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Abstract
Bioinformatic tools are widely utilized to predict functional single nucleotide polymorphisms (SNPs)
for genotyping in molecular epidemiological studies. However, the extent to which these approaches
are mirrored by epidemiological findings has not been fully explored. In this study, we first surveyed
SNPs examined in case-control studies of lung cancer, the most extensively-studied cancer type. We
then computed SNP functional scores using four popular bioinformatics tools: SIFT, PolyPhen,
SNPs3D, and PMut, and determined their predictive potential using the odds ratios (ORs) reported.
Spearman’s correlation coefficient (r) for the association with SNP score from SIFT, PolyPhen,
SNPs3D, and PMut, and the summary ORs were r = −0.36 (p = 0.007), r = 0.25 (p = 0.068), r = −0.20
(p = 0.205), and r = −0.12 (p = 0.370) respectively. By creating a combined score using information
from all four tools we were able to achieve a correlation coefficient of r = 0.51 (p < 0.001). These
results indicate that scores of predicted functionality could explain a certain fraction of the lung
cancer risk detected in genetic association studies and more accurate predictions may be obtained by
combining information from a variety of tools. Our findings suggest that bioinformatic tools are
useful in predicting SNP functionality and may facilitate future genetic epidemiological studies.
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1. Introduction
SNP-disease association research in the emerging field of genetic and molecular epidemiology
has been driven by the candidate gene and genome-wide approaches. In the candidate gene
approach, an interesting SNP will typically be investigated in a population-based study if a
plausible biological mechanism, which relates the gene harboring the SNP to disease etiology
or progression, has been proposed. Our understanding of disease etiology is continuing to
improve and with it a greater number of disease candidate genes are being discovered.
Concurrent with this are numerous SNP-finding efforts that are generating millions of putative
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SNPs for potential association studies. The entirety of this multitude cannot be immediately
assessed and therefore, the current obstacle lies in extracting useful and informative SNPs from
the public databases [1]. Approaches to prioritizing these functional SNPs will tremendously
enhance SNP-based association research in molecular epidemiology.

Combining modern molecular phenotypic assays with polymorphisms (i.e. SNP data) will
provide an ultimate assessment of the effect that genetic variations have on the network of
interacting molecular and physiologic systems under normal and pathological human
conditions. This, however, is not an easy task and it currently poses one of the greatest
challenges to modern medical scientists. In addition to this, functional assays are currently not
available for most candidate SNPs [2].

Taking advantage of recent developments in evolutionary biology, protein structural genomics,
and transcriptomics, several computational methods may be utilized to discriminate between
neutral SNPs, which constitute the majority of genetic variations, and the small portion of SNPs
of likely functional importance. The most straightforward approach to predicting SNP
functionality involves determining the importance of the SNP’s location. For example, exonic
SNPs may alter amino acid sequences and consequently influence the kinetic parameters of
enzymes, the DNA-binding properties of proteins that regulate transcription, the signal
transduction activities of transmembrane receptors, and the architectural roles of structural
proteins [3]. SNPs may also change the sequence of DNA splicing sites in both exons and
introns, and in turn, affect post-transcriptional processes [4]. Moreover, from an evolutionary
perspective, SNPs altering a conserved amino acid site are more likely to have functional
importance [5].

Many SNPs in candidate disease-related genes have been genotyped in molecular
epidemiological studies, especially in the field of cancer research. This provides a great
opportunity to validate these bioinformatic tools by correlating predicted SNP functional scores
to findings from case-control studies. In this study, we first surveyed previous publications
which genotyped SNPs in case-control studies of lung cancer, the most extensively examined
cancer type. We then used four major bioinformatic tools, SIFT [5], PolyPhen [3], SNPs3D
[6], and PMut [7] to predict the functional impact of these SNPs. Finally, we tested the
hypothesis that SNPs predicted to have a significant impact on protein function are more likely
to be associated with cancer risk in terms of odds ratios by correlating the functional scores to
ORs obtained from actual published case-control studies.

