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The amount and nature of preexisting variation in a population of RNA viruses is an important determinant
of the virus’s ability to adapt rapidly to a changed environment. However, direct quantification of this
preexisting variation may be cumbersome, because potentially beneficial alleles are typically rare, and isolation
of a large number of subclones is required. Here, we propose a simpler method. We infer the initial population
structure of vesicular stomatitis virus (VSV) by fitting a mathematical model of asexual evolution to an
extensive set of measurements of VSV fitness dynamics under various conditions, including new and previously
published data. The inferred variation of fitness in the initial population agrees very well with the results of
direct experiments with subclone fitness quantification. From the same procedure, we also estimate the mean
fitness effect of beneficial mutations (selection coefficient s), the percentage of sites in the genome that are
under moderate positive or negative selection, and the percentage of sites where beneficial mutations may
potentially occur. For VSV strain MARM U evolving in BHK-21 cells, the three parameters have values of 0.39,
9%, and 0.06%, respectively. The method can be generalized and applied easily to other rapidly evolving
microbes, including both asexual microorganisms and those with recombination.

RNA viruses have an error-prone replication machinery and
form highly polymorphic populations (7–9). As a result, RNA
viruses exposed to a new or altered environment frequently
respond with rapid adaptation to the new conditions. This high
evolutionary potential is one of the major obstacles to the
development of effective antiviral treatments, and it makes
RNA viruses prime candidates for newly emerging or reemerg-
ing diseases.

The quick response of RNA viruses to new environmental
conditions is explained by the combination of large population
sizes, high mutation rates (10�4 to 10�5 per base per round of
copying), rapid population turnover, and in the case of seg-
mented and positive-stranded viruses, effective mechanisms of
recombination. The adaptive response is especially swift when
it is caused by the selective amplification of preexisting variants
rather than by the de novo generation of beneficial mutations.
For example, resistance to monotherapy against human immu-
nodeficiency virus type 1 (HIV-1) infection can arise in as little
as 1 to 2 weeks (30, 36), because mutants that confer resistance
exist, at a small frequency, prior to therapy (4, 17, 20). Thus,
while long-term adaptation is caused by a gradual accumula-
tion of new beneficial alleles due to mutation and, for some
viruses, yeast, and bacteria, recombination (4, 5, 14, 18, 28, 31,
33, 35, 38), the short-term adaptive response is determined by
the preexisting variation that is present in a viral population of
a given size and by the proportion of these mutants that are
beneficial under specific environmental conditions. Conse-
quently, in order to understand (and possibly be able to pre-

dict) viral adaptation to new environmental conditions, we
need to know the frequency and nature of preexisting mutants
in a viral population.

In principle, the question about standing variation can be
answered directly. One only has to isolate a large number of
clones from a viral population, sequence them, and determine
their fitness in the environment of interest. However, in prac-
tice this approach may be not feasible, because even very rare
beneficial mutants are potentially important. When strong se-
lective conditions (e.g., drug therapy) are imposed, these rare
sequences will rapidly rise in frequency and take over the
population. Therefore, to assess the frequency of some very
rare beneficial mutants in the initial population, we would have
to characterize at least hundreds of thousands of isolates.
Here, we take a different approach. We infer the initial state of
a viral population by fitting a mathematical model of virus
growth and evolution to a large set of independent measure-
ments of the population dynamics of vesicular stomatitis virus
(VSV). Our main data set consists of measurements of the
initial speed of adaptation of a VSV laboratory strain during
replication in BHK-21 cells. We expanded this data set to
include the published measurements of the VSV equilibrium
fitness after prolonged passaging (25), the speed at which the
equilibrium is reached (22), the relationship between viral fit-
ness and the critical bottleneck size at which continued pas-
saging does not lead to fitness changes (24), and the clonal
analysis of a mutant population (11). We show that we can fit
a simple model of asexual replication with a single set of six
parameters fitting to the entire set of measurements. To our
knowledge, a fit encompassing such a wide array of different
aspects of viral population dynamics has not previously been
carried out. From our fitting, we obtain not only the amount of
preexisting variation in the initial population but also the es-
timates for the mean effect of a beneficial mutation of fitness,
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the number of sites where such mutations can potentially oc-
cur, and the total number of sites in the genome that are under
moderate selection, relevant over the time scale of 10 to 100
passages.

Our computational model naturally accounts for the effects
of linkage (inheritance of genomic sites together, as a set) that
are known to slow evolution down significantly and cause Mul-
ler’s ratchet in small populations. The basic one-locus model
(reviewed in reference 32) generally does not apply to the
evolution of finite asexual populations. Instead, we can de-
scribe multisite evolution accurately by using a recently devel-
oped analytic approach that is based on the concept of moving
fitness distributions (18, 31, 33, 35; but see Gerrish et al. [13]).
We found that the analytic approach, although valid on any
time scale, is more convenient in the case of long-term evolu-
tion, when the fitness distribution profile and the adaptation
rates are independent of the initial conditions. For the (mostly)
short-range evolution studied here, we employed instead direct
Monte Carlo simulation of the model.

MATERIALS AND METHODS

Cells and viruses. We propagated BHK-21 hamster kidney cells from John
Holland’s laboratory in Eagle’s minimal essential medium (MEM) containing
7% heat-inactivated (60°C, 30 min) bovine calf serum. For virus passages and
competitions, we used fetal bovine serum. For the growth of BHK-21 cells, we
supplemented the medium with 0.06% proteose peptone no. 3 (Difco). We used
mouse hybridoma cells, kindly provided by Douglas Lyles (19), for the produc-
tion of I1 antibody as described previously (10).

