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Several basic olfactory tasks must be solved by highly olfactory
animals, including background suppression, multiple object sepa-
ration, mixture separation, and source identification. The large
number N of classes of olfactory receptor cells—hundreds or
thousands—permits the use of computational strategies and al-
gorithms that would not be effective in a stimulus space of low
dimension. A model of the patterns of olfactory receptor re-
sponses, based on the broad distribution of olfactory thresholds, is
constructed. Representing one odor from the viewpoint of another
then allows a common description of the most important basic
problems and shows how to solve them when N is large. One
possible biological implementation of these algorithms uses action
potential timing and adaptation as the ‘‘hardware’’ features that
are responsible for effective neural computation.

computation u timing u adaptation u synchrony

More is different (1). There are fundamental differences
between the behaviors of small systems made from ele-

mentary components and the behaviors of large ones made from
the same components. Large systems can have collective prop-
erties that are not displayed in small ones—e.g., the sharp boiling
point of a liquid. Buck and Axel (2, 3) recently discovered that
rodents have '2,000 olfactory receptor genes, and each receptor
cell expresses only one of them. The large number of receptor
cell types introduces the possibility of algorithms explicitly based
on that fact.

The generalist olfactory system is believed to recognize a
particular odor by the pattern of excitation that the odor
generates in the olfactory receptor cells (4–8). The mathemat-
ical nature of this pattern recognition has not been well de-
scribed. The visual determination of color is its closest analogy
in well understood sensory processing. The color of a uniform
visual field presented immediately after seeing a normal color
scene‡ is determined by the relative excitation strengths of the
red, green, and blue cones. Recognizing a color independent of
light intensity is like recognizing an odor independent of the
odor strength. I believe that this analogy to color vision misleads
because the large number of odor receptor cell types allows
computational algorithms and the use of neural hardware in ways
that would not be effective in a system having only a small
number of receptor cell types. My thesis is that in olfaction more,
once again, is different.

As Marr (9) emphasized, it is useful to separate the analysis
of a sensory system into several stages. I thus begin with a
description of the problems that must be solved by the olfactory
system and the sensory information available to it. From this, I
construct a representation of the problems that shows how to
solve them simply when the number of receptor types is large.
Finally, I show how a transformation that is key to solving the
most difficult-seeming of the problems can be directly accom-
plished by a population of adapting neurons.

Computational Problems of Olfaction. A highly olfactory animal
uses odor both as a proximal sense and for remote sensing. For
remote objects, an animal uses scents brought by the wind to
identify the direction and approximate distance of odor sources.

It can remember odors for comparison and identification, can
identify known components in mixtures, and can separate a
mixture of unknown odors into individual odor objects. Basic
computational tasks that must be performed include:

1. Odor memory and recognition. The scent of an isolated
object (i.e., one dominating the olfactory scene) must be
stored so that the object can later be recognized indepen-
dent (approximately) of odor intensity. The time-varying
odor intensity, due to turbulent mixing or active explora-
tion, is also an essential measurement for guiding behavior.

2. Background elimination. When a weak known odor is
thoroughly mixed with an unknown background, the known
odor can be identified and its intensity measured.

3. Component separation. When a few known odors are
thoroughly mixed (eliminating relative fluctuations), an
animal can identify the component odors and their inten-
sities.

4. Odor separation. When odors from different objects are
mixed by air turbulence, the fluctuations of the relative
contributions to the mixture can be used to separate the
odors of multiple unknown objects in the environment.

Only by understanding how all these tasks can be performed,
in the presence of defective data due to residual adaptation or
residual odorant binding to many of the sensory cell types, can
I understand the ordinary behaviors of highly olfactory animals.
Studies of olfactory processing most often emphasize the first
and most elementary of these tasks. Simple methods of solving
the first task are generally incapable of dealing with the set of
essential problems. Other tasks such as olfactory hyperacuity
(e.g., distinguishing between the urine of two genetically similar
animals) lie beyond the scope of the present analysis.

