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Fungi are the principal degraders of biomass in most terrestrial ecosystems. In contrast to surface

environments, deep-sea environmental gene libraries have suggested that fungi are rare and non-diverse in

high-pressure marine environments. Here, we report the diversity of fungi from 11 deep-sea samples from

around the world representing depths from 1500 to 4000 m (146–388 atm) and two shallower water

column samples (250 and 500 m). We sequenced 239 clones from 10 fungal-specific 18S rRNA gene

libraries constructed from these samples, from which we detected only 18 fungal 18S-types in deep-sea

samples. Our phylogenetic analyses show that a total of only 32 fungal 18S-types have so far been recovered

from deep-sea habitats, and our results suggest that fungi, in general, are relatively rare in the deep-sea

habitats we sampled. The fungal diversity detected suggests that deep-sea environments host an

evolutionarily diverse array of fungi dominated by groups of distantly related yeasts, although four putative

filamentous fungal 18S-types were detected. The majority of our new sequences branch close to known

fungi found in surface environments. This pattern contradicts the proposal that deep-sea and

hydrothermal vent habitats represent ancient ecosystems, and demonstrates a history of frequent dispersal

between terrestrial and deep-sea habitats.

Keywords: life under huge barometric pressures; osmotrophy; environmental gene library;

microbial diversity; SSU rDNA phylogeny
1. INTRODUCTION

Environmental gene library methods are constantly

expanding our understanding of microbial diversity and

evolution, enabling scientists to sample previously

unreachable environments and unculturable microbes.

However, this research has so far failed to reach sampling

saturation for either eukaryotes or prokaryotes, and

therefore the extent and distribution of microbial life on

Earth remains unknown (López-Garcı́a et al. 2001;

Moon-van der Staay et al. 2001; Edgcomb et al. 2002;

López-Garcı́a et al. 2003; Sogin et al. 2006; Stoeck et al.

2006). Fungal microbes encompass a large proportion of

total microbial diversity (Lawley et al. 2004; Richards &

Bass 2005) and biomass in terrestrial environments, and

include key biological components in ecologically import-

ant symbioses, chemical cycles and food webs (Gadd et al.

2007). Despite the approximately 100 000 fungal species

currently described, some estimates suggest that over 1.5

million fungal ‘species’ may exist (Hawksworth 2001).

However, comparatively very few fungal lineages have

been detected in deep oceanic environments (e.g. López-

Garcı́a et al. 2001, 2003, 2007; Edgcomb et al. 2002).

Group-specific environmental PCR followed by cloning
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and gene library construction provides a means of

comparing subsets of microbial diversity between environ-

ments, detecting low-abundance microbes and improving

sampling efficiency (Vandenkoornhuyse et al. 2002;

Bass & Cavalier-Smith 2004). Such methods enable us

to describe fungal diversity even in habitats where it is

apparently very limited.

Here, we use a primer set designed to detect the full

taxonomic diversity of fungal small subunit ribosomal

RNA genes (18S rDNA; Vandenkoornhuyse et al. 2002).

We constructed 10 environmental gene libraries from

marine environments including 11 deep-sea environ-

mental DNA samples from sites in excess of 1500 m

below the sea surface, and two from 250 and 500 m deep

(electronic supplementary material, table 1). Phylogenetic

analyses of the resulting SSU rDNA dataset reveal that the

diversity of fungi in the deep sea is dominated by several

groups of evolutionarily unrelated yeasts, with few

18S-types grouping with fungi known to be exclusively

filamentous.
2. MATERIAL AND METHODS
(a) Environmental sampling and DNA extraction

Environmental DNA was sampled as follows.

Deep sea. (i) Water column from near the wreck of Bismarck

(3000 and 4000 m deep; 488100 N, 168120 W). Two DNA

extractions each of 2 l of filtered water (pore size 0.2 mm).