Wild-type (wt) VSV (Mudd-Summers strain; Indiana serotype) was the pro-
genitor of all other strains, and we used it as the reference for fitness determi-
nations. The other viral strains employed here were monoclonal antibody
(MAb)-resistant mutants (MARMs) with a single amino acid substitution,
Asp3Ala, at amino acid 259 (or Asp3Gly at amino acid 257) of the G glyco-
protein that confers resistance to I1 MAb. MARM U is a clone isolated from the
wt in the presence of MAb I1 and amplified once at a low multiplicity of infection
(MOI) in BHK-21 cells. Its sequence differs only from that of the wt in the I1
resistance marker, and its relative fitness was 1.0 � 0.2 (24). MARM X had a
relative fitness of 3.05 � 0.03, and it was the progeny of MARM U after 20
plaque-to-plaque passages, followed by 61 large population passages in BHK-21
cells (24). For this study, we generated strain MARM U35 by carrying out 35
large population passages of MARM U in BHK-21 cells, and its fitness is 5.5 �
0.3. MARM C had a fitness of 0.93 � 0.02 and it was the progeny of MARM U
after 20 plaque-to-plaque passages, followed by two large population passages
(22). MARM N had a fitness of 0.38 � 0.01 (24), and differs from the wt in the
resistance marker and a nucleotide substitution in the polymerase gene (nucle-
otide 8700) (26). For the present studies, we carried out an additional amplifi-
cation passage of the wt, MARM U, and MARM N that resulted in no changes
in the relative fitness of MARM U (1.00 � 0.05) (21) and a small increase in the
relative fitness of MARM N to 0.43 � 0.02 (26). Thus, compared to previously
published data, for the present work, we used strains with one additional ampli-
fication passage for the fitness determinations of MARM U and derived popu-
lations, MARM N and derived populations, and MARM U35 and derived pop-
ulations.

Virus passages. We used flasks with BHK-21 cell monolayers at a density of
about 105 cells/cm2 to infect with MARM U at various transmission population
size (Nt) values, ranging from 4 to 7.5 � 105 PFU per passage. We used different
flask sizes to maintain the plaque density and a constant MOI. After cells were
inoculated, we incubated the cell monolayers for 10 min at room temperature for
attachment and for 45 additional minutes at 37°C for penetration, and then we
added MEM (200 �l/cm2). We then incubated the flasks at 37°C for 20 to 22 h,
following which, we harvested the virus, diluted it, and used it to infect fresh
BHK-21 monolayers. This process was continued for 20 consecutive passages,
and we determined the fitness at every fourth passage. In a first set of experi-
ments, we analyzed Nt values between 4 and 3,000, and we added agarose to the
MEM overlay; we recovered progeny from plaques (about 107 PFU/plaque).
These infections were carried out with an initial density of 10 PFU/cm2 or less
(MOI, �0.0001 PFU/cell). For an Nt of 50 PFU or less, we randomly picked and
pooled individual plaques from T25 flasks. For an Nt between 100 and 3,000

PFU, we infected cell monolayers at different dilutions, recovered the full con-
tent of the overlay in each flask, and counted the plaques at each dilution. To
maintain the MOI at an approximately constant rate for this range of population
sizes, we increased the number of cells and used larger T75 flasks for an Nt of
500, and we sampled and combined the content of several flasks for the larger Nt

value (two flasks for an Nt of 1,000 and four to six flasks for an Nt of 3,000). We
then used the recovered MEM overlay that contained the desired number of
plaques (within a 10% error) for subsequent passages. We carried out five
replicas for Nt values of 4, 8, and 15, and three replicas for all other Nt values. In
a second set of experiments, we performed passages with Nt values between 480
and 7.5 � 105 at a constant MOI of 0.015 PFU/cell, using flask sizes that ranged
between 96-well plates (0.32 cm2/well) and 500-cm2 plates. In this case, we did
not add agarose to the MEM, and we allowed the infections to proceed until the
cytopathic effect was complete, and the maximum titer was reached (1010 PFU/
ml). For the next passage, we diluted the progeny as needed to maintain a
constant Nt. In both sets of experiments, infections start with individual virions
targeting individual cells that represent a small fraction of the total number of
cells available in the monolayer. At 4 h postinfection, progeny release starts and
continues for the next 5 to 6 h, until each cell has generated over 104 PFU. In the
absence of agarose (e.g., in liquid medium), the new progeny will diffuse freely
and infect all the remaining cells. We refer to this regimen as the “dilution”
passages, and viral progenies at the end of a passage are the result of two rounds
of infection. In contrast, in the presence of agarose, the diffusion of virions is
limited, and only cells in close proximity to the initially infected cell are available
for infection. We refer to this regimen as “plaque pooling,” and progenies are the
product of three to four rounds of infection. Note that up to three rounds of
infection per passage occur at high MOI in these regimens. However, three
rounds of infection at high MOI are insufficient for the accumulation of a
significant amount of defective interfering particles that could otherwise con-
found our results. Even during undiluted passages, when the MOI can be as high
as 1,000 PFU/cell, we did not observe any sign of interference before passage five
(I. S. Novella, unpublished results).

We define the critical bottleneck size as the Nt value at which the overall fitness
of a strain is the same for the initial population and after 20 passages. We
determined the critical bottleneck size for MARM U35 by carrying out six
replicas of 20 passages at an Nt of 300 with a regimen of plaque pooling. We then
determined the fitness of the evolved populations. In addition, we carried out six
replicas of passages at an Nt of 30, which was predicted to result in Muller’s
ratchet operation and overall fitness loss.

We carried out six replicas of two plaques-to-two plaques passages of MARM
N for 20 passages. We determined the fitness of all the replicas at the end of the
experiment, as well as the fitness at passages 1, 2, 3, 5, 10, and 15 for two of the
replicas.

