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The effects of genetic variants on phenotypic traits often depend on environmental and physiological conditions, but
such gene–environment interactions are poorly understood. Recently developed approaches that treat transcript
abundances of thousands of genes as quantitative traits offer the opportunity to broadly characterize the architecture
of gene–environment interactions. We examined the genetic and molecular basis of variation in gene expression
between two yeast strains (BY and RM) grown in two different conditions (glucose and ethanol as carbon sources). We
observed that most transcripts vary by strain and condition, with 2,996, 3,448, and 2,037 transcripts showing
significant strain, condition, and strain–condition interaction effects, respectively. We expression profiled over 100
segregants derived from a cross between BY and RM in both growth conditions, and identified 1,555 linkages for 1,382
transcripts that show significant gene–environment interaction. At the locus level, local linkages, which usually
correspond to polymorphisms in cis-regulatory elements, tend to be more stable across conditions, such that they are
more likely to show the same effect or the same direction of effect across conditions. Distant linkages, which usually
correspond to polymorphisms influencing trans-acting factors, are more condition-dependent, and often show effects
in different directions in the two conditions. We characterized a locus that influences expression of many growth-
related transcripts, and showed that the majority of the variation is explained by polymorphism in the gene IRA2. The
RM allele of IRA2 appears to inhibit Ras/PKA signaling more strongly than the BY allele, and has undergone a change in
selective pressure. Our results provide a broad overview of the genetic architecture of gene–environment interactions,
as well as a detailed molecular example, and lead to key insights into how the effects of different classes of regulatory
variants are modulated by the environment. These observations will guide the design of studies aimed at
understanding the genetic basis of complex traits.
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Introduction

We are rapidly approaching an age when genomic sequence
will be used to inform life decisions. The extent to which
lifestyle choices will change how our genetic blueprint is
expressed, however, depends on the presence of gene–
environment interactions: the phenomenon where the effect
of a genetic variant differs in multiple environments. In
humans, gene–environment interactions have been reported
for many diseases, including heart disease (reviewed in [1]),
depression [2], and cancer [3]. More often, however, studies
either fail to see these effects or they are difficult to reproduce.
Studies in model and agricultural organisms have been more
promising, particularly in experimental crosses where gene–
environment interaction can be studied more easily on a
genome-wide level, as opposed to only targeting candidate
genes. When quantitative trait linkage analysis has been
performed for the same trait in multiple environments,
different loci are often found in the different environments
[4], and when tested explicitly, these loci often display gene–
environment interaction [5,6]. However, these studies are
limited in their scope because they either examine one or a few
phenotypes or restrict their analysis to loci that were initially
found within a single condition. In humans, as well as in
experimental systems, tracking down the molecular mecha-
nisms of gene–environment interaction has proved difficult.

Recently, gene transcript abundance has been used as a
model to study the genetics of thousands of quantitative traits
at a time [7,8]. The studies have targeted organisms such as

yeast [9], humans [10–13], mice [14–16], rat [17], and
Arabidopsis [18]. Because so many traits can be studied at
once, these studies have been able to elucidate trends in
difficult-to-study phenomena, such as gene–gene interaction
[19,20] and genetic complexity [21].
Gene–environment interaction recently has been studied

using transcript levels in yeast [22] and in worms [6]. Landry et
al. (2006) compared six strains in three conditions and found
221 transcripts showing gene–environment interaction [22],
suggesting that there is much phenotypic diversity at the strain
level in how yeast responds to its environment. Li at al (2006)
mapped quantitative trait loci responsible for expression
differences in two different temperatures in Caenorhabditis
elegans [6]. They identified 197 linkages that showed gene–
environment interaction, suggesting that studying gene–envi-
ronment interaction of expression phenotypes using model
organisms in controlled conditions should prove fruitful.
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We have used a large family of yeast segregants to
characterize gene–environment interaction on a global scale.
Two parental strains (BY and RM, see Materials and Methods)
and 109 segregant strains from a cross between the parental
strains were grown in two conditions—glucose and ethanol as
carbon sources—and expression profiled using microarrays.
When growing in glucose, yeast predominantly ferment
glucose to ethanol. When the cells run low on glucose, they
switch to a primarily respiratory state in which they
metabolize ethanol [23]. The transcriptional state of the cells
changes dramatically during this period [24,25], with tran-
scripts influencing growth and respiration particularly
affected. This difference in the metabolic state may change
how genetic variants influence traits, resulting in the
observation of gene–environment interaction. By studying
thousands of such traits, we sought to characterize the
general genetic architecture of gene–environment interac-
tion, and by using the molecular tools available in yeast, we
were able to characterize some of the variants involved at the
gene level.

Results

Gene–environment interaction occurs when the pheno-
typic effects of genotype and environmental condition are
not independent. For instance, a transcript could show a
large difference in expression between two strains in glucose,
but show no difference between these strains in ethanol.
Thus, the effect of the genotype depends on which condition
is tested. We characterized gene–environment interaction by
two complementary approaches. First, we investigated gene–
environment interaction on a strain level by comparing the
two parental strains. Second, we used 109 segregants from a
cross between the parents to characterize gene–environment
interaction on a locus level.

Strain–Condition Interaction Is Common in Parental
Strains

We characterized the extent of gene–environment inter-
action influencing transcriptional phenotypes in the parental

strains BY and RM by growing six independent cultures of
each strain in glucose and in ethanol, and measuring gene
expression with microarrays (Figure 1 and Dataset S1). We
determined the influence of strain, condition, and the
interaction between strain and condition (here we use
strain–condition interaction to distinguish effects due to
overall strain differences in genetic background, as opposed
to a specific gene or locus) by using analysis of variance
(ANOVA). Of the 4,342 transcripts with high-quality data,
2,037 (47%), 2,996 (69%), and 3,448 (79%) showed significant
effects due to strain–condition interaction, strain, and
condition, respectively (see Figure 1B and 1C for strong
examples and Table S3 for a full list). Transcripts were often
influenced by multiple factors (Figure S2A). We detected ten
times as many transcripts showing strain–condition inter-
action as has been previously reported for gene expression in
yeast [22]. This result is primarily due to the number of
replicates we performed (six); an analysis with two replicates
detected a number of interactions similar to the previous
report. Strain–condition interaction effects accounted for
9% of the total variance explained over all transcripts,
whereas strain and condition effects were larger, explaining
21% and 36% of the variance, respectively. The importance
of each of these factors varied for individual transcripts, with
each factor playing a dominant role for a subset of transcripts
(Figure 2). Genetic correlations of transcript levels between
the two conditions were on average low (mean genetic
correlation ¼ 0.26), with transcripts that show significant
strain–condition interaction having lower genetic correla-
tions than those that do not (�0.07 vs. 0.56, respectively;
Mann-Whitney p , 10�15). These genetic correlations are
lower than those observed for outbred livestock populations
[26,27]. Thus, as previously reported, strain [9] and condition
[25] effects profoundly influence gene expression, but
interaction effects between the two are also important.

