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Topological frustration in an energetically unfrustrated off-lattice
model of the helical protein fragment B of protein A from Staph-
ylococcus aureus was investigated. This Go# -type model exhibited
thermodynamic and kinetic signatures of a well-designed two-
state folder with concurrent collapse and folding transitions and
single exponential kinetics at the transition temperature. Topo-
logical frustration is determined in the absence of energetic frus-
tration by the distribution of Fersht f values. Topologically un-
frustrated systems present a unimodal distribution sharply peaked
at intermediate f, whereas highly frustrated systems display a
bimodal distribution peaked at low and high f values. The distri-
bution of f values in protein A was determined both thermody-
namically and kinetically. Both methods yielded a unimodal distri-
bution centered at f 5 0.3 with tails extending to low and high f
values, indicating the presence of a small amount of topological
frustration. The contacts with high f values were located in the
turn regions between helices I and II and II and III, intimating that
these hairpins are in large part required in the transition state. Our
results are in good agreement with all-atom simulations of protein
A, as well as lattice simulations of a three- letter code 27-mer
(which can be compared with a 60-residue helical protein). The
relatively broad unimodal distribution of f values obtained from
the all-atom simulations and that from the minimalist model for
the same native fold suggest that the structure of the transition
state ensemble is determined mostly by the protein topology and
not energetic frustration.

a-helical protein u Fersht f values u minimalist off-lattice
model u topological frustration

Understanding how a protein folds from a random coil to a
well-defined three-dimensional structure has remained a

puzzling problem for well over 30 years. Two stringent con-
straints govern the folding of the protein: the kinetic necessity to
fold within a biologically reasonable time frame and the ther-
modynamic requirement of a unique, stable native state (1). In
recent years, an approach based on the statistical treatment of
the energetics of protein conformations has provided new insight
into the protein folding problem. This energy landscape theory
contends that a global overview of the protein energy surface is
crucial to the understanding of the folding process (2–8).

The energy landscape of a foldable protein lies in between a
completely rough and a completely smooth surface, neither of
which is observed for a natural protein. Rough energy landscapes
are typical of frustrated systems such as random heteropolymers
in which many competing interactions are present. In such
systems, the energy bias, dE, toward the native state is approx-
imately equal to the roughness, DE2, of the surface, and hence
many low-lying energy traps will be present (9). The perfectly
smooth landscape is an idealized case in which the surface
exhibits no roughness and the driving force toward the native
state becomes the dominant parameter. Although systems with
this type of smooth funnel surface (unfrustrated systems) will
find their native state, real proteins have no need of such a

perfect design—folding needs only to be sufficiently fast and the
native fold robust. The energy landscape of a foldable protein
can best be described as a funnel riddled with small depressions
that can transiently trap the protein in local minima (6, 9–11).
The roughness of the folding surface results from the incorrect
contacts that are likely to form as the protein samples its wide
range of available conformations. The funnel-like shape, which
is superimposed onto this roughness, arises from the stabilizing
effect of the native contacts. Once a certain portion of the
protein has achieved its native structure, the energy of the system
will on average decrease, leading to an overall slope of the energy
landscape toward the native state. A strong driving force toward
the native state is essential to overcome Levinthal’s paradox.
This concept of sufficient smoothness in the energy landscape is
the Principle of Minimum Frustration (6, 12), and the energy
surface of a protein is commonly referred to as a minimally
frustrated funnel.

The framework described above focuses mainly on aspects of
energetics and frustration arising from the inability of a protein
to satisfy all of its mutual interactions. This ignores, in detail, the
nature of the folded protein topology and the necessity of the
polypeptide chain to achieve a specific three-dimensional con-
formation for successful folding. The requirement for a complete
theory of protein folding to embrace these detailed topological
features (13, 14) has been intimated from the analysis of folding
free energy landscapes, which used detailed models of protein
and solvent (15–17). The objective of this study is to begin a
systematic exploration of the influence of the protein final
topology on its folding and on measurable properties related to
folding such as the f values of Fersht (18) that reflect the role
specific residues play in the transition states for folding.

The sources of frustration in a protein can be broadly cate-
gorized as energetic and topological. Energetic frustration is
associated with the amino acid sequence in the protein. It occurs
when incorrect contacts are formed as the chain folds from a
random coil to its native configuration, when the sequence forces
mismatched residues to be in contact in the native state or when
there is competition between interactions. This type of frustra-
tion is minimized by careful natural selection or through protein
engineering of the sequence. Proteins optimized for fast folding
and robustness will have a reasonably well-designed sequence
that will fold with a minimum of incorrect contacts formed in the
process (19, 20).