Fitness determination and calculation of speed of adaptation. We measured
the fitness of evolved MARM populations in competition against the wt refer-
ence strain, as described previously (16). For the fitness determinations of
MARM U progeny, we mixed test virus with the wt, and used the mixture to
infect BHK-21 cell monolayers at an MOI of 0.1. The initial ratio of wt versus test
virus was determined by performing triplicate plaque assays with and without I1.
After 20 to 24 h of incubation, we diluted the viral yield to start a second
competition passage, and we determined the new wt/MARM virus ratios by
plaque assay. We carried out up to four competition passages per fitness deter-
mination. We then log transformed the wt/MARM virus ratios, plotted them
against the passage number, did a linear regression of the log-transformed ratios
against the passage number, and determined the slope, m, of the regression line.
Finally, we calculated the fitness, w, as given by the exponential expression w �
exp(m). For fitness determinations of the progeny of MARM N and MARM
U35, we used three single-passage competitions and calculated fitness as the
average of the three changes in ratio.

We measured the speed of adaptation, V, for a given replica by calculating the
natural logarithm for all fitness values in the replica and then fitting the function
Vt (where t is time measured as the passage number) to the log-transformed
fitness values.

Computational model. We used a simple model of an asexual population of
the Wright-Fisher type with discrete nonoverlapping virus generations (33). A
genome consists of L sites, each of which can be in either of two states (alleles),
beneficial or deleterious. A beneficial allele makes a fitness contribution of 1 to
the fitness of the genome, whereas a deleterious allele makes a fitness contribu-
tion of exp(�s). The total fitness of the genome is the product of all the fitness
contributions of the individual sites, i.e., epistasis is neglected. Hence, a genome
with k deleterious alleles leaves progeny whose average number is exp[�(k �
kav)s], where exp(�kavs) is the average fitness of the population (i.e., the kav

value is somewhat smaller than the average value of k). We measured fitness in
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relative units, with respect to our reference wt strain, whose fitness is set to 1. To
relate absolute fitness values determined with respect to the maximum possible
fitness in the cell culture exp(�kavs) to relative fitness values, we introduced an
additional parameter, the number of sites carrying deleterious alleles in the
reference strain, kref. These are the sites at which beneficial mutations can
potentially occur.

The fitness diversity of the initial population of a strain is characterized, in our
analysis, by the variance of the average number of deleterious alleles between
individual genomes, which we denote by d � Var[k]t � 0. The initial distribution
of the deleterious allele number, k, among genomes is assumed to be Gaussian.
The model is asexual and does not include recombination, which has not been
observed for VSV (29). The actual progeny number of a class of genomes with
the same fitness fluctuates according to the Poisson distribution, subject to the
restriction that the total population remains constant and equal to N. An allele
at a site can mutate to the opposite allele with the probability � per generation.
The total genomic mutation rate and the total genomic rate of beneficial muta-
tions are denoted by U � �L and Ub � �k, respectively.

We equate the effective population size, N, used in the simulations with the
size of the infecting population, Nt. For a population with a time-dependent size
that expands exponentially during each passage, the effective population size is
calculated as a harmonic mean, which is dominated by the smallest population
size at each passage. Therefore, the population size is associated with the first
round of infection in a passage.

A second parameter of the model, the selection coefficient s, is also associated
with the first round of infection in a passage. The amount of progeny from the
first round of infection is enough to result in widespread coinfection in subse-
quent rounds in the same passage. A high degree of coinfection leads to comple-
mentation of gene products of different genetic variants within the same cell,
effectively suppressing selection. Thus, under widespread coinfection, the phe-
notype fitness of virions is similar to the population average, in contrast to the
variable fitness of their RNA genomes (26, 39). Because both N and s are
associated with the first round of infection in a passage, the effective number of
virus generations in our simulations is equal to the number of passages in
experiments.

By contrast, mutations occur in every round of infection, and the number of
rounds of infection depends on the details of the passage regimen (see “Virus
passages” above). Therefore, we increase the mutation rate per round of infec-
tion by a factor of three for plaque-pooling passages and by a factor of two for
dilution passages, and denote these mutation rates by �P � 3� and �D � 2�,
respectively.

To simulate the stochastic evolution of a population of constant size, we used
a Monte Carlo algorithm written with MATLAB software, similar to that used
previously (31, 33). We classified all genomes according to the number of dele-
terious alleles, k (i.e., according to fitness), and monitored the population size of
each fitness class in consecutive discrete generations. All fitness classes contain-
ing more than 100 genomes were treated deterministically, neglecting random
genetic drift. The other nonempty classes were considered stochastic. We
checked that increasing the boundary between deterministic and stochastic treat-
ment above 100 did not change results noticeably. The progeny number for a
deterministic fitness class was replaced with the average progeny number of that
class. For stochastic classes, if their combined size did not exceed 30% of an
entire population, we used a pseudorandom number generator to simulate a
Poisson distribution around the average progeny number of each class. Then, the
sizes of all classes were renormalized to ensure that the total population size did
not change and rounded to the nearest integer value. If the total fraction of
stochastic classes was larger than 30%, because the total population was small, all
fitness classes in a population were considered stochastic. In this case, we used a
broken-stick algorithm to simulate a polynomial distribution of progeny among
classes, as follows. We represented each class with an interval of the length
proportional to the product of its current size and fitness and randomly distrib-
uted N values between the intervals. The number of points that hit an interval
was the progeny number in the class.

Because the relevant values of both genomic rates U and Ub are considerably
less than 1 (see below), we allowed only one mutation per genome for both
deleterious and beneficial mutations. We calculated the number of mutant ge-
nomes with k � 1 or k � 1 alleles originating from a class with k alleles, for a
deterministic class, as the corresponding average value, or for a stochastic class,
as a random Poisson value with the corresponding average. The resulting num-
bers of mutant genomes were transferred between adjacent fitness classes. We
monitored the average fitness of a population as a function of time.