Linkage Analysis Yields Loci Responsible for Gene–
Environment Interaction
To understand the genetic basis of gene–environment

interaction, we measured transcript expression in 109
segregants derived from a cross between BY and RM [21].
Each of the 109 previously genotyped segregants was
expression profiled in both glucose and ethanol conditions
on microarrays (Dataset S2). We performed linkage analysis
on the transcript levels within each condition, and 3,997 and
3,489 linkages were observed in glucose and ethanol,
respectively (Figure S1 and Table S4). We determined loci
that show gene–environment interaction (gxeQTL) by per-
forming linkage analysis on the difference between condi-
tions (for each segregant, the difference between conditions
is the difference between expression in ethanol and expres-
sion in glucose; this type of measurement is also known as
plasticity [28] and is similar to environmental sensitivity [29]
(see Text S1)). The difference between conditions was
calculated for each segregant for 4,482 transcripts with
high-quality data (see Materials and Methods), and subjected
to linkage analysis with 2,894 markers spaced throughout the
genome. There were 1,382 transcripts that showed gene–
environment interaction with at least one locus (total of 1,555
linkages) at a genome-wide 5% false discovery rate (FDR), as
determined by permutation (see Figure 3 for an example).
Transcripts that showed strain–condition interaction in the
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Author Summary

Individuals frequently encounter different environmental conditions,
and the physiological and behavioral responses to these conditions
can depend on an individual’s genetic makeup. This phenomenon is
known as gene–environment interaction. For example, individuals
who are infected with the Plasmodium falciparum parasite are
susceptible to malaria, but not if they carry the sickle-cell allele of
hemoglobin. The general properties of gene–environment inter-
action are poorly understood, and a better understanding is
essential if individuals are to make informed health choices guided
by their genomic information. We have investigated gene–environ-
ment interaction on a genomic level, characterizing its role in over
4,000 traits at once by investigating natural variation in yeast gene
expression. We compared lab and vineyard strains of yeast growing
in two conditions (glucose and ethanol as carbon sources) in which
they adopt two different metabolic states: fermentation and aerobic
respiration, respectively. We show that gene–environment inter-
action is a common phenomenon, describe how different classes of
genetic variants affect the nature of the interactions, and provide
detailed molecular examples of interactions.



parents were more likely to show at least one linkage in the
segregants (relative risk [RR] ¼ 1.8, 95% confidence interval
[CI]¼1.6–1.9, v2¼154, p¼3310�35), but there was not a one-
to-one correspondence. For some transcripts, effects were
revealed in the segregants that were not observed in the
parents. For others, we were unable to map specific loci
responsible for differences observed in the parents. Some of
this may due to differences in power, but because of genetic
complexity, we do not expect to map a locus for all
transcripts that show significant genetic or gene–environ-
ment interaction effects in the parent strains. Previous work
has also shown that effects that are revealed only in the
segregants (transgressive segregation) are common in the
genetic regulation of gene expression within a condition [21].
We think that these phenomena are likely to play a role here
as well.

Local versus Distant Linkages
Since transcripts derive from open reading frames (ORFs)

with physical locations in the genome, we can make a

distinction between linkages that are physically near the
ORF (local) and those that are far away from the ORF (distant).
Local linkages are often due to variation at cis-acting sites [30–
32], whereas distant linkages likely result from variants that
influence a trans intermediate, such as those resulting in a
change in protein function or concentration. Most transcripts
linked to distant loci. However, for gxeQTL, this was especially
pronounced. gxeQTL were less likely to be local, with 172/1,555
(11%) of all gxeQTL being local, as compared to linkages
within either condition, where 22%–25% of all linkages were
local (Table 1). This result agrees with previous reports that
either directly addressed interaction or observed differences
between conditions [6,10,15–17,33,34], and suggests that
changes in cis-regulatory sites are less condition dependent
than those influencing trans-acting factors.

Distant Peaks
As has been previously reported in mouse [14–16] and yeast

[9], distant linkages cluster in a small number of regions. We
divided the genome into 10-cM–sized bins and counted the

Figure 1. Strain, Condition, and Strain–Condition Interaction Effects in Parental Strains

Six replicates of each parental strain (BY and RM) were expression profiled in each condition (glucose and ethanol), and 4,342 transcripts with high-
quality data were tested for strain, condition, and strain–condition interaction effects using two-way ANOVA.
(A) Clustergram of all 24 arrays and 4,342 transcripts. Note the high reproducibility of the sets of biological replicates.
(B) Three transcripts are highlighted as strong examples of effects of strain (MATALPHA1), strain–condition interaction (HXT6,7), and condition (IDP2).
(C) Two-factor plots with strain indicated in color (BY¼ orange, and RM¼ purple). The average of six values is indicated by each point, with error bars
indicating the standard error. When no error bars are visible, the standard error was smaller than the point used to plot the average.
doi:10.1371/journal.pbio.0060083.g001
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number of distant linkages observed in glucose, ethanol, or
gxeQTL that fell within each of the bins (Figure 4). The
majority of distant linkages fell into bins with a significant
excess of linkages, with 81% (1,126/1,383) of distant gxeQTL
occurring in 31/563 bins, or 5.5% of the genome. Significant
bins that were located immediately next to each other were
merged into a single peak to form 13, 13, and 15 peaks for
glucose, ethanol, and gxeQTL, respectively (Figure 4 and
Table S1). Some of these regions coincided with loci that have
been characterized at the gene level, including AMN1 [35],
GPA1 [35], MAT [19], HAP1 [9], and IRA2 (this paper).

Peaks identified in glucose did not coincide with those in
ethanol (Figure 4). Thirteen peaks were found in each
condition, but only seven were found in both. Two large
peaks are found for gxeQTL, but are only observed within one
condition, suggesting that the polymorphism likely acts in
one condition, but not the other. We highlight these as
striking examples of differences in genetic regulation across
conditions. The first of these colocalizes with the gene
encoding Gpa1, the G-protein alpha subunit of the pher-
omone response signaling pathway [36,37], which contains a
polymorphism previously associated with transcripts involved

Figure 2. Distribution of Proportion of Variance Explained in Parental Strains

The relative proportion of strain–condition interaction, strain, and condition variance is shown for all transcripts in the parental strains in which these
variances add up to at least 50% of the total variance (3,219 of 4,342 transcripts; 74%). If a point is at a vertex of the triangle, the relative proportion of
variance due to the labeled factor is 1, and the proportion decreases to zero along the line from the vertex to the midpoint of the opposite side. Insets
show two-factor plots (reaction norms) for representative transcripts. The average for the BY strain is in orange, the average for the RM strain is in
purple, and error bars indicate standard deviations. Transcript levels are log2 ratios versus the common reference.
doi:10.1371/journal.pbio.0060083.g002
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in pheromone response [35]. In glucose, 49 transcripts show
distant linkage here, whereas in ethanol, there are no distant
linkages, suggesting that the polymorphism in GPA1 does not
influence these transcripts in ethanol. When we asked where
these transcripts linked in ethanol, we found that 12 showed
linkage to eth12, a peak that is also enriched for genes
involved in the pheromone response. Given the overall rates
of linkage to both loci, we would expect less than one overlap
by chance, and the observed overlap of 12 genes is highly
significant (Fisher exact p-value ¼ 8 3 10�19). Within this
region lies DIG1, which codes for an inhibitor of the
pheromone response/invasive growth transcription factor
Ste12 [38,39]. Allele replacements of DIG1 in both back-
grounds show that variants in DIG1 make a major contribu-
tion to the effects at this locus (Figure S3). This example
highlights how environmental differences can change the

relative importance of genetic variants in the same pathway,
resulting in different genes being more important in one or
another condition.
Another example of a condition-specific distant peak is