2. Methods
2.1. Literature search

We performed a PubMed search using the keywords “lung cancer polymorphism case control,”
while setting the limits to case-control studies examining SNPs and lung cancer risk, published
in English from January, 1994 to December, 2006. The time restriction was imposed as few
studies were identified prior to 1994, and these studies might be of questionable methodological
quality. The bioinformatic tools we used make predictions about the impact of a given SNP
based on the resulting amino acid substitution. As such, we imposed a further restriction on
the studies to include only those which investigated non-synonymous SNPs (nsSNPs), i.e. those
resulting in an amino acid change. Studies matching this additional criteria were manually
identified from the larger pool of studies returned from the initial keyword search. We chose
the overall odds ratio (OR) based on the dominant disease model, comparing carriers of
combined heterozygous and homozygous variant allele with the homozygous wild type allele
carriers.
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2.2 Assessment of nsSNP functionality
The impact of nsSNPs can be assessed by evaluating the importance of the amino acids they
affect. Four widely-used computational tools for determining the functional significance of
nsSNPs were employed for this study. The SIFT software (blocks.fhcrc.org/~pauline/
SIFT.html) was used to determine the conservation level of a particular amino acid position in
a protein, which leads to a tolerance index (from 0 to 1) for SNP functionality [5]. The higher
a tolerance index, the less functional impact a particular amino acid substitution is likely to
have, as a higher tolerance index indicates that the position is less conserved across species.
We also used the PolyPhen tool (http://coot.embl.de/PolyPhen/) to estimate the structural and
functional impact of an amino acid substitution, which returns a “Position-Specific
Independent Count” (PSIC) score [3]. Large values of this PSIC score indicate that the
substitution is rarely or never observed in the protein family, suggesting likelihood that the
amino acid replacement will be deleterious. SNPs3D (http://www.snps3d.org) uses two
methods for determining whether a SNP will be deleterious to protein function[6]. The first
makes predictions based on the estimated impact of the nsSNP on protein stability[8], while
the second considers conservation of the given amino acid within a protein family[9]. In both
cases, a negative score indicates a deleterious substitution, while a positive number corresponds
to a neutral change, with greater absolute values indicating stronger confidence in the
prediction. In cases where both scores were available for a given SNP, we used the more
confident prediction. No score was available from either model for 12 of the 54 SNPs under
study. The final bioinformatic tool we employed was PMut
(http://mmb2.pcb.ub.es:8080/PMut/). This tool uses neural networks trained using a large
database of disease-associated and neutral SNPs to predict the impact of a given amino acid
substitution[7,10]. We used the prediction tool which returns a neural network output value
from 0 to 1, with 0 corresponding to a “highly reliable” neutral prediction and 1 corresponding
to a “highly reliable” deleterious prediction. As values approach 0.5 they become less robust.
All searches performed on each of the four tools were performed using the respective default
parameters.

2.3 Calculation of summary score
In order to incorporate data from all four tools, a summary score was created which combined
the scores returned from each individual algorithm. In order to provide a meaningful summary
value, an equation had to be generated which took into consideration the direction
corresponding to a deleterious SNP, along with the range of possible output values for a
particular tool. Since larger values for the scores generated by Polyphen and PMut indicate
deleterious SNPs, these were included together in the numerator. Furthermore, since PMut
scores take on a value between 0 and 1, while PolyPhen scores can be greater than 2, Polyphen
scores were divided by the PMut score, to create one value in the numerator which would
increase as confidence in a deleterious prediction increased. Since larger SIFT and SNPs3D
values correspond to neutral SNPs, these were placed in the denominator of the final equation
and multiplied by one another. In order to generate comparable values from the numerator and
denominator portions of the summary equation, we took the square root of the numerator and
the square of the denominator. The resulting range of values for the numerator piece of the
equation was 0.39 to 6.46, while the range for the denominator was 0 to 5.85, indicating fairly
equal contributions from the two halves of the equation. The net effect of this final equation
was to create one summary value which drew on information from each of the 4 tools, and
would take on larger values with increasing confidence in a deleterious prediction for each
SNP. The final equation was as follows:

(1)
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2.4 Statistical analysis
All statistical analyses were performed using the STATA statistical software (StataCorp.;
College Station, TX) unless otherwise specified. Meta-analysis was first performed to estimate
summary ORs for SNPs examined in multiple studies in order to generate one data point for
each SNP in the subsequent correlation analysis. Overall ORs were calculated using a random-
effects model [11] which includes both within- and between-study variations. Briefly, ORs,
standard errors, and 95% Confidence Intervals (CIs) were calculated for all studies using
published frequencies for cases and controls of the genotypes of interest. Weighting was
applied in the calculation by using the inverse of an individual ORs’ variance in order to take
into account the quality of information available (e.g. the sample size of the study and the
precision of the point estimate). If a SNP had been found to be protective (OR < 1) in a study,
we re-expressed the odds ratio in terms of the risk genotypes (OR > 1) in order to facilitate the
comparisons, which were based on the strength of the association, rather than the direction.
Neither the odds ratios nor their natural logarithms followed a Gaussian distribution, so
correlations were determined by nonparametric methods (Spearman’s rank correlation) using
the re-expressed ORs. In addition to correlating the scores from each bioinformatic tool to the
observed odds ratios for all SNPs, Spearman’s rank correlation coefficients were also
calculated to assess the correlation among the various functional scores obtained for each SNP.

Results
Our PubMed search identified 51 case-control studies examining a total of 54 nsSNPs in 37
different genes for risk estimates of lung cancer (Table 1). All of these SNPs are located in the
coding regions of cancer related-genes, such as those involved in DNA repair, metabolism,
and cell cycle checkpoints.

Correlations between each of the SNP functional scores obtained for each nsSNP were assessed
by calculating Spearman’s rank correlation coefficients. Significant correlations were found
between the SIFT tolerance index and PSIC score (r = −0.607, p < 0.001), as well as SIFT and
SNPs3D scores (r = 0.348, p = 0.024). PMut scores did not significantly correlate with any
other scores (Table 2).

SIFT, PSIC, SNPs3D, and PMut scores were also correlated to the observed ORs associated
with the corresponding nsSNPs detected in molecular epidemiologic studies of lung cancer.
Spearman’s rank correlation showed that of the four tools, SIFT scores were most strongly
correlated with observed ORs (r = −0.361, p = 0.007). PolyPhen scores were modestly
correlated (r = 0.250, p = 0.068), while SNPs3d and PMut demonstrated very weak associations
(r = −0.200, p = 0.205, and r = −0.124, p = 0.370), respectively (Figure 1). The summary score,
which considers the magnitude of the scores returned from each tool, as well as which direction
corresponds to a deleterious substitution, was computed for each of the 42 nsSNPs for which
scores were available from all four tools (N = 42). Spearman’s rank correlation coefficient for
this summary score and the observed ORs was r = 0.513 (p < 0.001) (Figure 2).

Discussion
One unsolved issue of SNP genotyping in molecular epidemiological studies is how to choose
target SNPs for investigation, since functionalities of most SNPs are unknown. Though
haplotype tagging SNPs (htSNPs) generated from the HapMap project tremendously facilitates
genotyping for genetic association studies, the ultimate goal of such studies is still to locate
functional genetic changes linked to htSNPs in candidate genes. Given the lack of phenotypic
data for most of the SNPs identified, results from our analyses suggest that bioinformatic tools
based on recent findings from evolutionary biology, protein structure research, and
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computational biology may provide useful information in assessing the functional importance
of SNPs.

Our findings are congruent with our previous observations, which demonstrated that SNPs
altering conserved amino acids assessed by the SIFT tool are more likely to be associated with
cancer risk [12]. The current study expanded on the previous analysis in three important ways,
resulting in more meaningful and interpretable results. First, we included functional scores
from SIFT, PolyPhen, SNPs3D, and PMut tools, each of which employs fundamentally
different algorithms that can be used to assess the functionality of the same nsSNPs. Second,
we restricted the analyses to case-control studies investigating lung cancer only, as the
importance of a given gene in carcinogenesis may vary significantly across cancer types.
Moreover, lung cancer is the most extensively studied cancer type, which allowed us to collect
a reasonable number of studies for our analysis. Third, meta-analysis was performed to obtain
summary ORs for SNPs examined in multiple studies in order to generate one data point for
each SNP in the analysis.