Fitting model parameters to the data. The average mutation rate per site
(nucleotide) per allele per round of infection, �, was fixed at � � 5 � 10�5. We
corrected the 1.0 � 10�4 value given by Drake and Holland (9) in three ways, as

follows. (i) The mutation rate in the cited paper was given per RNA copy event.
In the present work, we define the mutation rate per round of infection; one
round of infection includes two RNA copy events: a negative-strand RNA is
copied to positive-strand RNAs that are copied to negative-strand RNAs. (ii)
The cited authors assumed four possible alleles per site (A, G, C, and T). In real
data sets, only two alleles per site are usually found. (iii) Drake and Holland
included insertions and deletions that, according to their estimate, increased the
mutation rate by 40%. In the present work, we consider only point substitution.
Combining these corrections, we obtain � � (1.0 � 10�4) � 2/(3 � 1.4) � 5 �
10�5. Using this value, we obtained the mutation rate for plaque-pooling pas-
sages as �P � 1.5 � 10�4 and the mutation rate for dilution passages as �D �
1.0 � 10�4.

To approximate the experimental data, we used four fitting parameters: the
mean fitness effect per mutation (selection coefficient) s, the effective number of
sites L, the mean number of sites in the initial population (MARM U) at which
a mutation will be beneficial, which we denote as kref � kav(t � 0), and the
variance of that number, d. Thus, a genome chosen randomly from the initial
MARM U population will, on average, have kref sites at which a mutation leads
to a fitness increase, and L � kref sites at which a mutation leads to a fitness
decrease.

Because we fit a relatively diverse data set and did not aim at high precision for
fitting parameters that would exceed the accuracy of the model and the experi-
ments, we employed manual fitting. The order in which different parameters
were determined from different experiments was as follows. We determined the
product sd for VSV MARM U from fitting the short-term adaptation rate
(passages 0 to 20) at different values of N (see data in Fig. 1 to 3). The separate
value of s (and, hence, d for MARM U) was determined by fitting the long-term
time dependence of VSV MARM U, passages 20 to 50 (data in Fig. 3). We
assumed that the value of s for all other strains of VSV was the same. We
expressed the value kref in terms of s and �DL based on the maximum fitness
measured in long-term dilution passages at population sizes on the order of 105,
as given by kref � (1/s)[ln(10.5) � �DL]. The latter equation approximates the
average long-term fitness with the steady-state value in a deterministic one-locus
model, exp(��DL � skref), and the long-term fitness for MARM U (which we
did not measure) with the value of 10.5 obtained for wild-type VSV (25).

To fit previous experiments of the evolution of several VSV strains between
passages 0 and 20 (24 and new data in Fig. 4) and to estimate the effective
number of evolving sites L (and thus, the effective genomic mutation rates �DL
and �PL), we assumed different values of d for three groups of strains with
different evolutionary histories (see above). For strains MARM U and C, we
determined d as explained in the previous paragraph. We adjusted the value of

FIG. 1. Changes in relative fitness as a function of passage number
for four representative Nt. Solid lines represent the least-square fit of
the expression Vt (where t is the passage number) to the log-trans-
formed fitness data. Larger populations experienced a more rapid
fitness increase and less variation in fitness. Three different colors
correspond to three replicate experiments. Vertical bars represent the
standard deviations of the mean (standard errors) of fitness for each
replica determined in the competition assays.
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d for MARM U35 and MARM X, as well as the value of L, to ensure no change
of fitness between passages 0 and 20 at the critical Nt value and the correct rate
of fitness decline due to Muller’s ratchet at a smaller Nt value, as measured
previously (24) and in this report. The value of d for MARM N, at the already
known �L, was fit in the same way.

RESULTS

Measuring the speed of adaptation. We measured the speed
of adaptation in MARM U VSV for Nt spanning more than 5
orders of magnitude, from an Nt of 4 to Nt of 7.5 � 105. For
each Nt, we followed at least three replicate regimens during 20
passages. Fitness generally increased over time for all but the
smallest Nt value. At an Nt of 4, 8, and 15, we observed that
one out of five replicas declined in fitness, whereas the other
four replicas increased in fitness. No fitness decrease occurred
with any of the larger Nt. At small Nt, we found a significant
amount of drift; fitness trajectories were erratic (not shown),
and the total change in fitness over 20 passages varied substan-
tially from replica to replica. By contrast, populations passaged
at larger Nt values showed a consistent increase in fitness and
less variability among replicas. In general, we found that fitness
increased more in larger populations than in smaller popula-
tions. Typical fitness trajectories are shown in Fig. 1. Through-
out this paper, we define the speed of adaptation, V, as the
mean change in the logarithm of fitness per passage during the
first 20 passages. We measured V for a given replica by calcu-
lating the natural logarithm for all fitness values in the replica
and then fitting the function Vt (where t is time measured
as the passage number) to the logarithm of the fitness values
(Fig. 1).

Due to the effects of complementation after the first round
of infection, the adaptation speed per passage is also the ad-
aptation speed per first round of infection (see Materials and
Methods). Note that the experimental protocols differed sub-
stantially between the replicas covering two intervals of trans-
mission size Nt: from 4 to 3,000 � 105 and from 480 to 7.5 �
105. During plaque-pooling passages, there were three to four
rounds of infection, and coinfection could take place only for
mutants generated within each individual plaque. In contrast,
during diluted passages, there were two rounds of infection,
and the progeny from a cell infected during the first round
could coinfect new cells with progeny from any other initially
infected cell. However, our computational model predicted
that the speed of adaptation over the initial 20 passages would
be only marginally affected by these experimental differences,
and this prediction was borne out by the experimental data
(Fig. 2). In the regimen where V was measured using both
methods, we found no detectable differences in the measured
speed of adaptation between the two methods (two-sample t
tests for differences in means found no significant differences,
with P values of 0.52, 0.97, and 0.19 at Nt of 500, 1,000, and
3,000, respectively), providing further support for our claim
that selection does not operate after the first round of infection
in a passage.