provided by the eth11/gxe13 peak on chromosome 15 (160–
220 cM). A total of 386 transcripts show distant linkage to this
locus in ethanol, whereas in glucose, only ten show distant
linkage. In contrast to most other peaks, the transcripts
linking here do not show functional enrichment for gene
ontology (GO) terms. Targets of similar signaling pathways
should share transcription factor binding sites, even if the
functional implications of the pathway are unknown. To
determine whether we could find enrichment for specific
transcription factor binding sites, we split this group of
transcripts into four groups, depending on whether they were
up or down-regulated by condition and genotype. We used
transcription factor binding site data derived from exper-
imental binding as well as species conservation [40] to
determine whether any of these gene lists were enriched for
experimentally confirmed as well as potential transcription
factor binding sites. Those genes that were expressed higher
in glucose and in the segregants carrying the RM allele were
enriched for sites whereMSN2 andMSN4 target sequence was
conserved (MSN2 p¼ 2310�7, MSN4 p¼3310�6), but not for
sites that have been shown to experimentally bind MSN2 or
MSN4. Experimental binding of MSN2 and MSN4 was tested
in a variety of conditions [41], but these did not include
ethanol, and so these targets may reflect an additional
functional role for these transcription factors. Those tran-
scripts that show lower expression in ethanol and higher
expression in segregants with the BY allele are enriched for
CIN5 binding sites that are both conserved and show
experimental binding in the conditions tested (high and
moderate hyperoxia, enrichment p¼6310�5). CIN5 is located
in this region, shows local linkage with gene–environment
interaction, and contains 17 nucleotide changes in the 500 bp
upstream of start (two to three are expected on average, given
an upstream polymorphism rate of 0.005 [30]), in addition to
five coding single nucleotide polymorphisms (SNPs) (two
nonsynonymous), making it an excellent candidate for
regulating a subset of these transcripts. CIN5 may not be
the regulator for all transcripts linking here—because the
peak is very wide, it may contain multiple variants.

Condition Specificity of gxeQTL
After examining large differences in distant peaks, we

sought to more generally and rigorously describe how the
effect of a locus changes across conditions. Comparisons
of gxeQTL with linkage results for transcript levels in glucose
or ethanol showed that only 965/1,555 (62%) gxeQTL also

Figure 3. Interaction between Condition and IRA2 Genotype in

Expression of HXT6,7

HXT6,7 shows gene–environment interaction with the region containing
IRA2. Phenotypes for 109 segregants are split by whether they inherited
the BY allele (orange) or RM allele (purple) of the IRA2 region. For each
segregant, the expression values in glucose and ethanol are plotted and
connected by a line. The difference between the expression values in
ethanol and glucose (or the slope across conditions) is the phenotype
that is used to find loci that show gene–environment interaction. In this
case, segregants that inherit the BY allele show low expression of HXT6,7
in glucose, but higher expression in ethanol. Segregants that inherit the
RM allele, however, express HXT6,7 at the higher level in both glucose
and ethanol. Horizontal bars to the left and right indicate the mean
phenotypic values for all segregants carrying a particular allele in a
condition. Open circles indicate the mean phenotypic value for the
parental strains in each condition.
doi:10.1371/journal.pbio.0060083.g003

Table 1. gxeQTL Are Less Likely to Be Local

Condition Number of Linkages

Local Distant Total RR (95% CI) v2 p-Value

Glucose 867 (22%) 3,130 (78%) 3,997 2.0 (1.7–2.3) 8 3 10�20

Ethanol 861 (25%) 2,628 (75%) 3,489 2.2 (1.9–2.6) 2 3 10�28

gxeQTL 172 (11%) 1,383 (89%) 1,555 1.0 —

doi:10.1371/journal.pbio.0060083.t001
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reached genome-wide significance levels in at least
one condition (see Figure S2B for full Venn diagram).
However, for a test of whether a specific marker that
represents a gxeQTL is also linked to the expression level of
the corresponding transcript in one of the conditions, setting
a genome-wide significance threshold is too conservative. We
tested for linkage between the most significant marker at each
of the 1,555 gxeQTL and expression of the respective
transcripts in glucose and in ethanol, lowering the threshold
to a FDR of 5% for testing a single marker for each trait, as
obtained through inspection of the p-value distribution with

QVALUE [42]. All 1,555 gxeQTL showed an effect in at least
one condition, with 265/1,555 (17%) showing an effect only in
glucose, 327/1,555 (21%) showing an effect only in ethanol,
and 963/1,555 (62%) showing an effect in both conditions.
The fact that all gxeQTL showed linkage to the expression
phenotype in at least one condition is not surprising, as a
difference in how the genotypes differ between two con-
ditions mathematically requires a change in the mean
phenotypic value in at least one condition. The QVALUE
method also provides an estimate of the proportion of loci
found within a condition that show gene–environment

Figure 4. Expression Linkage Peaks Can Change between Conditions

For linkages in glucose (A), in ethanol (B), and gxeQTL (C), the number of distant linkages falling in 10-cM large genomic bins is plotted. On the x-axis is
the genomic location of each bin, with tick marks indicating the location of individual markers and roman numerals indicating chromosome number.
We identified bins with a total number of linkages that is unlikely to occur by chance (this threshold is indicated by a red line; see Materials and
Methods for details). Such bins located directly adjacent to each other were collapsed to a single peak. Peaks are labeled with a number when the
underlying gene is unknown and additionally by a gene name when a polymorphism in the gene has been shown to be associated with expression
phenotypes that linked to the region in at least one condition. For several regions, differences between distant linkages in glucose and distant linkages
in ethanol are reflected in the gxeQTL peaks. Two regions with striking effects are highlighted in peach. On chromosome 8, a peak overlapping with
GPA1 is present in glucose, but absent in ethanol, and this difference is detected as gene–environment interaction. On chromosome 15, a peak with no
known regulator is absent in glucose, present in ethanol (eth11), and shows gene–environment interaction (gxe13).
doi:10.1371/journal.pbio.0060083.g004
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interaction. We inspected the distribution of all p-values for
linkage between the most significant marker in one condition
and the difference in expression between the conditions, and
found that 77% and 76% of loci in glucose and ethanol,
respectively, also influence the difference between conditions.

Since promoters often define when and where transcripts
get expressed, it might be thought that when they do show
gene–environment interaction, variants influencing cis-acting
regions would be more likely to be condition specific. We did
not observe this relationship between local and distant
linkages, however. Distant linkages were significantly more
likely to be condition specific than local linkages, as 546/1,383

(40%) of distant linkages were significant in only one
condition, as compared to 46/172 (27%) of local linkages
(Table 2 and see Figure 5 for a schematic). Thus, local linkages
are overall less dependent on the environment, and when
they do show gene–environment interaction, their effects are
less likely to be restricted to a specific condition.
We investigated whether individual hot spots showed

condition specificity by comparing the proportion of gxeQTL
in each hotspot that were glucose specific or ethanol specific
to the overall rates in all distant gxeQTL using a hyper-
geometric test (Figure 6). Five hot spot regions showed altered
proportions of condition-specific gxeQTL: peaks gxe2 (AMN1),
gxe5, gxe6 (GPA1), and gxe12 (IRA2) were enriched for
glucose-specific linkages, whereas peak gxe13 was enriched for
ethanol-specific linkages. These results agree with the
observation that distant peaks change between conditions,
but provide a more quantitative result that indicates that
some distant loci show differential effects between conditions.
This may be due to changes in the activity states of the
proteins and pathways involved as conditions change, or it
could also be due to epistasis that masks the effects of the
polymorphisms in the alternate condition.