The Logarithmic Distribution of Odorant Binding Constants. The
threshold for the perceptual detection of pure compounds varies
over an immense range (11). In a study of 529 odorants (12), the
distribution of the logarithms of binding constants was approx-
imately Gaussian (i.e., the distribution of free energies of binding
is Gaussian.) The 6 2s range within which most olfactants lay
was 6.8 log10 units, with the extremes separated by 10 log10
units. Detection necessitates the binding of odorants to receptor
proteins. To reach the threshold of detection of a particular pure
odorant, some minimal coverage, covmin, of the odorant recep-
tors of a given type (or more probably, a few types) will be
necessary. If I assume that covmin is the same for all odorants,
then the range of thresholds reflects the range of binding
constants. There is no direct experimental information as to
whether covmin is the same for all odorants, for few binding
constants have been measured (13).

Each glomerulus receives axons from a single type of receptor
cell (2, 3). The pattern of excitation across the glomeruli
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‡This task is a little contrived, for in normal vision the perceived color of objects also involves
comparing the object’s visual signal to that of its surroundings (10).
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describes an odor. To understand such patterns, it is necessary
to describe the binding constants of a particular ligand for
receptors that do not bind it maximally. Because the best-fit
ligand-receptor pairs have a range of binding free energies of 9
kcal and of range of binding constants of .106, the same kind of
stereochemistry should produce a similar range of binding
constants and binding free energies below the maximal ones.
While odors differ markedly in behavior, there is a typical
psychophysical range of a factor of, 1,000 over which the odor
seems to have the same quality, and over which the relationship
between the perceived intensity and the actual concentration is
approximately a low power law or logarithmic. An odor pre-
sented at the concentration where nonlinearities begin drives the
cells having the highest affinity receptors into response satura-
tion. For this driving strength, I would expect, from the above
numbers, that '1y3 of the cell types would show responses to
that odorant and '2y3 would show no obvious response at the
individual cell level. Glomeruli pool information from many
receptor cells, which can presumably extend the system dynamic
range to lower concentrations.

There is no quantitative summary of experimental informa-
tion in this regard. Threshold concentrations for a single receptor
cell for different odorants have been measured as different as a
factor of 1,000, and, often, a cell simply does not respond to an
odor. Assays are available from studying responses of many cells
for an array of odorants, both by conventional electrophysiology
(4) and by cell biology techniques (8). For the concentrations of
odorants used, 1y4–1y2 of the cells showed some level of
response to a particular odorant. These qualitative experiments
are similar to the expectations described in the previous para-
graph.

Modeling Pure and Mixed Odors. A specific model of binding
constant distributions is used for analysis. I assume that a
glomerulus has a dynamic range§ of 1,000 in odorant concen-
tration and that the probability distribution of binding constants
of the less-than maximal cell classes is uniformly spread (on a log
scale) over a range 106 below the binding constant of the most
sensitive cell type. However, while the model is specific, most of
the qualitative conclusions of the present analysis rely chiefly on
the model being consistent with the experimental fact seen
directly in the data of Sicard and Holley (4) and of Malnic et al.
(8), namely that, for unrelated odorant pairs a,b, there will be
hundreds of cell types that respond chiefly to a, hundreds that
respond chiefly to b, and hundreds more that respond to both.

I presume that the receptor cell sends a signal related to its
ligand coverage and that the ligand coverages due to different
ligands are additive. However, the real situation is much more
complicated than the modeling. The responses may not be
additive. The latency of sensory cell response can be odorant
specific. The mucous layer and the proteins it contains may play
some role in kinetics and in odorant clearance. The situation is
reminiscent of the depth perception computation in vision.
There are at least five different computations that are involved,
including binocular stereopsis, shape from shading, linear per-
spective, occlusion, and structure from motion. While the neural
hardware for these may be shared, at the algorithmic level, they
are very different. Visual studies have gained much by analyzing
each separately. Similarly, for olfaction, it is useful to analyze
how concentrations and binding can be used alone.