We also used data from two other types of experiments for
fitting. First, we used previously reported data on evolution of
VSV strain MARM U on longer time scales, 50 passages,
under dilution regimens (22). Second, we evolved the MARM
N populations during 20 passages at its critical bottleneck size
(Nt � 2), as well as the MARM U35 populations during 20

passages at its critical bottleneck size (Nt � 300) and at a
10-fold smaller Nt (Nt � 30), all with plaque-pooling regimens.
We combined these results with analogous published results
for several VSV strains with different initial fitnesses, MARM
X, MARM C, MARM U, and MARM N (24).

Fitting of the model. Our model has six parameters: popu-
lation size (Nt), number of selected sites (L), number of dele-
terious alleles in the MARM U strain (kref), mutation rate per
site per round of infection (�), selection strength (s), and
fitness diversity of the initial population (d). The population
size was set by the experiment, and the mutation rate per
round of infection was fixed at a � value of 5 � 10�5 (leading
to a mutation rate per passage of �P � 1.5 � 10�4 for plaque-
pooling regimens and �D � 1.0 � 10�4 for dilution regimens).
The remaining four parameters s, kref, L, and d had to be
determined from fitting data, as described in Materials and
Methods. We found good agreement between the simulation
model and all data sets with a single set of the first three fitting
parameters, s � 0.39, kref � 6.25, and L � 1,000, and three
values of the fourth fitting parameter: d � 0.67 for VSV strains
MARM U and MARM C, d � 0.29 for strains MARM U35
and MARM X, and d � 1.7 for strain MARM N (Fig. 2 to 4).
Because the predicted dynamics are more sensitive to some
parameters than to others, differently fitting parameters are
determined with different levels of accuracy. For example,
small changes in the values of s and d modify the predicted
dynamics substantially, so the estimates for these values are
relatively tight. In contrast, the least-critical parameter is the
effective number of sites, L, and the value of 1,000 represents
only a rough estimate. We determined L from the estimate of
� and the total deleterious mutation rate per genome, �L,
which we adjusted to result in a simulated average fitness of a

FIG. 2. Initial speed of adaptation, V, as a function of the trans-
mission size, Nt. Symbols represent the measured adaptation speeds,
which were averaged over the first 20 passages (Fig. 1), and vertical
bars represent the associated standard deviations of the means. Black
circles were obtained by plaque pooling, and open diamonds were
obtained under dilution regimen conditions. Note the close match
between the three values obtained by both methods. The solid line is
the average adaptation speed predicted by the fitted simulation model
for plaque-based passages, and the dashed line is the same value for
dilution passages. The gray areas indicate 1 standard deviation around
the predicted average adaptation speed. The average adaptation speed
and standard deviation were calculated from 100 independent simula-
tion runs. Fixed parameters are �P, 1.5 � 10�4 (for plaque pooling);
�D, 1.0 � 10�4 (for dilutions). Fitting parameters are s, 0.39, kref �
6.25; L � 1,000; and d � 0.67.

VOL. 82, 2008 SELECTION OF PREEXISTING VARIANTS 4357



similar value at passage zero and passage 20 (Fig. 4). Changing
the value of L to 800 or 1,200, with a small adjustment of other
fitting parameters, produces a slightly less accurate fit (not
shown).

The simulations faithfully reproduced the average speed of
adaptation of MARM U over the first 20 passages as a function
of Nt (Fig. 2). Figure 3 shows the approach of MARM U to
mutation-selection balance over 50 passages, based on data
previously reported (22). Because the total number of passages
in this experiment did not suffice to observe the saturation of
fitness, we assumed that the fitness of MARM U saturates at
the same level as fitness of wt VSV studied previously on
longer time scales (25). In Fig. 3 we have also indicated the
prediction of our model in the absence of de novo generation

of beneficial mutations (dashed line). The fitness of the simu-
lated viral population increases initially, as rare beneficial mu-
tations are amplified, but levels off as soon as the fittest mutant
present in the initial population has risen to fixation. We see
that the initial 20 passages of the measured fitness trajectory
are dominated by the selective amplification of preexisting
mutations, whereas later fitness increases are due to newly
generated beneficial mutations.

Figure 4 shows the predicted trajectories for five viral strains
with different values of initial fitness (MARM U, MARM C,
MARM U35, MARM X, and MARM N) at the critical bot-
tleneck size, at which the average fitnesses at passage zero and
at passage 20 are not significantly different (24 and the present
report), as well as the experimental fitness trajectories of
MARM N at its critical bottleneck size of 2. We also show two
experimental cases, MARM X at an Nt of 5 (24), and MARM
U35 at an Nt of 30, where we observed a fitness decrease (Fig.
4, left panel), as well as a case, MARM N at an Nt of 5, where
there was an overall fitness increase (Fig. 4, right panel) (24).
While none of the predicted curves simulated at the observed
critical transmission size showed perfect fitness equality be-
tween passages zero and 20, the observed deviations are within
the experimental uncertainty of the corresponding fitness mea-
surements.