Direction of Locus Effect
Loci showing gene–environment interaction that have

effects in both conditions may act by increasing expression
in one condition and decreasing expression in the other or by
affecting expression in the same direction in both conditions,
but to a different extent (see Figure 5 for a schematic). Of
those gxeQTL that had an effect in both conditions (963/
1,555), the effects were in opposite directions 72% of the
time. This phenomenon was dependent on the type of locus,
as local gxeQTL were more likely to act in the same direction
in both conditions (66%), whereas distant gxeQL were more
likely to act in opposite directions (78%) (Table 3). The
majority of the loci that had effects in opposite directions did
not reach genome-wide significance in either condition (463/
697). Exclusion of loci that were not genome-wide significant
in at least one condition only slightly reduced the association
between the type of locus and the direction of effect (RR¼2.3
vs. 3.0). The high rate of distant loci acting in opposite
directions is not due to an individual peak, as most distant
peaks, as well as the set of all linkages that fall outside of
peaks, have a high proportion of linkages that act in opposite
directions (Figure 6). This pattern is consistent with the result
that local gxeQTL are less likely to show gene–environment
interaction overall and less likely to be condition specific.

Polymorphism in IRA2 Is Responsible for gxe12
We further investigated peak gxe12, located at chromo-

some 15 50–80 cM, which we observed to be enriched for

Table 2. Local gxeQTL Are More Likely to Have Significant Effects in Both Conditions

Location of Linkage Number of Linkages

Significant in Both Conditions Significant in Only One Condition Total RR (95% CI) v2 p-Value

Local 126 (73%) 46 (27%) 172 1.2 (1.1–1.3) 0.001

Distant 837 (61%) 546 (39%) 1,383 1.0 —

doi:10.1371/journal.pbio.0060083.t002

Figure 5. A Schematic of Different Types of Gene–Environment

Interaction Effects

Gene–environment interaction can occur in a number of different ways.
In these plots, different alleles at a locus (these could also be different
strains) are indicated by solid lines colored either orange or purple. These
solid lines connect the two measurements that were taken in the two
conditions for ease of visualizing the difference between conditions.
When different alleles show a significant difference in one of the
conditions, a black arrow connects the two measurements and indicates
the difference between the orange and the purple alleles. In (A) and (B),
the locus shows condition specificity and only has an effect in one of the
conditions. In (C) and (D), the locus shows a significant effect in both
conditions. In (C), the difference between the alleles is in the same
direction in the two conditions. In (D), the difference between the alleles
is in the opposite direction in the two conditions.
doi:10.1371/journal.pbio.0060083.g005
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transcripts that show glucose-specific effects. A total of 372
transcripts link here distantly, and many are generally
involved in energy metabolism and growth (Figure 7A). Most
of these transcripts show large changes between glucose and
ethanol, but the allele that the segregant inherits determines
the strength of the change. The transcripts that are repressed
in ethanol are enriched for ribosomal biogenesis and
assembly (p ¼ 8 3 10�13), whereas those that are activated in
ethanol are enriched for generation of precursor metabolites
and energy (p ¼ 1 3 10�6). IRA2 is a strong candidate for the
regulation of these transcripts. Ira2 is an inhibitor (GTPase
activating protein) of the Ras proteins, which mediate the
cellular response to glucose via the Ras/PKA pathway [43].
Components of this pathway are highly conserved across
species, and Ira2 is a homolog of the neurofibromin tumor
suppressor in humans [44]. The IRA2 coding region is highly
polymorphic, with 87 SNPs and a single 3-bp indel differing
between the strains, resulting in 61 synonymous changes, 26
nonsynonymous changes, and one RM insertion. Of the 26
nonsynonymous changes, BY carries the ancestral amino acid
(Saccharomyces paradoxus) in 20 cases, and RM carries the
ancestral amino acid in four cases, with the remaining two
different from S. paradoxus in both strains.

To determine whether polymorphism within IRA2 is
responsible for the observed linkages, we generated allele
replacement strains that carried the coding region of each

parent strain in the background of the other parent. We felt
that targeting the coding region was appropriate because the
expression of IRA2 has not shown local linkage [21]. We
expression profiled the replacement strains in glucose and
ethanol, and compared the effect of the replacement to the
effect of the locus observed in the segregants (Figure 7B and
7C). We observed high correlations between replacements in
both parental backgrounds and segregant effects for tran-
scripts showing gene–environment interaction, and the
regression slope for both was close to 1. Many transcripts
link to this region in glucose and ethanol (1,159 and 410,
respectively), and IRA2 polymorphisms also contribute to the
variation in transcript levels within these conditions (Figure
S4). Thus, polymorphism in IRA2 appears to be the major
contributor to the difference in expression between con-
ditions as well as to transcript abundance in each condition
for many transcripts linking to this region. This is consistent
with coding variants in Ira2 influencing transcript levels via
changes in the signaling state of the Ras/PKA pathway.
To determine which allele had a stronger effect on the Ras/

PKA pathway, we compared the IRA2 alleles to their
respective knockout strains. We knocked out IRA2 in both
parental strains, grew the resulting strains in glucose and
ethanol, and then measured the transcriptional response, as
compared to the parental strain (Figure 8). If the allele is
active under the conditions that we tested, then the knockout

Table 3. Among gxeQTL, Local Linkages Are More Likely to Have Effects in the Same Direction in Both Conditions

Location of Linkage Number of Linkages

Same Direction Opposite Directions Total RR (95% CI) v2 p-Value

Local 83 (66%) 43 (34%) 126 3.0 (2.5–3.6) 7 3 10�25

Distant 183 (22%) 654 (78%) 837 1.0 —

doi:10.1371/journal.pbio.0060083.t003

Figure 6. gxeQTL Peaks Show Variation in Condition-Specific Behavior

For each gxeQTL peak, the number of linkages that are glucose specific (blue), ethanol specific (orange), active in both conditions, with the same
direction of effect (red), and active in both conditions, with opposite direction of effect (green). On the right for comparison, all distant linkages that did
not fall into a peak are combined into one group, and all local linkages are combined into one group. Significant results from the test for enrichment of
glucose specific (blue plus [þ] signs) or enrichment of ethanol specific (orange plus [þ] sign) are indicated above the bars.
doi:10.1371/journal.pbio.0060083.g006
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should look different from the parental strain. We observed
that both knockout strains were different from the parental
strains, with linear regression slopes less than 1 (BY slope ¼
0.75, 95% CI: 0.71–0.78; RM slope¼ 0.40, 95% CI: 0.35–0.45),
but the RM knockout showed a greater difference from the
parental strain (Figure 8). Since knocking out IRA2 in RM
causes a bigger change than knocking it out in BY, this

suggests that the RM allele of IRA2 is better at inhibiting the
Ras/PKA pathway in these conditions.
The BY allele of IRA2 could be a poorer inhibitor because

BY has lost some ability to inhibit or because RM has gained
this ability. We took a sequence-based approach and
compared IRA2 coding sequences from the three sequenced
S. cerevisiae strains (S288c, isogenic to BY; RM11-1a; and

Figure 7. Polymorphism in IRA2 Contributes to Environmentally Dependent Phenotypic Variation