At threshold concentration cthres,l of ligand l, only one
glomerulus responds in a minimally detectable fashion. This
glomerulus has a coverage of covmin, so it has a binding

constant of covminycthresh,l. The coverages of all other receptor
cell types will lie in a range of 106 below the covmin, which is
reached by the most responsive cell at concentration unity.
When the concentration is raised to 10 cthres,l, then 1y6
(2,000) 5 333 glomeruli should respond. These glomeruli
correspond to cell types that happen to have their binding
constants in the range of 0.1–13 the binding constant of the
most strongly binding cell types. As the concentration is raised
further, more cell types respond, until at concentration 1,000
(in units of the threshold concentration), about half of the
glomeruli types will be responding.

Unrelated molecules have no particular relationship of their
binding contacts and binding energies for a given receptor type.
Each glomerular type is independently assigned binding con-
stants for each odorant by the prescription above. Odors can be
related, either because they have dominant chemicals of similar
structure (e.g., ethanol and isopropanol) or because they are
mixtures in different ratios of the same chemicals (orange and
tangerine). While related odors can be described within the
present context, doing so requires knowing details of the mix-
tures and the binding patterns of receptors.

Statistical Response Patterns for Tasks 1–3. An appropriate repre-
sentation of a problem is essential to understanding procedures
or algorithms than can solve the problem. I develop a represen-
tation that describes an odor-induced excitation pattern across
glomeruli from the viewpoint of a target odor. For simplicity, let
the target, t, be a single odorant species, and the background be
a different single species, b. Following the odor model above, the
coverage of receptors of type i in the presence of concentrations
ct and cb is given by

covi 5 covcrit (ctycthresh,t) (1 or fi
t)

1 covcrit (cbycthresh,b)(1 or fi
b).

[1]

In the first term parenthesis, a 1 is used if it happens that i is the
glomerulus that maximally binds t, and otherwise an ft

i is chosen
at random in the range between 1 and 1026, with a uniform
probability distribution in the logarithmic domain. The same is
true for the second parenthesis and odorant b.

The response of a sensory cells and glomeruli to the coverage
should be a monotonic increasing function that is ‘‘known to the
system.’’ For a known odor t, this means that the system has
implicit knowledge of cthresh,t and ft

i. If only odorant t is present,
then, from each glomerulus i that is appreciably driven, the
system can ‘‘calculate’’ the concentration, ct, from Eq. 1. When
an unknown odor, u, is presented that generates a pattern of
coverage, covu

i, then, for each i that would be driven by the target
odor, we can calculate the concentration of t that would yield that
level coverage for cells of type i, namely

ci 5 (cthreshyfi
t) (covi

uycovcrit). [2]

ci is the apparent concentration of t deduced from the saturation
level caused by the unknown odorant in a single channel i. The
observation of covu

i is a ‘‘vote’’ for the presence of t at concen-
tration ci.

Fig. 1 a–c shows histograms of all the votes ci when odor u is
in fact t, presented at a concentration 10, 100, and 1,000 (in units
of the threshold concentration). A logarithmic scale is used
because of the large range of concentrations involved. This scale
is also particularly apt for systems that show an approximately
logarithmic response as a function of intensity, as many sensory
systems do. A glomerular Gaussian noise level of 626% (60.1

§While the dynamic range of the sensory apparatus may be greater than this (which would
of course aid the present algorithms), the psychophysical constancy of the nature of the
stimulus is often less (14).

Hopfield PNAS u October 26, 1999 u vol. 96 u no. 22 u 12507

BI
O

PH
YS

IC
S



log10 units) introduces width to the histograms¶. Because the
unknown odor u is in fact t, each channel deduces (within noise)
the correct concentration from its value of covu

i. Of the 2,000
receptor cell types, '333, 667, and 1,000 are driven to observable
levels by odorant t at these concentrations respectively, corre-
sponding to the total numbers of votes. The concentration of t
can be read from the peak positions, located as expected. As the
concentration is decreased another decade, the number of
responding glomeruli approaches one.