We obtained an estimate of the fitness of MARM U after 20
passages at a transmission size, Nt, of 1 from Table 1 in refer-
ence 23. We found an average fitness over 15 replicas of 0.65,
with a standard deviation of the mean (standard error) of 0.09.
At this Nt, we can solve our model analytically and find for the
first and second moment of the fitness �w� � exp[�Ut(1 �
exp(�s)] and �w2� � exp[�Ut(1 � exp(�2s)]. From these ex-
pressions, we obtain a predicted mean fitness � 1 standard
deviation of 0.38 � 0.23. This predicted value is significantly
smaller than the measured value (two-sided t test, P � 0.007).

The values of the fitting parameters kref and L combined
with the fixed parameter � correspond to the effective muta-
tion rate per genome per round of replication, U � �L � 0.05,
and the effective rate of beneficial mutations per genome per

FIG. 3. Approach of virus fitness to mutation-selection balance for
MARM U at a large Nt passaged under dilution regimens. Symbols
represent MARM U fitness (22), and vertical bars represent the asso-
ciated standard deviation of the mean. The solid line is a fit of the
average fitness from the simulation model to the data at an Nt of 2 �
105. Other parameters are shown in the legend of Fig. 2. The gray area
indicates 1 standard deviation around the average fitness. Average
fitness and standard deviation were calculated from 100 independent
simulation runs. The dashed line shows the model behavior if benefi-
cial mutations are turned off. Thus, the initial 20 passages were dom-
inated by the amplification of preexisting variants, whereas the later
fitness increase was caused by the generation of new, beneficial muta-
tions.

FIG. 4. Change in simulated fitness values close to the critical bottleneck size of Nt for several VSV strains passaged under plaque-pooling
conditions. Open symbols represent measured fitness, averaged over six independent replicas, with error bars showing standard deviations of the
means. Closed symbols in the right panel show fitness values at intermediate time points for two replicas at an Nt of 2. Data are both new and
obtained from reference 24. For all symbols, we added a small amount of noise to the passage number to reduce symbol overlap. Solid lines and
shaded areas indicate simulation results as described in the legends to Fig. 2 and 3. The observed fitness was approximately the same at passages
0 and 20 at the critical bottleneck size (24 and the present report). We also show simulation results for a subcritical transmission size for strains
MARM X and MARM U35 and for a supercritical transmission size for strain MARM N. The transmission sizes for the different strains are
indicated in the figure. The deleterious-allele-number variance d value is 0.67 for MARM U and MARM C, 0.29 for MARM X and MARM U35,
and 1.7 for MARM N. Other parameter values are the same as those shown in Fig. 2 and 3.

4358 DUTTA ET AL. J. VIROL.



round of replication is Ub � �kref � 0.0003 (these values have
to be increased by a factor of 2 or 3 to apply to dilution or
plaque-pooling regimens, respectively). The VSV genome is
approximately 11 kb long, and thus, approximately L/11 kb �
�9% of all sites are under intermediate selection (have s
values 	0.39), whereas kref/11 kb � �0.06% are sites of po-
tentially beneficial mutations.

For MARM X, we also compared the standard deviation of
fitness (given by the product sd) obtained from the fit to results
from an independent experiment, in which the fitness of 98
subclones of that strain was measured (11). The predicted
value of the standard deviation of fitness, sd � 0.11, agrees very
well with the observed value of 0.097.

DISCUSSION

We have measured the initial speed of adaptation of a VSV
strain, MARM U, over a range of population sizes spanning
more than 5 orders of magnitude. We have found that we could
explain this data set, as well as additional data sets obtained for
several VSV strains (11, 22, 24, 25 and the present report), by
a simple computational model of virus evolution, using a single
set of fitting parameters for most of the data. The fitting pa-
rameters are all biologically relevant and encompass the vari-
ance in the number of mutations in the initial population, d,
the mean effect of beneficial mutations, s, the number of sites
in the genome that are under moderate selection, L, and the
number of sites with potentially beneficial mutations, kref.

The model we used assumes a fixed fitness effect s for all
mutations. Clearly, this assumption is an oversimplification;
some mutations will have almost no effect on fitness, while
others will be lethal. However, this assumption makes good
modeling sense: we expect neutral or nearly neutral mutations
to contribute substantially to sequence divergence, but by def-
inition, they will not influence the fitness trajectory of a viral
population. Therefore, we are justified in neglecting these mu-
tations. Likewise, strongly deleterious or lethal mutations do
not rise to large frequencies in the population. Hence, they do
not affect the fitness trajectories either, and we can safely
neglect them as well. We can also disregard mutations with
large beneficial effects because they are unlikely in a strain,
such as MARM U, that is well adapted to replication in
BHK-21 cells. Thus, only mutations with a moderate effect will
alter the trajectories, and we describe these mutations by their
mean (or typical) effect, s, determined by the time scale of
several dozens of generations studied in an experiment. How-
ever, since these intermediate mutations cannot occur at all
sites in the viral genome, we need a second parameter, L,
which represents the number of sites at which these mutations
can occur. We define “almost neutral” sites (not included in L)
as those that can experience beneficial or deleterious muta-
tions with selection coefficients of s that are much less than 0.4;
sites with an s of approximately 1 or larger are considered
strongly deleterious.

Why use such a simplified model? Including all the existing
evolutionary factors into a model is not possible, as such a
model would become overly complex and contain more fitting
parameter than can be determined from data. The model com-
plexity is dictated by the aim of the study and the size of the
data set. Whether a certain factor is important quantitatively

for a data set is never obvious a priori and has to be deter-
mined by the ability of a simpler model to fit data.

In particular, there is little doubt that the value of s is
broadly distributed among sites, but only the characteristic
values of s corresponding to the time scale of evolution studied
in the present work are relevant for our model. For larger time
scales, the characteristic value of s would be smaller, and the
number of sites, L, larger. Because our simple model fits data
well and because parameters of a more complex model could
not be determined from our data set, we are not only allowed
but also required to make the simplification of constant s.