(A) Expression values for 370 transcripts with gxeQTL confidence intervals that overlap IRA2 are shown. Average expression values for segregants (S)
carrying either allele in glucose, in ethanol, and for the difference between ethanol and glucose are shown in columns 1–6. The overall effect of the
locus between conditions (locus effect) is shown in column 7, which is the difference between columns 5 and 6. The effects of the replacements are
shown in column 8 and 9. The difference between conditions in each replacement was compared to the difference observed in the appropriate parental
background strain (BY in column 8, and RM in column 9). The similarity of columns 8 and 9 to column 7 indicates that polymorphism in the replaced
region recapitulates the effect of the locus well and shows that polymorphism in IRA2 is functionally responsible for determining how these transcripts
differ between conditions among the segregants.
(B) Scatterplot of the locus effect (column 7 in [A]), versus the effect of introducing IRA2-RM into the BY background (column 8 in [A]). Each point
represents a transcript; orange line is the best fit by linear regression. The black dotted line indicates y¼ x. The slope of the regression line is 1.1 (95% CI
1.05–1.21) with a correlation of 0.84 (70% variance explained), and a permutation p-value of 0.002.
(C) Scatterplot of the locus effect (column 7 in [A]), as compared to the effect of introducing IRA2-BY into the RM background (column 9 in [A]). Symbols
and lines as in (B). The slope of the regression line is 0.86 (95% CI 0.80–0.92) with a correlation of 0.83 (69% variance explained), and a permutation p-
value less than 0.001.
doi:10.1371/journal.pbio.0060083.g007
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YJM789 [YJM]), with S. paradoxus as an outgroup. The S288c
sequence is more similar to the ancestral S. paradoxus than
either RM or YJM, indicating that RM IRA2 is the more
diverged allele. BY is more similar to the ancestral sequence,
suggesting that RM has gained the ability to inhibit signaling
more. However, since we do not know the specific causal
variant(s), we are unable to rule out the possibility that a small
number of polymorphisms that are not characteristic of the
overall trend are responsible for a decrease in the BY allele’s
ability to inhibit.

If the RM allele has gained the ability to more strongly
inhibit Ras/PKA signaling, then it might be expected to show
signs of selection. We used the McDonald-Kreitman test to
look for evidence of selection in IRA2 by comparing rates of
nonsynonymous and synonymous substitutions at polymor-
phic versus fixed sites within the three sequenced S. cerevisiae
strains, as compared to the outgroup S. paradoxus. Of the sites
that were fixed in S. cerevisiae, 133/882 (15%) were non-
synonymous, whereas within polymorphic sites, this rate was
2-fold higher (31/103, 30%). This difference is significant
(Fisher exact p¼ 0.0001), suggesting that positive selection, or
a relaxation of negative selection, has occurred in the S.
cerevisiae strains. The RM strain appears to be contributing
the most to the nonsynonymous rates, as the ratio of
nonsynonymous to synonymous changes along the RM
branch is the highest within the strains. Thus, the RM allele
appears to have experienced a change in selection pressure in
the past. Further analyses of a variety of yeast isolates should
help elucidate the evolutionary history of this locus.

Discussion

Here, we have used yeast gene expression as a model system
to describe gene–environment interaction at strain, locus,
and gene levels. We showed that 2,037 transcripts were jointly
dependent on strain and condition in two parental strains.
Then, we performed linkage analysis on the difference in
transcript levels across conditions with 109 segregants, and

identified 1,555 gxeQTL. The high number of gxeQTL that we
detected has allowed us to make some general observations.
We have shown that local and distant linkages differ
dramatically in how they act across multiple conditions.
Local linkages appear to be more stable: they are less likely to
be dependent on the environment, and even when they are,
they are more likely to have an effect in both conditions, with
the direction of effect often being the same. Distant linkages,
on the other hand, are more volatile: they are more likely to
be dependent on condition and to show an effect in only one
condition. Entire distant peaks can change across conditions,
and when they do have an effect in multiple conditions,
distant loci are more likely to act in different directions.
Finally, we characterized the gene responsible for influencing
the largest gene–environment interaction distant peak, IRA2.
We showed that the RM allele of IRA2 is a stronger inhibitor
of Ras/PKA signaling than the BY allele in the conditions that
we tested, and that this locus has experienced a change in
selective pressure in RM.
Previous studies have reported that local linkages are more

consistent than distant linkages across conditions and experi-
ments, including worms in different temperatures [6], differ-
ent tissues in mice [15,16,33], and in the reproducibility of
transcript linkages in human studies [10,34], indicating that
this pattern is likely to extend beyond yeast. Since local and
distant linkages are likely to differ in how they influence traits
on a molecular level, we can speculate as to how they show
differences in condition dependence. Although we do not
know most of the causative polymorphisms involved for each
type of linkage, local linkages show increased rates of
polymorphism in 59 and 39 noncoding regions and high rates
of allele-specific expression [30]. Thus, we feel comfortable
treating the two groups as distinct entities: local linkages are
likely to be enriched for variants that directly influence
transcript levels via changes in cis-regulatory sites, whereas
distant linkages typically influence levels via a protein
intermediate (trans factors). In a cis-regulatory site that
interacts with a binding protein to directly increase or

Figure 8. The BY Allele of IRA2 Is More Similar to a Knockout Than the RM Allele of IRA2

In order to assess the role of different alleles of IRA2, this gene was knocked out in both parental strain backgrounds. For all transcripts with gxeQTL in
the region containing IRA2, we plotted the change in expression across conditions (ethanol–glucose).
(A) Scatterplot of the difference for the knockout (x-axis) versus the parental strain (y-axis) in the BY background.
(B) Scatterplot in the RM background. The BY ira2D knockout is significantly different from the parental strain (regression slope¼ 0.75, 95% CI¼ 0.71–
0.78), but the RM ira2D knockout shows an even larger difference from the parent strain (regression slope¼ 0.40, 95% CI 0.35–0.45). This indicates that
in the conditions studied, the RM allele of IRA2 is playing a larger role in determining how these transcripts differ between conditions.
doi:10.1371/journal.pbio.0060083.g008
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decrease transcript levels, mutations can either disrupt or
enhance binding, but are unlikely to be able to do both in a
condition-specific manner. If the binding protein is an
activator, a loss of binding mutation will result in lower
transcript levels in all conditions where the activator is
present, and will show no change when the activator is absent,
resulting in either a condition-specific pattern or in a pattern
in which the locus has the same effect or the same direction
of effect in both conditions (Figure S5A). Other than the case
where a single polymorphism destroys a site for one binding
factor while creating a site for another, it is less clear how one
cis-regulatory mutation could be associated with effects in
opposite directions, although one might imagine more
complicated scenarios with either multiple linked cis-regu-
latory polymorphisms or transcription factors that are able to
act as both activators and inhibitors. On the other hand,
distant variants that influence protein intermediates have the
potential to interact with many proteins, depending on the
milieu present in the cell in a given condition (Figure S5B). A
single variant may be able to activate transcription in one
condition and repress it in another, resulting in a change in
direction of effect.

The frequent occurrence of locus effects in opposite
directions in the two conditions is surprising. One possible
explanation is multiple linked polymorphisms. Distant loci are
much larger targets for variation than cis-regulatory regions
[45], but this could occur in both contexts. Multiple
compensatory mutations could accumulate at loci and,
depending on the condition, could compensate differentially.
The mean phenotype would be stable over conditions, yet the
direction of the effect within a condition could vary (Figure
S5C). One example is suggested by the gxe11 peak on
chromosome 14, where multiple polymorphisms that influence
sporulation [46,47] and high-temperature growth [48] have
been characterized, and some act in the opposite direction of
the overall locus effect. At least one of these alleles (MKT1
D30G) is at least partially responsible for the gxeQTL in this
region (Figure S6). Further characterization of the poly-
morphisms involved at these loci should help elucidate the
underlying mechanisms behind this phenomenon.