Fig. 1 d–f shows histograms of the same sort, using the same
1,000 channels that are potentially activated by t but calculated
for three different odors, b, unrelated to t, each at its saturation
level of 1,000cthresh,b. Only those having more than the minimal
detectable coverage respond. For each channel, there is a
probability of 0.5 of this occurring. Because there is no rela-
tionship between ku(n) and kt(n), there is a wide spread of events
within these histograms, and no sharp peak. A histogram for a
weaker presentation of b would be similar, but with fewer events.

Target and nontarget odors are highly distinguishable in this
representation. Even when the target odor is at a strength of only
at 3cthresh, t the peak in such a histogram for odor t alone has '150
votes spread over a total concentration range of 0.4 on a
logarithmic scale. The probability that an unrelated odor u at a
concentration 1,000cthresh,u produces a total number of events
.100 in such a range is less than 1026. When the target odor t
is at strength 10cthresh,t, it becomes astronomically unlikely to
confuse t with a random strong odor. In this representation, task
1 (pure odor recognition) can be solved by merely thresholding
the total number of votes in a bin of appropriate width.

Task 2 (background elimination) is examined in Fig. 2 a–c.
These histograms were generated from an odor mixture in which
the target odorant at strengths 10, 100, and 1,000cthresh,t is mixed
with an unrelated background odorant b at strength 1,000cthresh,b.
The area of the peak in the histogram is decreased, but a simple
threshold on the number of events in a suitable bin width will still
distinguish between when the target odor is present and when it
is not. The target begins to be detected when its concentration
is greater than 3cthresh,t, even in the presence of the saturating

concentration of an unknown odor. Task 2 can be solved by the
same means as task 1.

The statistics of large numbers and the chance occurrence of
non-interference make identification in the presence of strong
unknown odors possible. No glomerulus is specific—each has a
probability of 0.5 of being at least somewhat activated by a
saturating concentration of any odor. This translates to '333
channels being noticeably driven when odor t alone is presented
at low concentration, 10cthresh,t. However, each channel also has
a probability of 0.5 of being negligibly driven by odor b at
strength 1,000cthresh,b. Thus, '167 6 13 channels are still ex-
pected to respond to t at concentration 10ct in essentially the
same way as they would have in the absence of the unknown
background odor, and many more will do so at higher ct. These
channels are responsible for the lowered but appropriately
located histogram peaks in Fig. 2 a–c compared with Fig. 1 a–c.
Channels that have responses that are distorted by the presence
of the strong background odor produce the broad background.

Fig. 2 d–f are like figures Fig. 2 a–c except that the background
odor is made up of a mixture of four unknown odorants each at
a strength 100 (in terms of its threshold). The total strength of
the background is now 400. It is much harder to recognize a
known single-molecular species in the presence of this complex
background, but identification and quantification of a single
odorant against a complex background that is several times
stronger can still be done by the same method.

Task 3 (component separation) can also be solved in this same
fashion. The fact that we could identify a known component of
strength 100 in the presence of four unknown chemicals each of
strength 100 indicates that a complex mixture of five known
molecular components could be separated into its five compo-
nents. When the number of components is raised to seven, this
method will no longer result in separation. While it is mathe-
matically possible to separate seven or more known components,
it requires more complex processing.

The effects of erroneous data can be understood in terms of
these simulations. Sensory channels that are to some extent stuck
‘‘on’’ are equivalent to channels that have additional input and
have effects exactly like those of a background odor, contributing
a wing to the right in Fig. 2. Sensory channels that are strongly
adapted contribute a wing to the left. Such effects on 50% of the
channels produce little impact on performance other than a
slight rise in the detection threshold and a slight decrease in
background rejection capability.