We also neglect epistasis in our model. Once again, we made
this modeling decision not because we believe that there is no
epistasis in VSV. To the contrary, numerous studies show that
epistatic interactions are widespread in RNA viruses, including
VSV (1–3, 21, 37). Our assumption is that for the initial phase
of adaptation we study here, whatever epistatic interactions
may exist in VSV are irrelevant on average and can be sub-
sumed into a single effective selection coefficient s in an inde-
pendent-sites model. The good agreement between the data
and the fitted model justifies this approach. To produce a
meaningful fit of a model with epistasis, we would need a much
more extensive data set, including measurements such as those
presented in Fig. 2 for multiple virus strains and possibly for
larger time scales.

We would like to emphasize that our work does not aim to
determine the rate of occurrence and distribution of effects of
new mutations, unlike mutagenesis or mutation-accumulation
experiments (see reference 12 for a recent review). Our work
identifies instead the phenotypically relevant standing varia-
tion in a viral population. Also, our work differs from statistical
analyses of mutation-accumulation experiments in that we fol-
low a first-principle modeling approach. The goal of a statisti-
cal analysis is to extract information from noise, using rela-
tively simple mathematical expressions that do not, usually,
correspond to mechanistic models of the biological system.
The goal of first-principle modeling is to find which factors in
a mechanistic model are most important and to estimate the
model parameters that describe these factors. To give a con-
crete example, in the statistical approach, one can simply as-
sume that beneficial and deleterious mutations have different
effect sizes and estimate the effect sizes independently. In the
first-principle modeling approach, on the other hand, benefi-
cial and deleterious mutations are intrinsically linked, just two
sides of the same coin, where every fixed beneficial mutation is
a potential deleterious mutation and vice versa. We are not
arguing here that one approach is inherently better than the
other. We see them as complementary. The main strength of
the first-principle modeling approach is that it leads to a mech-
anistic understanding of virus evolution.

In our model, we assume that selection operates only in the
first round of infection in each passage, because later rounds of
infection take place at high MOI, where complementation
masks fitness differences among mutants (26). This assumption
would be problematic if superinfection exclusion were keeping
the mean number of infecting genomes per cell low, even at
nominally high MOI. However, in our experiments, superin-
fection exclusion could only have limited effects in restricting
the number of PFU per cell that initiated the next round of
infection. The different mechanisms of superinfection exclu-
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sion operating in VSV-infected cells become effective only 2 to
4 h postinfection and are relatively inefficient. At 2 h postin-
fection, cells can still be superinfected with 75% of the avail-
able virus (34). Even if 90% of the progeny after one round of
infection were unable to infect the new cells due to superin-
fection exclusion or because the virus does not encounter a
new cell and remains in the medium, the MOI in the second
round of infection in our experiments would still be 25 PFU/
cell. Finally, we have demonstrated that restrictions to coin-
fection are not sufficient to limit complementation and that the
fitness of MARM N during a standard competition, which
includes two rounds of infection under the same conditions as
in our diluted regimens, can be explained only if we assume
that complementation operates during the second round of
infection at high MOI (40).

We found here an s value of 0.39 and an L value of 	1,000
for a genome that is approximately 11 kb long. According to
our model, approximately 9% of the genome is under moder-
ate selection, and the remaining 91% is either under strong
purifying selection or is selectively neutral. As explained above,
our fitting procedure cannot distinguish between these two
cases. We subdivided the 9% of the genome under moderate
selection into sites that are under negative selection, i.e., sites
at which mutations will lead to a fitness decrease and sites that
are under positive selection, i.e., sites at which mutations will
lead to a fitness increase. We achieved this subdivision for
MARM U with the fitting parameter kref, which counts the
mean number of positively selected sites. For other strains, the
number of positively selected sites correlated inversely with
their relative fitness. For MARM U, we found a fairly low
number of beneficial sites, kref � 6.25 sites per genome. This
value is consistent with complete-genome sequencing studies
of evolved wt VSV: at the time that the wt reached the muta-
tion-selection balance during adaptation to BHK-21 cells, the
consensus sequences of the evolved genomes from different
replicas accumulated between two and eight substitutions, with
an average of six substitutions per genome (27).

We used additional data for the change of fitness between
passages 0 and 20 from several other VSV strains (24 and this
report) to obtain an additional test of the model and to esti-
mate the value of L as stated above. Initially, we tried to use
the value of d obtained for strain MARM U for all other
strains, but we could not obtain an acceptable fit (results not
shown). Therefore, we grouped the various strains into three
groups and used a separate d value for each group. The first
group included strains that were derived from less than five
amplification passages after the isolation of a single clone
(MARM U and MARM C); the second group included strains
that were derived from 35 or more large-population passages
(MARM U35 and MARM X); a third value of d was used for
strain MARM N. We obtained an acceptable fit when we
assumed that the first group had a larger d (d � 0.67) than the
second group (d � 0.29). At first glance, this result is surpris-
ing, because the strains that have experienced more passaging
have had more time to accumulate mutations and have a
higher within-population diversity (unpublished data). How-
ever, this result makes sense if we take into account the fact
that d measures not the within-population variation, as char-
acterized by the genetic distance or the average number of
differences from the current consensus sequence, but the vari-

ation in the number of deleterious alleles per genome (i.e., the
fitness variation). For example, if all the genomes have exactly
the same number of deleterious alleles located at different
sites, then they all have the same fitness; thus, d is equal to
zero, but the genetic distance is non-zero and can be substan-
tial. During limited amplification of a single virion, mutant
virus will be produced, but there will not be enough time for
negative selection to eliminate deleterious mutants. By con-
trast, for a strain that has experienced extensive adaptation,
selection will effectively remove a large fraction of genomes
with low fitness, leading to a smaller value of d. Also, d is
related only to sites that are under intermediate selective pres-
sure, whereas the total genetic distance also includes neutral or
nearly neutral mutations. The consistency between sd values
predicted with the model (0.11) and those obtained experimen-
tally (0.097) for MARM X (11) further supports our choice of
different parameters for the three groups of strains: (i) MARM
X and MARM U35, (ii) MARM U and MARM C, and (iii)
MARM N. However, while we chose to maintain s at a fixed
value and use variable values for d, the results of the simula-
tions for the strains other than MARM U (i.e., Fig. 4) would be
identical if we maintained a fixed value of d and varied the
value of s. None of the available data allows us to distinguish
between the two alternatives, and it may be possible that both
parameters change to some degree among strains.