A practical implication of the observation that distant loci
often act in opposite directions in the two conditions is that
such loci may be inherently difficult to detect in experiments
where condition is not controlled, as when different tissues of
multicellular organisms are mixed or when nonexperimental
organisms (including humans) that experience different
unmeasured environments are studied. This is because when
conditions are not controlled, effects of opposite direction
will cancel each other out, resulting in no overall association
between the trait and the locus. This also has implications for
selection, as these loci may be hidden from selection in
organisms that experience fluctuating environmental con-
ditions. The detection of loci that act in opposite direction is
additionally complicated by our observation that the majority
of these loci did not reach genome-wide significance in either
condition alone, emphasizing the importance of using
methods to directly test for gene–environment interaction
without prior reliance on linkage in a single environment.

One general implication of our results for studies in other
species, including humans, is that many genetic effects on
most traits are likely to be detected without testing for gene–
environment interactions, provided that the relevant envi-

ronmental factors are known and controlled either exper-
imentally or statistically. However, analyses that ignore gene–
environment interactions introduce strong biases with regard
to the types of loci that are detected. Moreover, gene–
environment interactions play a dominant role for a minority
of traits. We have studied the prevalence and importance of
gene–environment interactions in a single-cell organism
grown in two very different and precisely controlled environ-
mental conditions. Our focus on transcript levels as quanti-
tative traits allowed us to study a very large number of traits
simultaneously and to delineate general patterns, as well as to
provide detailed molecular examples of loci that show gene–
environment interactions. The quantitative details would
undoubtedly differ if different species, environments, and
phenotypes were studied. It is possible that many environ-
mental differences experienced by humans may be less
drastic than those between growth on glucose and ethanol
are for yeast. However, some environmental differences (for
example, exposure to pathogens or shift from traditional to
modern diets) can have a dramatic effect on health. Our
detailed studies in a model organism provide examples of the
types of effects that may be expected in humans, and thereby
inform practical study design. Understanding the subset of
human genetic variants whose phenotypic effects are modifi-
able by the environment will be key in making full use of
personal genomic variation.

Materials and Methods

Culture conditions. The segregants used in this study have
previously been expression profiled in condition similar to the glucose
condition used here [21]. However, in order to make conditions as
similar as possible for this study, with only the carbon source differing,
these experiments were repeated alongside the experiments in
ethanol. Yeast strains were grown in media consisting of 6.7g/l Yeast
Nitrogen Base (Sigma Y0626), 100 mg/l leucine, 100 mg/l lysine, 20 mg/l
uracil, and one of the following: 1% (v/v) ethanol or 2% (w/v) glucose.
All growth was performed at 30 8C. After streaking to rich medium
(YPD) plates from the freezer, cells were pregrown in 5 ml of the
phenotyping medium overnight, while spinning on a rotor drum.
Approximately 53105 (glucose) or 107 (ethanol) cells were transferred
to 15 ml of fresh medium in a 125-ml Erlenmeyer flask and grown
overnight on a rotary shaker at 200 rpm. Cells were harvested at an
optical density at 600 nm (OD600) between 0.36 and 0.40. Cells were
collected (5 ml) at 30 8C by vacuum filtration, and the filters were
immediately frozen in liquid nitrogen. Replicates of parental strains
and parental strains used to generate the reference sample were grown
interspersed with segregant strains such that the parental variation
would reflect experimental variation throughout the experiment.

RNA extraction and labeling. RNA was extracted from the filters
using a standard hot acid phenol method, followed by RNeasy
cleanup (Qiagen). Samples were quality controlled with RNA 6000
Nano kit of the Bioanalyzer 2100 (Agilent). Samples were labeled with
either Cy3 or Cy5 dye, using the Low RNA Input Linear Amp Kit
(Agilent) with the modification that half reactions were used with a
quarter of the recommended dye.

RNA reference. All samples were hybridized against the same
common reference consisting of equal amounts of RNA from both
parents (BY and RM) grown in both conditions (glucose and ethanol).
Six independent replicates of each strain–condition combination
were grown and harvested, for a total of 24 samples. RNA was isolated
for each sample individually and then pooled, with an equal amount
of RNA contributed by each sample. Multiple labeling reactions (24
for each dye) were pooled, and the same samples were used for all
segregant and parental arrays. Experiments for knockout and allele
replacement arrays used the same reference RNA sample, but a new
labeling reaction.

Hybridization and preprocessing. Samples were hybridized to
Agilent 11k yeast arrays, which are two-color, 60-mer oligo arrays
with two arrays per slide, each containing spots for 6,256 transcripts,
with some duplicated spots. In order to minimize experimentally
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induced bias, we randomized the order in which samples were
processed, hybridizing glucose and ethanol samples at the same time
and on the same slides. After hybridizing and washing per Agilent
instructions, the arrays were scanned using an Agilent scanner and
analyzed with Agilent’s Feature Extraction software (versions 8.0–9.5).
The arrays were uploaded into PUMAdb for processing (http://puma.
princeton.edu/). Spots were considered good data if intensity was well
above background and the feature was not a nonuniformity outlier.
Additionally, transcripts were retained if data were present in all
parental strains in the parental analysis or in at least 80% of the
segregants in both conditions for the segregant analysis. We
ultimately used 4,342 transcripts for the parental analysis and 4,482
transcripts for the segregant analysis.

Parental analysis of variance analysis. Six replicates of each parent
(BY and RM) in each condition (glucose and ethanol) were grown,
expression profiled, and labeled (half with Cy3 and half with Cy5).
There were 4,342 transcripts with high-quality data: there were no
polymorphisms within the probe sequence, and good data was
present for each of the replicates. For each transcript, an ANOVA of
the form

phenotype; dyeþ strainþ conditionþ strain � condition

was performed in R using the aov function. In order to assess
significance, the dataset was permuted with respect to strain and
condition 1,000 times, retaining six values of each strain–condition
combination, and repeating the ANOVA for each transcript. A FDR
was calculated for a range of p-values for strain, condition, and
strain–condition interaction effects separately. p-Value cutoffs of
0.04, 0.04, and 0.03 corresponded to FDRs of 5% for strain, condition,
and strain–condition interaction effects, respectively.

Genetic correlation. Genetic correlation was calculated from the
variance results of the ANOVA study using the following equation [49].

rgc ¼
r2
genetic � r2

interaction

r2
genetic þ r2

interaction
ð1Þ

Segregant linkage analysis. Segregants were grown and expression
profiled in both conditions, resulting in a total of 218 segregant
arrays: 109 segregants each in glucose and ethanol. Samples were
randomized with respect to dye, and all arrays were linearly adjusted
for dye. Three phenotypes were used in linkage analysis: expression
in glucose, expression in ethanol, and the difference in expression
between glucose and ethanol (ethanol minus glucose for each
segregant). Mapping a significant locus for the change across
conditions is interpreted as gene–environment interaction. It can
also be conceptualized as a paired test where the segregant’s ethanol
phenotype is effectively corrected for its phenotype in glucose.