The special case of an odor made from comparable (in terms
of saturation concentration) amounts of two unrelated odorants
A and B is often studied. If recognition is based simply on finding
a peak in the histogram, then a recognizer of A 1 B will also
recognize each of B and A separately. There are, however, subtle

¶The noise level corresponds to (3y0.1)y(2p)1y2 5 12 resolution levels, or 3.5 bits of
information about a glomerular output. Lancet (15) has suggested that a conservative
estimate of glomerular accuracy might be 103 greater, and its information 7 bits or 128
levels. Human psychophysical thresholds for odor intensity discrimination in sequential
sniffs (16) determined a sigma of 0.08, but this includes noise due to the different sizes of
sniffs, which is not relevant to the identification tasks described here (17). Representing
intensities of 1, 10, 100, and 1,000 on a logarithmic scale by 50, 350, 650, and 950 action
potentials with stochastic noise is approximately a noise level of 0.1log10 units.

Fig. 1. Histograms of the number of glomerular channels that vote for
various dimensionless intensities (or concentrations) of the target odor. Units
of odor strengths are on a logarithmic scale; one unit is a factor of 10 in
intensity. Threshold intensity for an odorant corresponds to intensity 1, logI 5
0. (a–c) The target odor itself at concentrations of 10, 100, and 1,000. (d–f )
Three different nontarget odors at concentrations of 1,000.

Fig. 2. Histograms as in Fig. 1 a–c, but with the simultaneous presence of a
background of strength 1,000cthresh,b. d–f have a more complex background of
total strength 400 in terms of the relevant thresholds, made up of an equal
mixture of four nontarget odors.
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inconsistencies in the histogram that could be used to show that
A is not identical to A 1 B.

On the Large Number N of Glomeruli: More Is Different. The size of
N is qualitatively important. We have intuitive feelings for the
case N 5 3 from color vision. If light from different sources are
mixed together, all three channels will usually be mixed, and
there is no reliable way to tell whether a ‘‘target’’ hue is present
or not. For example, light of 5,100 Å and of 4,900 Å wavelengths
are quite distinguishable shades of green but drive chiefly green
and blue cones. Because of this, a particular mixture of 5,100-
and 4,500-Å light produces an exact visual color match to
4,900-Å light. N 5 3 is a small number.

In the case of olfaction, if N 5 5 and random binding constants
picked in the prescribed range, 6% of odors will have significant
binding to only one channel. Odors can then be divided into a set
that drives more than one channel, and five sets each containing
'1% of all molecules. Within each 1% set, all members are
utterly indistinguishable. Appropriate levels of five primary
odorant chemicals could duplicate any odor. For any primary
odorant, unknown backgrounds that drive that unique odorant
receptor (and '50% of backgrounds will do so) completely
prevent the reliable detection of the target. About 25% of odors
will drive two receptor types. For these, the ratio of the bindings
can be used, generating some reliability, but there is only one
ratio, and '4% of odors will drive those two receptors in the
same ratio. Benefits of large numbers are beginning to appear,
but the statistics are not reliable. For N 5 100, many ratios are
always available, and the statistics already reliable (for example,
the probability at saturation of driving ,25 channels is ,1026).
Were it to turn out that the 2,000 receptor types were composed
of 100 different families with strong interfamily similarity, the
large N algorithms would still work quite well. Similarly, ablation
of 90% of the glomeruli at random would little compromise the
basic performance. A range of 106 in binding constants is not
essential—a range of 104 is sufficient to yield adequate non-
interference with N 5 100. However, the situation should be
contrasted with many ‘‘artificial nose’’ projects in which the
range of responses to different odorants is much less andyor the
number of channels small.

Large N is especially useful when the binding constants are
broadly distributed, producing a naturally sparse representation
and appreciable probability of non-interference of two com-
pounds, and thus leaving a statistically significant number of
channels that are receiving unambiguous information about each
compound. This basic idea is not limited to olfaction (18, 19).