Topological frustration is due to the polymeric nature of the
protein and the shape of the native fold (21, 22). It is in part the
excluded volume problem that results from the connected nature
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of the protein. Because the protein chain cannot cross itself,
certain regions of configurational space are less likely to be
sampled by the protein. Some parts of the chain will not be able
to form contacts with other parts of the chain, potentially causing
frustration in the folding process. Also, native contacts that are
closer in the sequence have a greater likelihood of being formed
than those that are further apart. The three-dimensional struc-
ture of the protein can also be a source of frustration, as certain
topologies (for instance those with very little symmetry) can be
more difficult to fold to than others (23, 24). The analogy
between symmetric core structures and small clusters for good
folding topologies has been suggested by Berry et al. (25, 26).

In the present work, we utilize the following functional
definition of topological frustration. In a topologically unfrus-
trated system, all contacts will be evenly distributed throughout
the protein and will be of the same structural importance (same
probability of formation). In other words, the structure can start
forming from any point along the chain. No one contact or set
of contacts has to be formed first, failing which the protein will
not fold. As a consequence, the number of native interactions is
an optimal coordinate to describe the folding process. The
presence of topological frustration is manifest in ‘‘inequality’’
among native interactions, some forming preferentially in fold-
ing. As a result, the transition state is no longer homogeneous (as
it is for a topologically and energetically unfrustrated system).
The participation of each contact (or residue) in the transition
state can be inferred from its respective Fersht f (18) values. The
f values are experimentally determined through the measure-
ment of the folding and unfolding rates for site-directed mutants
of the protein compared with the native sequence. From such
experiments, a measure of the degree of structure formation in
the transition state relative to the folded and unfolded states is
obtained (5, 18, 27). The presence of topological frustration in
the folding process can be established from the shape of the
distribution of the Fersht f values of the protein (18). We note
that a potential consequence of frustration is that the folding
process may require additional variables, beyond the native
contacts, to fully describe the process of folding. In such cases a
few variables may be sufficient—for example, those describing
collapse and the number of native contacts—or the process may
be very complicated and not well described by a small set of
variables.

The significance of the f values will be discussed in detail in
the main body of the text. As a brief introduction to motivate our
separation of frustration into energetic and topological compo-
nents, we consider the diagram shown in Fig. 1. The utility of
separating the contributions to frustration as we have done are
to explore how and where proteins with differing levels of
energetic and topological frustration manifest this character in
their f value distributions, and to examine the general features
that topology contributes to altering this distribution.

Materials and Methods
The model we will study is an a-carbon (Ca)-based off-lattice
minimalist representation of fragment B of protein A (PA) from
Staphylococcus aureus. This small, 46-residue, protein has a
simple bundle structure consisting of three helices separated by
helix-breaking prolines in the turn regions. It has been exten-
sively studied both experimentally (28, 29) and theoretically
through all-atom (15, 30), lattice (31, 32), and off-lattice (33)
simulations. Furthermore, its transition state has been thor-
oughly characterized in the all-atom simulation (15). Experi-
mentally, this protein is known to fold rapidly without forming
any detectable intermediates (29).

We have opted to model PA by using an off-lattice represen-
tation, as this type of model accurately reproduces the three-
dimensional structure of the protein as well as allows us con-

siderable freedom in adjusting the degree of frustration of the
model.

To isolate the role of topological frustration in the folding
process, we design a model representation for PA which has (to
first order) no energetic frustration (Go# -type model). This is
achieved by assigning attractive interactions between all residues
that are in contact in the native state (favorable contacts) and
hard sphere interactions between all others. Any remaining
frustration present in our model must now be due to topology.
To determine the extent (if any) of the topological frustration,
we calculate the distribution of Fersht f values for our model.
Frustration is manifest in the asymmetry or multimodal nature
of the f distribution (see Fig. 1).