The experimental data at a very small Nt value had a ten-
dency to deviate from the averages predicted from the simu-
lations more than the data obtained at larger Nt values (see
MARM N data in Fig. 4 and the data for MARM U at Nt � 1
[not graphed]), even though the experimental results generally
fell within 1 standard deviation from the predicted average.
Our model is based on two assumptions that may not be valid
at very small Nt values. First, we assume that the effective
population size is given by the value Nt. Since the virus popu-
lation expands during a passage, this assumption always un-
derestimates the true effective population size. For sufficiently
large Nt, a small error in our estimate of the effective popula-
tion size does not significantly alter the predicted viral dynam-
ics. However, at very small Nt values, the simulation becomes
sensitive to small differences in the population size. For exam-
ple, the predicted mean fitness after 20 passages for MARM U
is almost twice as large at an Nt of 2 as at an Nt of 1. Thus, a
small error in the estimated effective population size can easily
lead to significant discrepancies between the simulation and
the measurement at small Nt values. Second, we assume that
selection operates only during the first round of infection in a
passage but ceases to have any effect in later rounds of infec-
tion, when coinfection is frequent. If there is some residual
selection in later rounds of infection, then this selection will
also counteract the loss of fitness at very small Nt values and
thus increase the discrepancy between experiment and simula-
tion. A third potential factor to consider in the case of plaque-
to-plaque regimens is sampling bias. For counting plaques, we
stain the monolayers with crystal violet, and plaques appear as
clear or turbid areas. However, this treatment kills both cells
and virus, so for plaque picking, the monolayers cannot be
stained. Plaques that are very small, most of which would
represent deleterious mutants, may be easy to miss and be left
out during sampling, and the result would be a slower-than-
expected decline in fitness.
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For the mutation rate, we used a value obtained from ref-
erence 9 and subjected to various corrections to make it ap-
plicable to our experiments. Conceivably, either the original
value or the corrections may be not accurate. Fortunately, we
found that our results are weakly dependent on the specific
mutation rate we use. For example, let us assume that the
mutation rate value of � is 4 � 10�4, i.e., 2.5- to 4-fold higher
than the values 1 � 10�4 and 1.5 � 10�4 that we used for the
two types of experimental regimens. As we have checked (sim-
ulation results not shown), the best-fit value of s changes from
0.39 to 0.28, that of d (for MARM U and MARM C) from 0.69
to 1.0, that of kref from 6 to 9, and that of L from 1,000 to 500.
Thus, only the effective number of sites changes by a factor of
2 and should be regarded as an estimate; all other parameters
change less. Because it is unlikely that the error in the muta-
tion rate is as large as fourfold, the actual error in our param-
eters is even smaller, especially since for MARM X the d value
of 0.29 is in excellent agreement with direct measurements of
its fitness distribution (11).

One data set used in our fit was the fitness trajectory of
MARM U’s approach to mutation-selection balance (Fig. 3).
In the particular data set we used, fitness had been measured
only up to passage 50 and had not leveled off at this passage.
Therefore, for this data set, we cannot be sure that fitness
would have leveled off at exactly the time point and fitness
value we assumed. Nevertheless, we believe that our assump-
tions are reasonable, because MARM U differs by only a single
neutral marker from the VSV wild type, and the approach to
mutation-selection balance had previously been measured
more extensively in the wild type (25). If we assumed that
MARM U would reach a somewhat higher equilibrium fitness
level (e.g., 13 instead of 10.5), we found that fitting the param-
eter kref would change slightly, but our general conclusions
would not change (data not shown).

The early fitness trajectory, encompassing approximately the
first 20 passages, was dominated by the amplification of pre-
existing variation, whereas later adaptation was caused by the
de novo generation of beneficial mutations (Fig. 2). This result
confirmed an earlier prediction for the same model by Tsim-
ring et al. (35), who argued that viral adaptation proceeds in a
two-phase process, where during the first phase, the highest-
fitness minority mutants grow to a macroscopic proportion in
the population, and then in the second phase, the population
as a whole moves toward higher fitness (33).

To summarize, we have shown that the initial adaptation of
VSV populations is well described by a standard, multiplica-
tive, multisite model and that by fitting the model to several
datasets, we can obtain estimates of the amount of preexisting
variation in a VSV population, the mean selection coefficient,
the beneficial mutation rate, and the number of sites under
selection. The estimate of the amount of preexisting variation
we obtained agrees well with an independent measurement of
the same quantity, which lends additional support to our ap-
proach. Our method can be generalized and applied to other
rapidly evolving viruses, including those with recombination
(for instance, HIV). The method can also be extended to
DNA-based microorganisms, such as yeast, which can repro-
duce either asexually (6) or sexually (15). DNA microbes have
slower evolutionary rates, and the values of parameters such as
s and �L will be smaller, but our approach can still be used

to describe the transitional period from a genetically diverse
population to a stationary regimen or to mutation-selection
balance.
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