼ 4pðR2

Hb½Hb�1 R
2

dex½dex�Þ; (10)

and VHb is the specific volume of Hb, with VHb ¼ ð4p=3ÞR3
Hb; and similarly

for dextran. It is convenient to factor the hemoglobin volume, and to write

Vdex as multiples of VHb. Thus, we define vdex as the ratio Vdex/VHb. Because

spherical objects are assumed, once Vdex is determined, the radius, Rdex, can

be deduced. Other approaches have been used for dextran, and will be

compared in the Discussion section. For now, it is sufficient to point out that in

the other approaches that have been used, the particle crowded (e.g., Hb) was

much more dilute than the crowder. That assumption cannot be made here.

Since dextran does not go into the polymer, it is necessary to correct the

final dextran concentration in supernatant solution, which is done by simple

mass conservation according to

½dex� ¼ ½dex�
o

1� co � cs

cpp

; (11)

in which [dex]o is the initial concentration of dextran, c0 is the initial con-

centration of Hb, and cpp is the concentration of Hb in the polymer phase,

which is the inverse of the specific volume of the polymer phase.

RESULTS AND DISCUSSION

Using Eq. 11, we computed the expected final concentration

of dextran in each sample. This was compared with the
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radiolabeled dextran which, taken from the supernatant, gives

a direct measurement. The results are shown in Table 1. As

can be seen, agreement is excellent, using cpp¼ 55 g/dl (21).

The average difference is a mere 0.019 g/dl, ;0.1%.

To determine the appropriate specific volume for use in

Eq. 8, we first employed a volume determined by density

measurement of the dextran, which yielded 0.664 ml/g, in

good agreement with published values (22) This is equal to

0.0465 L/mmol, which is within a few percent of the specific

volume for Hb, 0.0482 L/mmol. When used in the scaled-

particle theory, this did not yield good agreement. We

therefore reversed the procedure, and determined a specific

volume that would suffice to reconcile the dextran-free sol-

ubility with that measured in various dextran concentrations.

This yielded a series of volumes that depended on the initial

dextran concentration, as shown in Fig. 1, and decreased as

dextran concentration increased. These volumes are all given

relative to the volume of Hb, and are therefore dimensionless.

To explore this behavior further, we obtained additional

data at 22�C and 37�C. The solubility data is shown in Table

2, along with the published data (4) for comparison. Typical

reproducibility of the solubility data was 3%, and in no case

worse than 4%. The dextran volume determined by analysis

of this data is shown in Fig. 1, and is in generally excellent

agreement with the published 22�C data, while extending its

range. It is noteworthy that both temperatures give the same

effective volume.

Published data at 37�C (4) was not used because the ac-

cepted protocol for this method is to gel the sample at 37�C,

but to centrifuge it at room temperature. (4,8–10) This raises

the possibility that some of the gel will dissolve during

sedimentation and processing, and that the effective tem-

perature is neither 37�C nor room temperature. We will return

to this issue in the discussion.

The dimensionless volume ratio data of Fig. 1 was fit by

the empirical equation

vdex ¼ vo 1 Dv=2ð1� tanh ðð½dex� � ½dexm�Þ=DcÞÞ; (12)

in which vo, Dv, [dexm] and Dc are constants determined by

fitting to the data. From the fit, it is found that vo ¼ 1.79 and

Dv¼ 2.70, and [dexm]¼ 14.01 g/dl, and the width Dc¼ 8.75

g/dl. As can be seen in Fig. 1, the function, selected to have

high and low asymptotes, provides a good fit.

The consistency of the variable volumes used for dextran,

independent of temperature and Hb concentration suggested

that the approach had validity. Moreover, other workers have

observed the compressibility of dextran (23), as well as the

closely related Ficoll (12). Quantitatively, the size variation

FIGURE 1 Relative specific volume of dextran as a function of final

dextran concentration. Dextran volume is measured relative to the volume of

hemoglobin. Volume was determined by using Eq. 7 for the scaled-particle

activity coefficient to determine the volume that gave the solubility, as listed

in Table 2. (Open circles) 22�C data published previously (4); (solid circles)

22�C data determined here; (diamonds) 37�C data determined here. The

curve is the best fit of the empirical function of Eq. 12.