Each amino acid residue in our model of PA is represented by
a bead (Ca) of 50 atomic mass units. Each bead is connected to
adjacent beads by virtual bonds of fixed length r0 5 3.78 Å. All
bonds were kept fixed by using the SHAKE algorithm (34). The
bond angles were described by a harmonic potential with force
constant ku 5 20« and an equilibrium bond angle u0 5 105°.
Dihedral potentials were not used in this model except in the
proline turn regions. The general absence of dihedral potentials
allows for a model with maximum flexibility. However, weak

Fig. 1. Folding landscape frustration diagram. The axes denote energetic
and topological frustration. In the upper left corner of the figure (point 1), no
energetic or topological frustration is present and the folding landscape is a
smooth funnel. At the other extreme (point 2), energetic and topological
frustration are prevalent and the landscape is very rugged. Proteins will fold
on a landscape that lies between these extremes. The degree of energetic and
topological frustration will vary with the design of the protein and the choice
of the native topology. As frustration increases along either axis the distribu-
tion of f values becomes less ideal and tends to spread out until reaching a
limiting bimodal distribution denoting strong pathway dependence of fold-
ing.

Fig. 2. Temperature dependence of the specific heat (a) and average number
of native contacts (b) for the optimized PA model. Together these provide an
indication of the first-order-like folding of this model protein.
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harmonic dihedral potentials§ (with a force constant of 2.5« and
equilibrium dihedral angles taken from the reference protein
structure) were imposed in the proline turn regions (residues 12
and 30). This was done for two reasons. The first was to mimic
the nature of proline residues, which inherently restrict the
backbone conformations. Prolines have the effect of constrain-
ing their neighboring residues into specific, fixed posi-
tionsyorientations. In PA they act as helix-breakers. The second
reason is that Ca models cannot distinguish between right and
left-handed chirality. Fixing the angles around the prolines
solves this problem by making the structure with the correct
chirality lower in energy.

An original set of native contacts consisting of residue pairs
with helical or longer-range interactions is determined from the
reference crystallographic structure as follows. Two residues, i,
i 1 4, or further apart, for which the side chains (any heavy atom)
are less than 4 Å apart and for which the Ca is less than 8 Å apart
are considered to form native contacts. Seventy-two native
contacts (available on request) were obtained in this manner and
used to define the pairs of native (favorable) interactions.

The native interactions were described by the Lennard–Jones
potential:

EL-J 5 O
i
O
j.i

«FS rij
m

rij
D 12

2 2S rij
m

rij
D6G , [1]

where rij is the distance between the Ca atoms i and j for the pairs
of atoms defining native contacts in the reference structure. The
well depth « is set at 2 kcalymol (1 kcal 5 4.18 kJ), which yields
a folding temperature in the vicinity of 350 K, and the minimum
of the potential well is located at the native separation distance,
rij
m, between the residue pair i, j. The nonnative interactions are

described by a hard sphere potential of the form:

Erep 5 O
i
O
j.i

«repSsrep

rij
D 12

, [2]

where «rep 5 2 kcalymol and the repulsive radius srep 5 7.8 Å.
The PA model was incorporated into the molecular dynamics

program CHARMM (35). We started with an all-trans extended
chain and progressively cooled the structure in 25-K increments
from 700 K to 200 K. This range of temperatures allowed us to
probe high-energy extended structures as well as the low-energy
compact states. The time was measured in units of t 5
(my«)1/2r0. The model was allowed to evolve in a continuum
manner following Langevin dynamics. A friction coefficient of
0.2t and a step size Dt of 0.0075t were used. The system was
simulated for 2,500,000Dt at each temperature. Snapshots were
saved only every 500Dt so that each data point can be considered
to be independent. The thermodynamic analysis was performed
with the weighted histogram analysis method (36).

To explore the kinetics of folding for this model, several
hundred independent folding runs, initiated from different
high-temperature random coil structures, were performed at the
transition temperature for folding determined from the ther-
modynamic analysis (350 K). The simulations were stopped as
soon as the protein reached the native basin (defined in Results
and Discussion) and the first passage times were recorded.
Typical folding trajectories comprised between 350,000Dt and
1,000,000Dt steps of Langevin dynamics for this system. This
procedure was applied to the wild-type protein and to a number
of mutants.

Results and Discussion
Two-State Thermodynamics and Kinetics of Folding. Our model for
PA presents the kinetic and thermodynamic signatures of a
two-state folder. The collapse and transition temperatures,
determined independently from the behavior of the specific heat
and of the average number of native contacts ^Q& as a function
of temperature (Fig. 2), illustrate this point. The number of
native contacts Q was redefined from the average of the low-
temperature 200 K structures as all i, i 1 4, and greater contacts
of less than 8 Å. Folding and collapse are seen to occur
concurrently at Tf 5 Tc 5 350 K, indicating that our designed
model is a good folder (37, 38). The heat capacity curve is very
narrow and sharp, and the average number of native contacts
rises quite abruptly at the transition temperature. These are
signatures that our system exhibits a clear two-state behavior,
and that the transition is first-order-like. We contrast this
behavior with the one of a more frustrated (poorly folding)
sequence in which the heat capacity curve is broad and the
average number of native contacts shows a slow and gradual
transition from the nonnative state to the native state (20, 39).