(ii) Water column from near the wreck of Titanic (3000 and
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3700 m deep; 418430 N, 498560 W). Two DNA extractions

each of 2 l of filtered water (pore size 0.2 mm). (iii) Mid-

Atlantic Ridge: Rainbow hydrothermal sediment (metal-rich;

2264 m deep; 3686 0 N, 33811 0 W). DNA extracted from

200 mg sediment, as described by López-Garcı́a et al. (2003).

(iv) Mid-Atlantic Ridge: sterile microcolonizer deployed

adjacent to a fluid emission at the Tour Eiffel chimney

(Lucky Strike site: 37817 0 N, 32816 0 W, 1695 m deep;

López-Garcı́a et al. 2003). DNA was extracted from 100 mg

of chemically inert plastic mesh, as described by López-Garcı́a

et al. (2001). (v) Water column from Drake Passage at 2000

and 3000 m deep (Antarctic polar front limit, 5981904800 S,

55845 011 00 W; sea floor at 3671 m). Sequentially filtered

through 5 ml and then 0.2 mm filters, as described by

López-Garcı́a et al. (2001). (vi) Anoxic white bacterial mat

cores (0–10 cm sediment depth) from Gulf of California

(278350 N 111828 W, 1575 m deep). DNA extracted from

three separate samples, as described by Edgcomb et al. (2002).

Shallowmarine site. (i) Two water column samples from Drake

Passage at 250 and 500 m deep (Antarctic polar front limit,

59819 048 00 S, 55845 011 00 W; sea floor at 3671 m), as described

by López-Garcı́a et al. (2001).

(b) Environmental PCR and clone library analyses

Molecular screening. Fungal-specific primers AU2 and AU4

were used to amplify partial SSU rDNA sequences as

described by Vandenkoornhuyse et al. (2002). Multiple

PCR products for each DNA sample (electronic supple-

mentary material, table 1) at two dilutions were pooled prior

to separation on a 1% agarose gel from which they were

excised and cleaned using the GFX gel purification kit (GE

Healthcare). The resulting fragments were cloned using the

TOPO TA cloning kit (Invitrogen) and sequenced using dye

terminators and separated through capillaries on an auto-

mated 3730xl DNA analyzer (Applied Biosystems). Primers

AU2 and AU4 were used for sequencing, ensuring that the

variable V4 SSU rDNA region (Wuyts et al. 2000) used for

defining unique sequences (see below) was double-strand

sequenced. Sequences were aligned manually using SE-AL

(http://evolve.zoo.ox.ac.uk/software.html?idZseal) and pre-

liminary BioNJ trees were constructed. These were used to

refine the environmental sequence alignment and determine

18S-type boundaries. The standard requirement for two

genotypes to be considered distinct from one another was at

least three differences within the V4 SSU rDNA region

(Wuyts et al. 2000). This was reduced to a single difference

where the same sequence character was shared by sequences

deriving from more than one library. Bass et al. (2007)

describe this strategy and justification for grouping sequences

into genotypes in more detail. Thus, 239 sequences were

reduced to 19 unique fungal SSU rDNA sequences and 7

non-fungal 18S rDNA sequence types. All 22 opisthokont

(Baldauf 1999) sequences reported in figures 1–4 have

been submitted to GenBank (accession nos. EU154971–

EU154992 and EU158830–EU158831).

Species accumulation curves and Chao1 total diversity

estimates for all deep-sea libraries were calculated in

ESTIMATES (Colwell 2006) and plotted on a graph (figure 5).

(c) Bioinformatics and phylogenetic analyses

All successful sequences were searched against NCBI–

GenBank using the BLASTN (Altschul et al. 1990) database

search method to identify crude taxonomic groupings. Our

22 new sequences were aligned with a comprehensive
Proc. R. Soc. B (2007)
sampling of opisthokont sequences and sequences with

close BLASTN hits for our marine sequences. Additional

putative fungal SSU rDNA sequences from GenBank,

sampled from general eukaryotic primer environmental

gene libraries of deep-sea environments (López-Garcı́a et al.

2001, 2003, 2007; Edgcomb et al. 2002), were also included

(as available at the end of April 2007). These sequences were

also subjected to the same process of BLAST resampling (see

above) and chimaera analyses (see below).