Genotypes have been previously characterized [21], but we further
refined the map by removing a set of 62 markers, corresponding to 13
Affymetrix gene regions, that were artificially inflating the map.
When each gene region was removed, the total map distance
(Haldane) decreased at least 25 cM. All but one of these gene regions
corresponded to sequence that was duplicated in the genome, which
would increase genotyping error. Our final set of markers consisted
of 2,894 markers with an average spacing of 4 kb or 1.9 cM. Linkage
analysis was performed using the nonparametric method of the qtl
package in R [50], which is an adaptation from the Kruskal-Wallace
test and is similar to that described by Kruglyak and Lander [51]. In
addition to the genotypes of the markers, genotype probabilities were
estimated at every centimorgan along the genome using the
calc.genoprob function. Significance was assessed by permutation.
For each permutation, segregants were assigned to a new array
randomly, and linkage analysis on all transcripts was repeated. The
permutation was performed ten times and the average number of
transcripts showing linkage at a specific logarithm of the odds (to the
base 10) (LOD) score was used to calculate a FDR. LOD scores of 3.25,
3.3, and 3.7 corresponded to FDRs of 4.9%, 4.9%, and 4.8% for
glucose, ethanol, and the difference between condition phenotypes,
respectively. We also calculated confidence intervals as LOD support
regions that extend outward from the peak marker until the LOD
score decreases by 1.5 LOD units [52].

Local and distant linkage classification. A linkage was classified as a
local linkage if the confidence interval of the linkage overlapped with
the region containing the open reading frame of the gene of interest
(ORF region). The two markers flanking the region from 500 bp
upstream of the start of the ORF to 500 bp downstream of the stop of
the ORF, as defined by the Saccharomyces Genome Database, defined
the ORF region. A distant linkage is any linkage that fell outside of
the ORF region.

Peaks of distant linkages. The genome was broken into 10-cM bins,

and the peak of each linkage in each condition (glucose, ethanol, or
gene–environment interaction) was assigned to a bin. A bin was
considered to have an excess of linkages if the number exceeded the
number expected by chance by Poisson distribution, given the total
number of distant linkages and Bonferroni correction for 563 tests (p
, 9 3 10�5). These cutoffs were greater than 15 for glucose, 14 for
ethanol, and nine for interaction. Significant bins that were located
immediately next to each other were merged into a single peak. Peaks
in different conditions were considered overlapping if any bin
contained in one peak was contained in the other.

Condition-specificity tests with QVALUE. For each gxeQTL, we
took the marker closest to the linkage peak and computed the LOD
score for linkage of this marker to the transcript levels in glucose and
in ethanol. We then converted the LOD score to a nominal p-value by
comparison to permuted data. We created 1,000 random phenotypes
and performed nonparametric linkage analysis on each. We
translated LOD scores to p-values for a given marker by counting
the proportion of the randomized phenotypes that had a LOD score
as high or higher than that observed. By inspecting the p-value
distribution of gxeQTL marker linkages in each condition using
QVALUE software [42], we determined cutoffs that allowed us to call
individual linkages significant at a FDR of 5% (p ¼ 0.228 in ethanol
and p ¼ 0.22 in glucose). To estimate the proportion of linkages
within a condition that also showed gene–environment interaction,
we calculated p-values for the linkage between peak markers found
within a condition and the difference in expression between
conditions. The proportion of significant tests is 1� p̂0.

Tests of association. RR estimates and 95% CIs were calculated in
R using the twoby2 command of the Epi package. Values of v2 and p-
values were calculated in Excel with expected values derived from
row and column expectations. The Mann-Whitney test was per-
formed in R using the wilcox.test command of the stats package.

Probe polymorphism detection. The RM genome was downloaded
from the Broad Web site and aligned to the S288c genome (SGD). The
sequence of each probe was found in the S288c sequence, and the
corresponding sequence determined for RM. We were able to find
6,217 probes in the alignment, and of these, 5,029 have no
polymorphisms at all, 747 have a single polymorphism or gap, and
438 have two or more strain differences. Missing probes were either
in the mitochondrial genome or differed from the most recent
reference sequence. The presence of even a single polymorphism was
associated with an increased probability of apparent local linkage, as
would be expected if there were differences in binding efficiencies of
the alleles. We thus excluded them from all further analysis.

Strain construction. IRA2 and DIG1 replacement strains were
generated by a two-step allele replacement method [53]. For example,
IRA2 was replaced with URA3 in BY4724 [54] (MATa ura3 lys2) and
RM11-1a [9] (MATa leu2 ura3 ho::KAN), generating ira2D::URA3
knockout strains. New IRA2 alleles were amplified by PCR with
approximately 500-bp overlapping sequence and introduced into the
appropriate background to replace URA3. See Table S2 for strain
descriptions. Allele replacements were sequenced to ensure that no
new mutations were introduced. For both replacements, the entire
coding sequence was exchanged, but the extent that the 39UTR
polymorphisms were exchanged varied. Adam Deutschbauer kindly
provided the MKT1 D30G replacement strain in the BY4742
background [46].

Sequencing. The RM IRA2 sequence was obtained from the whole-
genome sequencing project at the Broad Institute (http://www.broad.
mit.edu/annotation/genome/saccharomyces_cerevisiae/Home.html),
with the exception of a small gap, which we sequenced using standard
dideoxy methods. Replacement strains were also sequenced using
standard dideoxy sequencing methods.

Replacement analysis. We quantified how well the IRA2 replace-
ment strains recapitulated the effect due to the locus in the
segregants by comparing the locus effect to the replacement effect
for all linking transcripts. For a given transcript, the locus effect is the
difference between the BY change across condition (average of all
segregants carrying the BY allele in ethanol minus the average of all
segregants carrying the BY allele in glucose) and the RM change
across condition (average of all segregants carrying the RM allele in
ethanol minus the average of all segregants carrying the RM allele in
glucose). For the replacement effect, the calculation is similar, except
instead of segregant strains, we use the parental and replacement
strains. Thus, for a single transcript, the replacement effect would be:

Replacement effect ¼
BYethanol � BYglucose � ðBYIRA2�RM;ethanol � BYIRA2�RM;glucoseÞ:

We then compared the locus effect to the replacement effect
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across all transcripts by calculating a Pearson correlation. We
estimated significance of this correlation by randomizing the
genotype at the marker nearest to IRA2 and repeating the analysis
1,000 times. The p-value is the number of times that we got a
correlation as high or higher than what was observed. A significant
correlation indicates that gene that was replaced functionally
influences the traits. We also analyzed this relationship by linear
regression using the lm command in R. If the regression slope is close
to 1, then it indicates that the gene is a major contributor to the
phenotype.

GO term enrichment. Of the 4,482 transcripts that were analyzed
in the segregants, 4,339 had GO terms associated with them. This set
was used as a background for GO term enrichment. Hypergeometric
tests were performed using GOLEM [55], and p-values were
Bonferroni corrected for multiple testing.

Transcript factor binding site enrichment. Of the 4,482 transcripts
that were analyzed in the segregants, 4,465 were used to look for
enrichment of transcription factor (TF) binding sites. All nine
‘‘ORFs_by_factor’’ files that are provided by MacIsaac et al. on
their Web site (available at: http://rd.plos.org/pbio.0060083) were used
to look for enrichment of binding sites. These lists are constructed by
creating lists of genes that contain a predicted TF site at three levels
of conservation and three levels of experimental binding [40]. In
order to be in a list, the site has to occur within the upstream
intergenic region of the gene (K. MacIsaac, personal communication).
Hypergeometric tests of enrichment were performed in GOLEM
using modified input files in which each gene list corresponded to its
own term. p-Values were Bonferroni corrected.