The free energy is plotted as a function of the internal energy,
V, in Fig. 3a. Two equal free energy minima corresponding to the
native and nonnative basins occur at V 5 255 kcalymol and V 5
232 kcalymol, respectively. These minima are separated by a
barrier of 0.6 kBTf at V 5 243 kcalymol. For temperatures above
the transition temperature, the curve shifts to the high-energy
states, whereas for temperatures below the transition tempera-
ture, the curve shifts to the low-energy states. This too is a
signature of a two-state first-order-like transition. The folding
transition in this model is entropically and energetically driven,
with the energy and entropy varying almost linearly with Q. The
almost complete cancellation of these two terms leads to the
small free energy barrier observed in Fig. 3a. This small barrier
is a characteristic of well-designed models with pairwise inter-
actions in which the entropic and energetic contributions balance
each other out, leading to an apparent downhill (sometimes
barrierless) folding at the transition temperature. The lack of (or
small) barrier does not contradict the fact that the folding
transition is two-state first-order-like. We insist on the ‘‘like’’ in
describing the first-order nature of the folding transition because
we are dealing with finite system. A well-designed sequence can
have a small barrier, yet still be two-state, as evidenced by the
sharpness of the transitions observed in the heat capacity and
average number of native contacts versus temperature. The
distributions of nonnative and native states (data not shown) also
show a clear separation in energy at the transition temperature.
The difference in energy between the native and the nonnative
states (which is related to the energy gap) (39–41) is large (27
kBTf), indicating a stable native state and an absence of low-
energy misfolded configurations. These last features are signa-
tures of a good folding sequence with a smooth landscape (42).
We note that in our model, Q and V are correlated (Fig. 3b), and

§These potentials were harmonic in the virtual dihedrals defined by four consecutive Ca

atoms (beads).

Fig. 3. Thermodynamic functions at the transition temperature. (a) Free
energy (G, in kcalymol) as a function of energy (V in kcalymol). (b) Number of
native contacts, Q, as a function of energy.
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hence the free energy G as a function of Q has features similar
to G as a function of V.

The kinetics of the model are also indicative of a two-state
folding transition with a single exponential distribution of first
passage times. Thus, the combined observations from our ther-
modynamic and kinetic analyses suggest Q to be a reasonable
reaction coordinate for folding in this system.

f Values and Topological Frustration. To determine the extent to
which our model presents topological frustration, we calculated
the f values of the interhelical native contacts. f values are
obtained through mutagenic studies and serve as a probe of the
degree of structure present in the transition state (43). The f
values are defined as the ratio (upon mutation) of the difference
in free energies between the transition state and the unfolded
state with respect to the difference in free energy between the
folded state and the unfolded state (the overall stability). We
refer to the f of a contact i defined in this manner as the
thermodynamic fthermo

i :

fthermo
i 5

D~DG!T-U

D~DG!F-U . [3]

In the above expression, the superscripts T, U, and F refer to the
transition state, the unfolded state, and the folded state ensem-
bles, respectively. The difference in free energy DDG is given by:

DDG 5 DGM 2 DGWT, [4]

where the subscripts M and WT refer to the mutant and
wild-type proteins, respectively. To lowest order, the thermody-
namic fthermo

i can be viewed as the ratio of the difference in the
fraction of native contacts formed in the transition (Qi

T) and
unfolded (Qi

U) states over the difference in those formed in the
folded (Qi

F) and unfolded states (Qi
U):

fthermo
i <

Qi
T 2 Qi

U

Qi
F 2 Qi

U . [5]

Experimentally, the free energy difference between the transi-
tion state and the unfolded state (DGT-U) is obtained from the
folding rate k following Kramer’s expression (18, 44, 45):

k 5 k0e2DGT-UykBT. [6]

By assuming that the preexponential factor k0 does not vary
significantly as a result of mutation, we can rewrite the expres-
sion for the thermodynamic fthermo

i in terms of a kinetic fkin
i :

fkin
i 5

2 kBT ln~kMykWT!