All SSU rDNA sequences were manually aligned using

SEAVIEW (Galtier et al. 1996). The alignment was closely

inspected in the 5 0 and 3 0 regions in order to identify

sequences with inconsistent patterns of similarity across the

sequence alignment—potentially the product of PCR chi-

maera events (Berney et al. 2004). Alignment positions that

were hypervariable or high in insertions/deletions, and so

could not be aligned with confidence, were removed from all

sequences in the alignment (masked) and preliminary

phylogenetic analyses were conducted using distance settings

(BioNJ) in PAUP (Swofford 2002) with 1000 bootstrap

replicates. Initially, all highly similar sequences not closely

clustering with any of the environmental gene library

sequences were reduced to representative taxa. The PAUP

analyses were repeated for four extra phylogenies using

shorter sections of the full alignment: (i) the first 30%

(positions 1–330), (ii) the first 40% (positions 1–440), (iii)

the last 30% (768–1098), and (iv) the last 40% (658–1098).

These four phylogenies were compared with each other and

with the phylogenetic tree produced from the fully sampled

sequence alignment in order to identify alternative branching

orders and contrasting bootstrap supports that could be

indicative of PCR chimaera events. These analyses demon-

strated no candidate chimaera sequences.

The final masked alignment was analysed using MODELGEN-

ERATOR (Keane et al. 2004) to identify the most appropriate

model for phylogenetic analyses (GTRCG (four discrete

categories, aZ0.57)Cproportion of invariant sites (0.49)).

Then, the phylogeny was calculated using two methods: (i)

PHYML (Guindon et al. 2005) using the model parameters

estimated using MODELGENERATOR and 100 bootstrap repli-

cates, and (ii) MRBAYES3 (Ronquist & Huelsenbeck 2003)

analysis was conducted for 1 000 000 generation samples using

model of site rate variation as mentioned above but allowing the

MCMCMC to search alternative model parameter values. The

tree search included two MCMCMC searches with four chains

(heat parameters set to default) with a sampling frequency of

100 generations. The likelihood values of the two MCMCMC

searches were compared to check whether they had converged

and reached a plateau. A ‘burn-in’ of 3000 samples (300 000

generations) was excluded and the remaining plateaus sampled

for the final tree. To further investigate topology support, we

used LOGDET-NJ distance methods with 0.366 proportion of

sites assumed to be invariable (calculated from an MLtree score

of a preliminary BioNJ tree in PAUP). This approach enabled

us to observe support for the ML tree topology using a method

that accounts for potential base-compositional heterogeneity

biases (Lockhart et al. 1994).

To investigate further the evolutionary relationship

between our marine and deep-sea fungi and other fungal

sequences available in GenBank, we generated 16 separate

alignments and phylogenetic trees. For each of our fungal

sequences, we BLAST searched approximately 500 positions,

including the V4 and V5 18S rDNA regions (Wuyts et al.

2000), and constructed trees comprising our sequences and

http://evolve.zoo.ox.ac.uk/software.html?id=seal
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Figure 1. Phylogeny demonstrating the branching position of deep-sea SSU types with a wide diversity of opisthokont
sequences and sequences from general eukaryotic SSU eDNA surveys. A subsection of the fungal SSU rDNA phylogeny is
shown, including other opisthokont groups such as chytrids, Zygomycetes and Glomeromycetes. Tree topology shown was
calculated using PHYML (Guindon et al. 2005) from an alignment of 220 sequences and 1098 characters. Nodes in the
phylogeny supported by in excess of 95% bootstrap support and 0.95 posterior probabilities in all the three analysis
methods are represented by a black circle on the relevant node. Topology support values are given in the following order:
Bayesian posterior probabilities calculated using MRBAYES/100 PHYML (Guindon et al. 2005) bootstraps and 1000
LOGDET distance bootstraps, and are shown when in excess of 0.75 and 50%, respectively. Non-fungal opisthokonts (Adl
et al. 2005) are marked with a grey box bar. Higher fungal taxonomic groups labelled, according to Adl et al. (2005) or as
listed in GenBank taxonomy databases, are marked with a shaded grey bar. Highly novel sequences potentially representing
highly divergent lineages or unidentified taxonomic groups are placed within green boxes. All sequences are listed with
GenBank accession numbers and environmental gene library sequences are marked according to crude environmental type
listed in the key.
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Figure 2. Subsection of the fungal SSU rDNA focusing on the basidiomycete section of the phylogeny. See figure legend 1 for
details on diagrammatic conventions. A wide diversity of basidiomycete fungi detected in deep-sea environments are shown. The
diversity detected tends to branch very close to basidiomycete fungi with an yeast growth form with notable exceptions,
including a close deep-sea relative of the fruiting bodied brown-rot fungi Antrodia.
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a minimum of the top 10 BLAST matches. The only positions