McDonald-Kreitman test. The McDonald-Kreitman test [56] was
performed using the libsequence library’s MK test [57] with sequences
from RM, BY, YJM789 [58], and S. paradoxus [59]. Sequence trees and
estimates of nonsynonymous to synonymous rates on individual
branches were calculated in HYPHY [60].

Supporting Information

Dataset S1. Parental Processed Data

Log2 ratios (experimental/reference) values for all parental replicates.
Data have been processed according to Materials and Methods, and
only good data are reported.

Found at doi:10.1371/journal.pbio.0060083.sd001 (1.7 MB XLS)

Dataset S2. Segregant Processed Data

Log2 ratios (experimental/reference) of segregant glucose and
ethanol expression values. Data are processed according to Materials
and Methods, and only good data are reported.

Found at doi:10.1371/journal.pbio.0060083.sd002 (6.6 MB XLS)

Figure S1. Linkage Map

The linkage map was calculated with 109 segregants using the
Haldane mapping function in R/qtl, with the chromosome and order
of the markers determined by their physical position. Chromosomes
are indicated by vertical lines, and markers are indicated by
horizontal lines. The map covers a total of 5,545 cM.

Found at doi:10.1371/journal.pbio.0060083.sg001 (663 KB AI)

Figure S2. Venn Diagrams of Parental and Linkage Analyses

(A) The number of transcripts that show significant strain–condition
interaction, strain, and condition effects in the parental strains.
(B) The number of linkages showing genome-wide level significance
for gene–environment interaction, glucose, and ethanol. For each
linkage, the marker closest to the peak of linkage was investigated in
each condition. If the LOD score exceeded the genome-wide–level
threshold, then the marker was considered significant in that
condition. Since we are pooling results from different analyses, there
are multiple linkages per chromosome. We randomly picked one of
these linkages for the diagram and removed the rest. The totals within
each condition do not add up to the total number of significant
linkages reported because although a linkage can occur on the same
chromosome in glucose and ethanol, they are not necessarily close
enough that both markers are significant in both conditions,
particularly when the scores are near the significance thresholds.

Found at doi:10.1371/journal.pbio.0060083.sg002 (116 KB AI)

Figure S3. Polymorphism in DIG1 Is Responsible for Expression of
Linking Transcripts

The relationship between the segregant effect and the replacement

effect is shown for all transcripts that have a peak of linkage at the
marker closest to DIG1. We chose to use the marker closest to DIG1 to
limit the proportion of transcripts that were being influenced by
nearby peaks (gxe15). Each point represents a transcript. Solid lines
indicate the best fit by linear regression (orange¼ BY, and purple ¼
RM). The grey dotted line indicates y¼ x. Both lines are significantly
different from 0, as indicated by the slopes.

Found at doi:10.1371/journal.pbio.0060083.sg003 (150 KB AI)

Figure S4. Polymorphism in IRA2 Is Responsible for Expression of
Linking Transcripts within Conditions

The relationship between the segregant effect and the replacement
effect is shown for all transcripts that have confidence that overlap
with IRA2 are shown. Associations are shown for linkages in (A)
glucose and (B) ethanol. Each point represents a transcript. Solid
lines indicate the best fit by linear regression (orange ¼ BY, and
purple¼ RM). The grey dotted line indicates y¼ x. Linear regression
slopes, confidence intervals, and R2 values are shown for each line.

Found at doi:10.1371/journal.pbio.0060083.sg004 (283 KB PDF)

Figure S5. Potential Scenarios Leading to Gene–Environment
Interaction

(A) A scenario involving the loss of a transcription factor binding site
across conditions that differ in the concentration (or activity) of the
transcription factor. Depicted in the graph are two alleles, one with a
mutation upstream of a start site (asterisk) and one without. Dotted
lines indicate time points when measurements are taken. The activity
at the locus is depicted below the graph for these two time points
where the transcription factor (double circle), when present, is
binding to the functional site and causing an increase in expression
or no change. Expression levels are shown increasing from green to
red, relative to the average expression.
(B) A scenario involving a transcription factor that is able to bind an
activator or an inhibitor. An open circle indicates a protein capable
of binding both factors, while the three-quarter circle indicates a
protein unable to bind to either. The activator and the inhibitor vary
in concentration depending on condition.
(C) A scenario in which one mutation (blue) changes the ancestral
state (black) such that the average phenotype changes. A second
mutation on the same haplotype (brown) changes expression such
that the average phenotype is the same as the ancestral state. Thus the
final phenotype averaged across the conditions is the same for both
haplotypes, and the effects of the haplotype in the two conditions are
in opposite directions.

Found at doi:10.1371/journal.pbio.0060083.sg005 (126 KB AI)

Figure S6. The D30G Variant in MKT1 Is Responsible for Transcript
Variation Linking to the MKT1 Region

Segregant and replacement effects for distant gxeQTL with con-
fidence intervals that overlapMKT1 are shown. Each point represents
a transcript. Solid lines indicate the best fit by linear regression
(orange¼BY, and purple¼RM). The grey dotted line indicates y¼ x.
Linear regression slopes, confidence intervals, and R2 values are
shown for each line. The slope is significantly different from 0,
indicating that the variant contributes to phenotypic variation at this
locus.

Found at doi:10.1371/journal.pbio.0060083.sg006 (187 KB AI)

Table S1. Distant Peak Descriptions

Each distant peak is described in further detail, with the location,
number of linkages, verified or potential candidates, top significant
GO term, and significant enriched transcription factor binding sites.

Found at doi:10.1371/journal.pbio.0060083.st001 (29 KB XLS)

Table S2. Strain Descriptions

A list of the strains used in this study.

Found at doi:10.1371/journal.pbio.0060083.st002 (20 KB XLS)

Table S3. Parental Analysis Results

A list of the results from the ANOVA for all transcripts tested. For
each transcript, the presence of a polymorphism in the probe, p-
values for each factor, percent variance explained for each factor,
whether the effect was significant, and average effect size are listed.

Found at doi:10.1371/journal.pbio.0060083.st003 (1.7 MB XLS)

Table S4. Linkage Analysis Results

A list of all significant linkages. For each linkage, the presence of a
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polymorphism in the probe; the linkage peak marker, location, LOD
score, confidence interval, and distant peak name; whether the peak
is local or distant, and average effect sizes are listed.

Found at doi:10.1371/journal.pbio.0060083.st004 (10.5 MB XLS)

Text S1. Discussion of Choice of Gene–Environment Interaction
Analysis

Found at doi:10.1371/journal.pbio.0060083.sd003 (44 KB DOC)

Accession Numbers

Gene accession numbers reference the Saccharomyces Genome Data-
base (http://www.yeastgenome.org): AMN1 (S000000362), CIN5
(S000005554, GPA1 (S000001047), HAP1 (S000004246), HXT6
(S000002751) , HXT7 (S000002750), IDP2 (S000004164), IRA2
(S000005441, MATALPHA1 (S000000636), MSN2 (S000004640),and
MSN4 (S000001545).

Expression raw data can be obtained via Gene Expression
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/projects/geo/) accession
number GSE9376 and through PUMAdb (http://puma.princeton.edu/).
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