TABLE 1 Comparison of measured and predicted

dextran concentrations

Measured [dex] (g/dl) Predicted [dex] (g/dl)

12.5 12.7

12.5 12.7

13.0 13.0

13.0 13.0

12.9 13.0

13.2 13.0

14.3 14.3

14.1 14.3

13.3 13.0

13.4 13.0

Dextran concentration was predicted based on Eq. 11.

TABLE 2 Solubilities of sickle hemoglobin with dextran

[dex]o (g/dl) [dex] (g/dl) Csat (g/dl) [Hb]o (g/dl) Temperature (�C)

Measured by centrifuge

21 22.10 1.27 4 22

18 18.81 1.63 4 22

15 15.47 2.32 4 22

21 22.66 0.96 5 22

18 19.25 1.42 5 22

15 15.84 2.09 5 22

12 12.39 3.28 5 22

Measured by droplet and mask

21 21.40 0.97 2.01 22

18 18.46 1.38 2.75 22

18 18.40 1.44 2.62 22

15 15.58 2.25 4.31 22

15 15.42 2.50 3.99 22

12 12.79 3.37 6.77 22

12 12.63 3.41 6.17 22

10 10.27 4.75 6.17 22

8 8.87 6.08 11.45 22

6 6.25 9.10 11.34 22

18 19.69 0.78 5.49 37

15 16.39 1.50 6.16 37

12 13.11 2.10 6.77 37

10 10.47 3.70 6.17 37

6 6.45 7.50 11.34 37
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of dextran volume appears reasonable. This can be seen by

considering the asymptotic values of the empirical function

(Eq. 12). As described above, the volume of the hemoglobin,

insofar as it excludes water, is the same as 70 kDa dextran, so

we expected the volume of dextran (per mmol) to be at least

as great as that of Hb. Thus, it is likely that the ratio vdex . 1.

At the high [dex] asymptote, vdex/vo ¼ 1:79: The low [dex]

asymptote corresponds to highly dilute conditions, where a

number of investigators have measured the effective hydro-

dynamic radius of dextran (treating it as a sphere). Typical

results are 6.49 nm (24), 6.39 nm (25), and 6.2 nm (26). For

Hb, the radius is 3.2 nm (27). Thus, from hydrodynamics,

one would expect the maximum vdex to be ;(6.35/3.2)3 ¼ 8.

At the low [dex] asymptote (i.e., 0), we find vdex/4:39:
Hence, the asymptotes of the function employed appear well

within the bounds of what is known about dextran.

The variation of volume is rationalized by the observation

that dextran is not a densely packed object, since its hydration

volume is similar to that of Hb whereas its hydrodynamic

volume is eight times that of Hb. At the highest concentra-

tions used here (21 g/dl), dextran of specific volume eight

times that of Hb would overfill the available volume, i.e.,

overlapping would be required to allow it to fit. If we take the

well known filling factor of hard spheres of 0.74, and assume

the dextran to be hard spheres with 8Hb volume, the solution

is completely packed at 12 g/dl. In other words, at concen-

trations of 12 g/dl and above, the dextran must overlap. For

concentrations from 6 g/dl to 12 g/dl, though space filling

considerations don’t require overlap, it is evident that some

overlap must occur by the random encounter of the dextrans.

Fig. 2 illustrates the effect this has on excluded volume. As

the concentration of dextran rises, even though the number of

dextran molecules encountered by a Hb molecule rises, each

dextran denies less effective volume to the Hb thanks to their

overlap.

The empirical function of Eq. 12 contains asymptotes that

are limited, but not specified, by external data. Consequently,

it is possible to imagine a different function that might have

different asymptotes. The data itself are close to linear, and a

linear fit is quite acceptable. However, the asymptotic form

provides a better fit even when the effects of the extra pa-

rameter are taken into account. Specifically, the sum of the

squared deviations divided by the degrees of freedom

(number of data points minus number of parameters minus

number of equations) is 5.3 3 10�3 (g/dl)2 for the asymptotic

fit and 7.5 3 10�3 (g/dl)2 for the linear fit.

Unlike proteins, dextrans exhibit polydispersity of molecular

weight (28–30). The dextran used here did not have a range

FIGURE 2 Schematic of dextran overlap. The picture illustrates dextran

with a hydrodynamic radius twice that of Hb, in agreement with measure-

ments, surrounding Hb. Dextran is drawn schematically, and, unlike Hb, is not

a compact object. As the concentration increases, the dextrans surrounding Hb

each exclude less volume because of their overlap. Though only one Hb is

shown, the neighboring Hb molecules will be roughly one dextran diameter

away.