omitted from these analyses were the cases of single

nucleotide ‘insertions’, which occurred in less variable

regions of the alignment and were judged to be clearly

sequence-read errors; the vast majority of these were

instances of an additional nucleotide of the same kind in

only one sequence (e.g. three Ts where all other sequences

had two). The V4 region is generally the fastest evolving

region of eukaryotic SSU rDNA genes (Wuyts et al. 2000)

and is the most variable region of the reads generated by our

primers. Therefore, we included this region and the same

downstream stretch for each of our sequences to ensure that

our new trees derive from alignments closely similar in length

and that are long enough to give good phylogenetic signal, but

as short as possible to minimize the effects of randomly

distributed sequencing errors. Such sequencing errors could

give inflated values for sequence variance, increasing diversity

estimates and values of difference. Since all 16 alignments

each encompassed highly similar sequences, we used

parsimony methods to construct a phylogeny with gaps

treated as a fifth character state. Parsimony analyses were

conducted using 20 heuristic searches with the stepwise and

TBR settings in PAUP. Bootstrapping was conducted with

the same method but with 1000 pseudoreplicates.
Proc. R. Soc. B (2007)
3. RESULTS AND DISCUSSION
(a) Fungal diversity detected

From the 10 environmental gene libraries, we successfully

sequenced 239 clones resulting in 26 eukaryotic 18S-types

(figures 1–4). Of the successful sequences, 115 were

fungal, the rest were SSU sequences from other eukar-

yotes (see below and non-rDNA amplicons. Of the 26

eukaryotic 18S-types, 19 were fungal (electronic supple-

mentary material, table 2). Figure 5 shows that the sampling

of fungi in our deep-sea libraries is close to saturation—

the cumulative Chao1 diversity estimate curve is levelling

off at a predicted 25 18S-types after 115 fungal sequences

were sampled. Although sampling more eDNAs (particu-

larly from other deep-sea habitat types) would be likely

to reveal more taxa, the 13 eDNAs (electronic supple-

mentary material, table 1) we screened harbour relatively

few fungal genotypes. The number of 18S-types recov-

ered from each sampling site ranged from 3 to 11

(electronic supplementary material, table 2). Interestingly,

the sites with the highest diversity were also the deepest

(Titanic and Bismarck wreck sites: 3000–4000 m).

No single clone library was dominated by a single 18S-

type while eight of our deep-sea 18S-types were detected

in one or more of our deep-sea libraries figures 2–4,
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Figure 3. Subsection of the fungal SSU rDNA focusing on the ascomycete section of the phylogeny. See figure legend 1 for
details on diagrammatic conventions. Similar to the basidiomycete analyses (figure 2), a wide diversity of ascomycete fungi
detected in deep-sea environments are shown, with the deep-sea ascomycete fungi detected generally grouping with microbes
with an yeast growth form. However, again, we see exceptions to this, including the detection of a deep-sea Cladosporium and
Aspergillus SSU type.
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electronic supplementary material, table 2; Furthermore,

in five cases (CE2, CK2, KM10, NB13 and DB7;