Task 4: Separating Unknown Odors Using Fluctuations. When two or
more unknown odors are mixed in a time-dependent fashion, the
time-dependent fluctuations of the relative amounts of the
different odors in principle allow the separation of the two odors
when N is large. Without fluctuations, the task is impossible. I
will describe how, using the odor model and representation
already described, a ‘‘two-sniff’’ paradigm can discover the
presence of two or more objects. Previous algorithms (20)
require a study of the fluctuating odors over a considerable time.

Suppose that two different odors, x and y, are in the environ-
ment, each due to its own single molecule type. A first sniff
contains the combination a*x 1 b*y. A second sniff is due to a*x
1 b*y, where a, b, a, and b are the intensities of x and y.

Construct a ‘‘virtual target’’ odor on the basis of the first sniff.
The second sniff is then analyzed with the first sniff as the target
odor, using the histogram representation as before. I anticipate
the appearance of the histogram by noting that many of the
channels are dominated by odor x, and will contribute just as they
would have if a*x were the target and a*x the second odor, and
produce a peak to the histogram at that aya. Many other

channels are dominated by y and generate a peak in the
histogram at byb. A third set of channels is of a mixed character.

Fig. 3 shows simulation results for a situation representing a
weak ‘‘object’’ (a 5 25) in the presence of a stronger ‘‘back-
ground’’ (b 5 1,000). Fig. 3b shows the result when the second
sniff is identical to the first. The location of the histogram peak
is at 0, (representing an intensity ratio of 1 between the first and
second sniffs), and its area represents the contribution of '1,200
channels. Fig. 3a shows the result when the second sniff is a 5
8.3, b 5 333. Both odors have decreased in strength by a factor
of 3. This would happen if there were really a single object for
which all components track in parallel. The peak has shifted by
20.48 [or log10(1y3)], corresponding to the decrease in intensity
of the second sniff compared with the first.

Fig. 3c shows the result with the same first sniff but when the
second sniff is a 5 50, b 5 500. The two odors have changed in
intensity relative to each other by a factor of 4, resulting in a
histogram with two peaks. The smaller peak is due to channels
that chiefly respond to the weaker odor, and the larger peak is
due to channels that chiefly respond to the stronger odor. The
location of the smaller peak at about 10.3 is due to the increase
of the intensity of the weak target by a factor of 2 [0.30 5
log10(2)]. The position of the larger peak near 20.3 corresponds
to the decrease of the stronger odor intensity by a factor of 2. The
channels can now be divided into two groups, corresponding to
the two odors. Each group responds to more sniffs by showing
a single peak whose location and height varies in the expected
way with the strength of its particular component.

The Two-Sniff Representation and Adapting Neurons. The represen-
tation essential to the two-sniff paradigm can be generated by
simple neurons that adapt. For adapting integrate-and-fire neu-
rons, the cell potentials, uI, obey

duiydt 5 2uiyt 1 Ibias 2 Cai 1 Isensory,i

Isensory,i 5 ln (coviycovcrit) if coviycovcrit . 1

5 0 if coviycovcrit , 1

dCaiydt 5 2D 1 action potential term

(but D shuts off if Cai 5 0).

The sensory input current of a driven channel is proportional to
the logarithm of the coverage of the odorant receptors driving
that channel. When ui reaches a threshold, an action potential of
negligible duration is generated, and ui is then reset to uthresh 2
d. The Cai term represents an inward K1 current proportional to

Fig. 3. A first sniff consists of a mixture of two unknown odorants x and y and
is the particular mixture 25x 1 1,000*y. This first sniff is used as the target in
the histograms a–c. (b) The second sniff is the same mixture as the first. (a) The
second sniff is 8.3*x 1 333*y. It contains the same ratio of the two components
but is lower in intensity by a factor of 3. (c) The second sniff is 50*x 1 500*y.
The weaker component has increased in intensity by a factor of 2, while the
stronger component has decreased by a factor of 2. The noise Gaussian noise
level is 0.10log10 units.
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the internal Ca21 concentration. The internal Ca21 is depleted
at a fixed rate D by a Ca21 pump and is resupplied by an inward
fixed aliquot of Ca21 (due to high potential Ca21 channels or to
the Na1 channels themselves) that enters cell i each time it
generates an action potential.