While previous studies have investigated the predictive power and accuracy of computational
approaches[13,14], this analysis is unique in that it draws on risk estimates derived directly
from human epidemiological studies. While correlations based on predicted protein
functionality or mutagenesis studies are important, we believe that those obtained by
observational studies of human risk are even more relevant. Our data suggests that individual
tools correlate modestly with observed odds ratio, and that combining information from a
variety of tools may significantly increase the predictive power for determining the functional
impact of a given nsSNP.

Our results demonstrate a significant agreement between the SIFT and PolyPhen tools, as well
as SIFT and SNPs3D in the prediction of SNP functionality. This finding supports results from
a previous analysis, which showed that the predicted scores of SNP functionality from the two
algorithms are highly associated, with concordance in the predicted impact observed for
approximately 62% of the variants [15].

However, while the combined scores yielded a respectable correlation coefficient (r) with
observed ORs, the correlations for the individual tools detected in our analyses were fairly
modest. This implies that the functional impact of a SNP on a gene may not be predicted 100%
correctly by computational tools. It might also indicate that molecular phenotype (e.g.
functional SNPs) may not always penetrate through to clinical phenotype (e.g. ORs).
Furthermore, lung cancer is a complex environment-related cancer type, and disease-associated
SNPs may only trigger tumorigenesis in the presence of certain environmental exposures such
as tobacco carcinogens.

Although the correlation we observed is readily apparent, the current study has several
limitations. First, there is the concern that many of the SNPs under study may not in fact be
singly causal, but may associate with disease in more complicated ways. While linkage
disequilibrium between the SNPs under study and other causative SNPs cannot be ruled out,
each of these tools make predictions for missense mutations only, and base their predictions
on the impact of the amino acid change on protein function. In addition, the ORs reported for
each of the SNPs included in the analysis were based on studies designed using a candidate
gene approach, rather than an array-based method. As such, the SNPs under study lie within
genes that have established relevance to carcinogenesis such as DNA repair and metabolic
genes, and are therefore likely to affect cancer risk directly. Couple this with the fact that the
tools make predictions based on the specific SNP’s effect on protein function, and the result
should be a fairly specific relationship between the bioinformatic prediction and the
epidemiologic finding. Furthermore, the utility of these tools and others like them, lies in their
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ability to make predictions on the functional impact of an amino acid change for which little
or no direct experimental evidence is available, and then to use this information in further
studies to relate genetic variations to disease etiology. It is possible that a SNP predicted
harmful does not show an association with cancer because multiple factors, such as gene-gene
and/or gene-environment interaction are involved in tumorigenesis. It is also possible that a
SNP predicted benign is actually associated with cancer, if the SNP is genetically linked to
adjacent causal variations. Second, the accuracy with which a SNP predicts cancer risk depends
on the alignment obtained in some bioinformatic tools. For example, the SIFT method depends
on homologous sequence alignments among different species. The number of sequences
available from different species may be different from gene to gene, which in turn may affect
the accuracy of the prediction. The PolyPhen and SNPs3D predictions depend on protein
structure information available for a given gene product, which may be of varying quality
across the human proteome.

Nevertheless, our data indicates that bioinformatic tools are indeed useful in predicting the
functional impact of SNPs, as our findings could explain a respectable fraction of the lung
cancer risk that has been detected. Although these algorithms have been developed based on
empirical data, correlations between predictive scores and findings from human studies have
not been explored, with the exception of SIFT. The results of our study have therefore provided
novel evidence of the correlation using human data, which in turn facilitate genotyping efforts
in future molecular epidemiological studies and provide targets for phenotypic analysis of
genetic variants. These results can also be used to refine the bioinformatic algorithms. These
findings warrant a more comprehensive approach that includes other cancer types and more
available bioinformatic tools in future analyses.
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Fig. 1.
Correlation between log of observed ORs and SNP scores from each of the four tools.
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Fig. 2.
Correlation between log of observed ORs and log of combined SNP scores
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