figure 4), the deep-sea fungal 18S-types that were detected

grouped close to environmental clones sampled from

existing general eukaryotic deep-sea environmental gene

libraries (López-Garcı́a et al. 2001, 2003, 2007; Edgcomb

et al. 2002; figures 2–4). Given the breadth of diversity

sampled in each clone library, the absence of some

terrestrially common fungal taxonomic groups (see

below) and the detection of several 18S-types in several

different independently generated deep-sea environmental

gene libraries, we do not suspect that our results have been

compromised by contaminating sequences from non-

target environments (see also §3b). Of the 19 fungal

18S-types detected, only three (CE2, KM10 and LL2)

were detected in both shallow and deep sites (figures 2–4;

electronic supplementary material, table 2); a further one

was detected in shallower water column, but not below

1500 m (LL7).

Phylogenies including marine fungal sequences from

previous studies (López-Garcı́a et al. 2001, 2003, 2007;

Dawson & Pace 2002; Edgcomb et al. 2002; Stoeck &

Epstein 2003; Stoeck et al. 2003, 2006) revealed seven

clusters of highly novel sequences (boxed in green; figures

1 and 3) grouping separately from known opisthokont

groups or forming a long branch within identified fungal

clades. Note that our phylogenetic analyses failed to

recover strong bootstrap support among the lower

branches of the fungi, consistent with other SSU rDNA
Proc. R. Soc. B (2007)
analyses of fungal phylogeny, where multiple concatenated

genes are required to improve resolution (James et al.

2006). In the absence of phylogenetic resolution among

the lower branches of the fungi, we could not robustly

classify KD14, DB39 or several other environmental 18S-

types as fungi (boxed in green; figure 1).

We are not aware of any other published study using

environmental 18S rDNA libraries to investigate deep-sea

fungi, other than those using primers to detect all

eukaryotes (López-Garcı́a et al. 2001, 2003, 2007;

Edgcomb et al. 2002), the data from which have been

included in our trees (figures 1–4). Two main fungal groups

were detected by those studies: Ustilaginomycetes and

Pezizomycotina. Our new sequences are concordant with

these findings. We discovered three new ustilaginomycete

sequences (CE2, DB7 and KM10; figures 2,4) related but

not identical to those from other deep-sea libraries, each of

which we recovered from more than one library. Similarly,

we found two pezizomycote sequences (NB13 and LL2),

one of which was recovered from three libraries. Previous

deep-sea studies (above 1500 m) did not recover any

Saccharomycotina, Hymenomycetes or Urediniomycetes,

whereas we detected four, six and two representatives of

these groups, respectively. Thus, our use of group-specific

primers has revealed fungi not previously found in deep-sea

environments in several cases from independently collected

and purified deep-sea samples from globally dispersed

sites. In total, 11 of the 18S-types we detected have so far

only been found in deep-sea habitats.
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Figure 4. Phylogenies of fungal sequences generated by this study in the context of their closest BLASTN matches. Boxed
sequences are unique 18S-types (as defined by the fragment analysed: V4–V5 of 18S rDNA) detected in this study from deep-
sea and marine environments. Phylogenies were calculated from highly similar sequences, therefore parsimony methods were
used with gaps treated as a fifth character state. One thousand bootstrap replicates were calculated using the same parsimony
methods and branches with 95% support are represented by a black circle on the relevant node. All trees are shown unrooted.
Grey lines are only for labelling purposes. The scale bar for each phylogeny denotes the number of changes across the given
branch length. The number of positions used to calculate each phylogeny is given in brackets below the scale bar.
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(b) Divergence between terrestrial surface and

deep-sea fungi

All of our new 18S-types were robustly identified as fungal

grouping, with known ascomycetes and basidiomycetes

with moderate to strong bootstrap support and, signi-

ficantly, with only short genetic distances separating them

from known fungi sampled from surface environments.