Fig. 4a shows the spike rasters of 80 model neurons responding
to two sniffs of a mixed odor. At t 5 100 msec, a constant odor
mixture a*x 1 b*y was introduced, with a 5 50 and b 5 1,000 in
terms of saturation strengths. This mixture might represent a
background y that is 203 as strong as an object, x. About 65 of
the neurons are visibly driven by this odor mixture, fire briefly
at a high rate, and then adapt back to their baseline level in spite
of the continued presence of the odor. At t 5 500 msec, a second
sniff, a*x 1 b*y, is taken, with the object now 50% stronger in
intensity and the background 10% stronger (i.e., with a 5 75, b 5
1,100). The suggestible reader may see a subtle change in the
raster patterns around that time. This odor remains fixed for the
rest of the time, and the neurons again adapt to their basal firing
rate.

Fig. 4b shows the same data in a different representation. With
each spike is associated an interspike interval (the interval to the
previous spike of that neuron) and an instantaneous frequency
(the reciprocal of that interspike interval). Each spike of Fig. 4a
is plotted in Fig. 4b. The data after t 5 500 chiefly fall on three
lines. The neurons that are negligibly driven by both odors lie on
the bottom straight line. The neurons that are chiefly driven by
the stronger odor y generate the low arc. The smaller numbers
of neurons that are chiefly driven by the weak object x generate
the top arc. In this representation of the firing pattern, the fact
that there are two objects is completely obvious, in spite of the
fact that the raster plot looks devoid of interest in the relevant
time interval. This plot presents a neural representation of the
separation visible in Fig. 3c. An arc in Fig. 4b goes up (or down)

because the intensity of its corresponding odor went up (or
down). If the odors had fluctuated in opposite directions,
separation would have been easier. Because reasonable plotting
requires representing only a small fraction of the 2,000 channels,
Fig. 4 has been presented without measurement noise so that
what is happening is visible without massive statistics being
necessary. The threshold for detectable fluctuations depends
entirely on noise issues. However, the noise level may be quite
modest (see the third footnote).

These results can be simply understood on the basis of three
essential features: namely, existence of a significant number of
non-interfering channels, logarithmic encoding, and adaptation.
Because there are many non-interfering channels, many neurons
will be driven only by one of the odors. Consider a simple
adapting cell that has a basal firing rate fbasal then responds to a
step input current I by briefly firing at a rate fbasal 1 I*h, where
h is some constant, and then adapts back to firing at fbasal. If the
input is now stepped to the value I9, the neuron will briefly fire
at the rate fbasal 1 (I 2 I9)*h, then will relax back to the basal rate.
This sort of behavior is not uncommon in adapting neurons.

Now consider the case Ii 5 ln (xi*a) and Ii9 5 ln (xi*a). The
firing rate immediately after I9 starts is now fbasal 1 (Ii 2 Ii9)*h 5
fbasal 1 ln(aya)*h, independent of xi. Thus, all neurons that
respond chiefly to x have a common value of aya 5 1.5 and will
also have a common input current step, and a common firing-
rate versus time trajectory in an adapting system. The neurons
that respond chiefly to y have a common value of byb 5 1.1 and
have their own (lower) common trajectory.