FIGURE 3 Activity coefficient g, as a function of dextran concentration,

for trace concentrations of Hb. The theory of Ogston (15) (Eq. 13) is rep-

resented by the straight line, whereas the scaled-particle theory, employed

here, is represented by the dashed undulating curve. Dotted lines show the

theoretical curve in regions where volume data (Fig 1) was not collected, but

which depend on the empirical function.

FIGURE 4 Correlation of predicted and measured solubility. (Left) The

data gelled at 37�C and measured at 22�C are shown as solid triangles, using

the assumption that the correct temperature is the gelation temperature,

37�C. As can be seen, the points are not so well correlated as the other data.

(Right) The correlation resulting when the appropriate temperature is taken

to be 25�C. Light gray symbols represent the data from Table 2. (Open

circles) 22�C data published previously (4); (solid circles) 22�C data

determined here; (diamonds) 37�C data determined here.
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specified by the manufacturer, but similar products have a dis-

tribution width of ;10% of the mean (e.g., Pharmacosmos

Dextran Standards, Pharmacosmos, Holbaek, Denmark.) We

examined the results of using a mixture of two equal con-

centrations of dextran at the upper and lower standard devi-

ations, i.e., 63 kDa and 77 kDa. There was no significant

change in ln g by using this extremely bimodal distribution,

and thus we conclude that polydispersity does not have a

significant effect on the approach taken here.

The approach using scaled-particle theory differs from that

of Ogston (15), subsequently employed by others (e.g., (14))

in the analysis of dextran’s influence on protein behavior.

Ogston’s approach involved considering dextran as an as-

semblage of polymeric rods of radius a (rod length does not

enter into the formalism). The rods exclude a spherical par-

ticle, in this description, of radius r. If the dextran occupies a

volume fraction fd (¼ Vdex[dex]), then

ln g ¼ ð1 1 r=aÞ2fd: (13)

Minton (31) has used a¼ 0.7 nm for dextran, and r¼ 3.2 nm

for Hb (27). We can compare the result of our analysis with

scaled-particle theory in the limit where the concentration of

Hb is small, and this is shown in Fig. 3. The agreement is

excellent, validating further the variable volume approach. It

is also interesting to note that the Ogston approach is

specifically immune to issues of overlap of the dextran

particles.

With the accuracy of the method established, it is inter-

esting to return to the data of Bookchin et al. (4) collected at

37�C gelation with room temperature (22�C) centrifugation,

which we shall label 37(�) data for convenience. Fig. 4

shows a correlation of the solubility computed using Eq. 1 of

Li et al. (32), the volume function of Eq. 12, and measured

solubility. In the left panel, the 37(�) data is used as if the

temperature were continuously held at 37�C. As can be seen,

this data, while close, fails to correlate as well as the other

points. If, however, we adjust the temperature (which adjusts

the solubility used in Eq. 6), we find a good correlation for an

apparent temperature of 25�C, as seen in the right panel of

Fig. 4. Because this apparent temperature is likely to depend

on procedural details, it is uncertain how universally appli-

cable this particular finding is, and it would be far more

useful, in future analysis of HbS solubility, to centrifuge and

gel at a single temperature. In such future reports, it would

also be important to tabulate the initial Hb concentration of

samples, so as to allow accurate determination of the final

dextran concentration from Eq. 11.

Finally, in Table 3, we have tabulated the calculated dex-

tran-free solubilities and the free energies of association for

all the mutant hemoglobins that have been studied by the

dextran method to date. We can compare our predicted sol-

ubilities for two cases in which solubilities without dextran

had also been determined (33,34). Those experiments used

the Benesch method, which assigns solubility to the con-

centration at which there is a change in the slope of p50

plotted as a function of concentration (35). The values shown

in Table 3 are somewhat below those inferred in the original

publications, but would actually be consistent with the data

from which the values were generated (cf. Martin de Llano

and Manning (33), Fig. 8, and Himanen et al. (34), Fig. 6).

This demonstrates the power of the present method, since a

single dextran measurement suffices to ascertain the solu-

bility with significantly greater precision. Especially impor-

tant for future work will be the degree to which various

mutations do not show additive free energies (e.g., the effects

of L88A and K95I, comparing their separate and joint ener-

gies), indicating some effective interactions between the

mutations’ effects on polymerization.
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