The trees in figure 4 show that some of our sequences have
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clearly different 18S sequences from their closest matches

in GenBank, whereas others are identical (in terms of 18S

rDNA sequence) to strains from surface or non-marine

environments. In the former case, it is possible that the

organisms represented by these sequences are specifically

adapted to deep-sea habitats, but this can only be

confirmed with more detailed genomic and/or culture-

based analyses (the suggestion of deep-sea specificity may
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be an artefact caused by relatively low sampling and

representation of such sequences in the database). The

fact that some of our 18S-types are identical to those in

GenBank does not necessarily imply that the organisms

represented belong to the same strain or species, as faster-

evolving genes than 18S rRNA (e.g. ITS rDNA) are

required as markers for species boundaries in many

eukaryotes and to distinguish between lineages with

different ecological traits (Coleman 2000, 2007; Amato

et al. 2007; Bass et al. 2007). Furthermore, it has been

shown that Saccharomyces cerevisiae can alter its membrane

composition to tolerate high hydrostatic pressure under

short-term experimental conditions (Simonato et al.

2006), which implies that, for some fungi, rapid

colonization of deep-sea habitats by surface-dwelling

strains might be possible. While it is possible that

sequences from abundant and ubiquitous taxa in our

study such as Saccharomyces (LL7) and Aspergillus (LL2)

are contaminants from surface environments, this is

unsupported by any evidence, and arguably unlikely in

the case of Aspergillus as sequence LL2 was recovered from

three separate libraries constructed from DNA extracted

by different, globally disparate laboratories. Interestingly,

LL7 was only found in the 250–500 m water column

library, not true deep-sea samples, and therefore is

perhaps likely to be more closely related to surface strains.

It is therefore clear that some, if not all, fungi in deep-

sea and surface environments have not been isolated from

each other for long periods of evolutionary history, and

that there is relatively frequent interchange between the

two habitats. This pattern of microbial dispersal is

inconsistent with the proposal that the deep-sea and

hydrothermal vents represent ancient ecosystems har-

bouring ancient microbial lineages stemming from the tree

of life before the Earth’s atmospheric oxygen content

increased (Horikoshi 1998; Reysenbach et al. 2000;

López-Garcı́a et al. 2003).
(c) Relative abundance of fungi in the deep sea

Our experimental approach set out to sample fungal

diversity from the deep oceans. However, owing to the

broad selectivity of the primer set used, we also detected
Proc. R. Soc. B (2007)
six clearly non-fungal 18S-types. These sequences

comprised four Cercozoa (Bass & Cavalier-Smith 2004;

not included in further analyses) and two opisthokont

sequences (Metazoa and a choanoflagellate; figure 1).

The other sequence, KD14, groups close to the base of the

fungi, but its taxonomic affinity is unclear. However,

the pattern of broad fungal/opisthokont genotype detec-

tion is encouraging, suggesting that our methods are

capable of detecting a broad evolutionary diversity of

opisthokonts, including the majority of fungal SSU types.

In support of this conclusion, we detected a diverse array

of fungi including ascomycetes, basidiomycetes and

chytrids from our marine samples (figures 1–3). However,

we detected no putative Glomeromycetes or Zygomycetes

from any of our marine samples. We do not believe that

our methods prevented detection of these higher taxo-

nomic groups because the same primer set has readily

detected a wide diversity of these taxa from terrestrial

environments (Vandenkoornhuyse et al. 2002). This

suggests that fungal diversity in the deep seas tends to be

dominated by ascomycetes and basidiomycetes, while

other fungal taxonomic groups may be rare or absent. For

some of these groups, this is unsurprising. For example,

known Glomeromycetes form symbiotic relationships

with aerobic phototrophic plants and algae (James et al.

2006); these are organisms, niches and lifestyles generally

absent from deep-sea environments. However, the

absence of Zygomycetes suggests that deep-sea high-

pressure environments are not easily colonized by these

filamentous fungi.