Recognition Algorithms. An elementary algorithm that merely
looks for a high peak in an appropriate histogram calculated
from glomerular responses can adequately address three of the
basic tasks described. A system was previously described for
solving the olfactory ‘‘analog match’’ problem (18, 20) by using
action potential timing relative to an underlying rhythm as the
encoding of channel intensity and using a time-delay network to
organize the recognition of a particular odor. The time-
dependent input to a recognition neuron during one period of
the underlying rhythm is exactly the histogram of Figs. 1, 2, and
3, with the intensity axis representing time. The time at which
each action potential arrives is its vote in this histogram. If the
near-simultaneous arrival of perhaps 50 action potentials is
necessary to drive a receiving cell to fire, then that cell is
performing a thresholding operation on the histogram. Thus,
recognition units using time-delays and phase coding of intensity
automatically solve tasks 1, and 2, and 3, in the presence of noise.
Undoubtedly, there are other neural schemas that also can
produce an effective implementation of these tasks. And while
neurobiology is not based on ‘‘grandmother cells,’’ this repre-
sentation does show how easy it would be to solve the problem
using a few basic mechanisms available to neurobiology. The
central point is that simple schemes can use non-interfering,
uncorrupted channels to evaluate the situation, utilizing the fact
that, in a large system, there will be many such channels. The
situation is totally unlike a problem in which there is equivalent
interference in all glomerular channels.

For task 4, the next interesting question is how to recognize the
existence of the arched trajectories as seen in Fig. 4b. One
potential way is through the synchronization of action potentials.
Each of these trajectories represents a set of neurons whose
effective input (after adaptation) is due to the changing intensity
of one odor as a function of time. They will therefore have firing
rate patterns over time that is the same except for the phasing
of when action potentials occur. Even though not periodic, such
activity patterns would be easily synchronized by direct or
indirect weak couplings between the neurons. It would be easiest
to accomplish this if the adapted firing rate of the nondriven cells
is very small. The distinct olfactory objects (by definition, the

Fig. 4. Eighty adapting integrate-and-fire neurons are exposed to two sniffs
of an odor mixture in which the relative components have changed between
the two sniffs. No odor was present before 100 msec. The time period 100–500
has a mixed odor present of the form 50*x 1 1,000*y. At 500 msec, the odor
shifts to 75*x 1 1,100*y (i.e., the weak odor goes up by 50%, the strong
component goes up by 10%, and their ratio changes by a factor of 1.36). (a)
Raster plots of the spikes of the 80 neurons. The sniff at 100 msec strongly
activates more than half the neurons, after which they adapt. The changed
sniff at 500 msec is almost invisible. (b) The same data as in a, but the y axis is
the instantaneous firing rate at the time of each action potential. The second
sniff is now clearly visible, and most spikes appear to belong to one of three
patterns. A 20% spread in D was included to produce parameter-spread noise.
MATLAB programs to explore all figures are available at www.hopfield.nety
;john.
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components of a single olfactory object all f luctuate together),
represented by the trajectories of Fig. 3, would then be identified
by groups of cells that tend to synchronize their action potentials
(21–23).

Sniffs before full adaptation and sniffs after adaptation are
expected to encode different information, and large experimen-
tal differences are observedi. Experiments (25, 26) showing
strong synchronization effects often analyze data only subse-
quent to the first sniff. If those experiments represent full
adaptation, and if only one odor is truly present, then there
should be a set of neurons that all have a common firing rate as
a function of time, while others fire at some other rate unaffected
by puffs of the adapted odor.

The patterns of ‘‘arcs’’ in Fig. 4b are easily seen when many
neurons are simultaneously observed. In a freely behaving
animal environment, and recording from only a few neurons, the

necessity to collect statistics by summing over what would
effectively be different independent sniffs with different values
of a and b would wipe out all relevant structure. Unless
simultaneous recording from a large number of neurons is
available, such arcs can be anticipated only in a tightly controlled
laboratory protocol.

The answer to ‘‘why are there so many channels?’’ seems to be
found in the ease of constructing a ‘‘neural computer’’ that solves
the essential olfactory problems when N is large. A second
conundrum, ‘‘why does the system have such complex adapta-
tion?’’ (24), may be answered from the usefulness of adaptation
as a computational device in algorithms seeking to separate the
olfactory world into separate objects. The universal sensory
principle that ‘‘what moves together is an object’’ seems partic-
ularly simple to implement for the olfactory system.
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