Our results also suggest that fungal diversity in deep-

sea habitats is relatively low. In the previous study

using the AU2/AU4 primer pair employed here

(Vandenkoornhuyse et al. 2002), 200 clones produced

49 fungal sequences, with no other eukaryotes detected,

whereas in our study 239 clones resulted in only 18 fungal

sequences from the deep sea. Moreover, the demon-

stration that our methodology was not entirely fungal-

specific is likely to provide information about the relatively

high abundance of fungal cells in the sites sampled: the

fact that 29% of the 18S-types we detected were non-

fungal suggests that fungi are either rare in deep-sea

habitats, or that other organisms are relatively much more

abundant than fungi in deep-sea than terrestrial habitats,

and therefore appear in our cloned sequences because the

relative abundance of non-fungal DNA promotes primer

binding errors by our ‘fungal-specific’ primers. By

comparing the ease with which fungi were detected in

our libraries, we make some tentative suggestions about

the distribution of fungal diversity in deep-sea environ-

ments (electronic supplementary material, table 1).

Libraries with high proportions of non-rDNA sequences

might also be indicative of low levels of fungi (we carried

out cloning quality control experiments to verify the

efficiency of our cloning procedure and methods).

Assuming that these inferences are correct, our results

are consistent with the fact that the seas of the Drake

Passage, particularly at depth, are low in biomass

(López-Garcı́a et al. 2001). The colonization module

(López-Garcı́a et al. 2003) is an even more extreme case—

no fungal sequences were recovered from this sample at

all. It is possible that a deployment time of 15 days is too

short a time for fungal colonization under the prevailing

conditions and/or that potentially colonizing fungal cells
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were sparsely distributed at this site. The shallow bacterial

mat libraries also had a high proportion of non-rDNA

sequences, perhaps due to the extreme dominance of non-

fungal DNA in these samples. However, the deepest sites

sampled (Titanic and Bismarck wreck areas) were both

relatively rich in fungi and produced the highest ratios of

fungal: non-fungal sequences in this study (electronic

supplementary material, tables 1 and 2).
(d) Dominant fungal form in the deep seas

Species with yeast and filamentous growth forms are

distributed as an overlapping mosaic throughout ascomy-

cete and basidiomycete phylogenies (James et al. 2006).

Of the 32 deep-sea (below 1500 m) fungal lineages

identified from our study and previous deep-sea general

eukaryotic surveys (López-Garcı́a et al. 2001, 2003, 2007;

Edgcomb et al. 2002), 23 18S-types branched very close to

known fungi with yeast lifestyles (electronic supple-

mentary material, table 3; figures 1, 2 and 4). The

presence of multiple representatives from these distantly

related yeast clades suggests that the yeast growth form is

the dominant and most successful fungal form in the deep

seas, and that the requirement for osmotrophy is not a

barrier to life under huge hydrostatic pressures. Interest-

ingly, eukaryote-wide SSU libraries have shown that a

basidiomycete yeast, Cryptococcus curvatus, is the domi-

nant microbial eukaryote 640 m deep at a cold methane

seep site near Ishigaki Island, Japan (Takishita et al. 2006).

Remarkably, however, we identified four fungal branches

(NB16, LL2 (this study), A1_E031 and A2_E003

(Edgcomb et al. 2002)) likely to represent exclusively

filamentous fungi presumably capable of forming hyphal

structures at up to 388 atm (4000 m).

Many of the fungal types detected branched close to

known pathogens, suggesting that they may be parasites or

opportunistic pathogens of deep-sea animals. Such a

scenario is consistent with the hypothesis that deep-sea

and hydrothermal vents host a unique array of animal

parasites (Moreira & López-Garcı́a 2003).

Our results demonstrate the presence of an evolution-

arily wide diversity of fungi in deep-sea environments

(figures 1–4). The use of fungal-specific environmental

gene library methods has identified that the dominant

fungi in deep-sea environments are ascomycetes and

basidiomycetes closely related to those capable of an

yeast lifestyle and often branching close to opportunistic

animal pathogens, suggesting that elements of the biology

of these fungi predispose them to success in deep-sea

ecosystems. The exact biological nature of these deep-sea

fungi will provide interesting tools for understanding

adaptive radiation of fungi into different environment

types, survival of microbes in deep-sea high-pressure

environments and use of fungi in high-pressure industrial

processes (Simonato et al. 2006).
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