D~DG!F-U . [7]

The f values in our study were calculated by using both
thermodynamic and kinetic connection formulas according to
Eqs. 3 and 7. Experimentally, only kinetic fkin

i can be measured.
For a well-designed sequence which folds in a two-state manner,
fthermo

i and fkin
i are well correlated. As long as the free energy

surface is sufficiently smooth with minimal trapping and single-
exponential kinetics, the assumptions used to obtain fkin

i (name-
ly Kramer’s rate and a constant k0) are reasonable. For such
systems, the transition state can be determined thermodynam-
ically from the free energy profiles by using an appropriate
reaction coordinate.

As mentioned in the Introduction, the f values can present
two limiting scenarios. If a mutation is performed in a region of
the protein that is unstructured in the transition state, D(DG)T-U

will be equal to zero and hence f 5 0. This mutation will affect
the rate of unfolding but not the rate of folding. We consider

such a mutated residue (or contact) to be ‘‘unimportant’’
(insofar as the transition state is concerned). If, on the other
hand, the mutation is performed in a region that is structured in
the transition state of the wild type, D(DG)T-U will be equal to
D(DG)F-U and f 5 1. The rate of folding will now be significantly
affected, while the rate of unfolding will remain unchanged. f
values between 0 and 1 indicate either partial structure in the
transition state or are representative of an ensemble of confor-
mations, some of which have structure in the region that is
mutated, some of which do not.

To explore the importance of specific native interactions in the
folding of PA, we perform a mutation by removing a native
contact. This type of mutation mimics the double mutations used
in experimental studies to determine f values (43). We have
mutated representative contacts lying across helices I–II, II–III,
and I–III and calculated the kinetic fkin

i and thermodynamic
fthermo

i values for each contact. In the thermodynamic calcula-
tions, we identified the transition state from the peak in the plot
of the free energy as a function of the energy (or equivalently as
a function of Q). The unfolded, transition, and folded states of
the wild type are defined as those conformations of the polypep-
tide lying within the following range of energy values: unfolded
states, 235 , V; transition states, 246 , V , 238; folded states,
V , 248. Equivalent results were obtained when cutoffs based
on Q were used. [We recall that the energy and Q are correlated
in our model (Fig. 3b), so that the cutoffs based on V or Q give
similar results.]

The expression for the free energy difference DGX (where X 5
U, T, or F) is obtained by averaging over the wild-type ensembles
of unfolded, transition, or folded structures:

DGX 5 2 kBT ln^exp~ 2 DVykBT!&WTX, [8]

and hence fthermo
i is given by:

fthermo
i 5

ln^exp~ 2 DVykBT!&T 2 ln^exp~ 2 DVykBT!&U

ln^exp~ 2 DVykBT!&F 2 ln^exp~ 2 DVykBT!&U
. [9]

The energy DV between the mutant and wild-type structure is
taken to be the energy of the interaction that was removed.

The kinetic fkin values were calculated from Eq. 7. Several
hundred folding runs were performed for each mutant (as
described in Materials and Methods) to obtain the folding rates
from the slope of the logarithm of the unfolded population
versus the folding time (first passage time). The kinetic evalu-
ation of the f values is computationally extremely costly, hence
when thermodynamically derived f values can be used it is
clearly advantageous.

The kinetic and thermodynamic f values are given in Table 1
and their respective distributions in Fig. 4. The numerical errors
in the determination of the f values are less than 0.02. The f
values obtained by the two methods are in good agreement, with
a correlation factor of 0.87 (Fig. 5). Although the exact numbers
are not in perfect agreement, the qualitative agreement is
excellent. The discrepancies between the kinetic and thermody-
namic f values can in part be attributed to the small size of the
free energy barrier (Fig. 3a), which made the unique identifi-
cation of the transition state difficult. The high and low f
contacts identified by the two methods are the same. This
agreement gives encouraging confirmation that the reaction
coordinate Q (or equivalently the energy) can be used to
satisfactorily locate the transition state from the free energy
profiles for minimally frustrated systems. It is important to
emphasize that the thermodynamic fthermo determined by using
a single reaction coordinate is not necessarily a less satisfactory
measure of structure in the transition state than is the kinetic
fkin. The validity of our thermodynamic calculation relies heavily
on our ability to identify a suitable reaction coordinate to
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monitor the folding process. With a correct reaction coordinate
in hand, one is able to unambiguously locate the transition state.
For well-designed sequences, however, it is not necessary to
identify this elusive ‘‘true’’ reaction coordinate. A number of
reaction coordinates (such as the number of native contacts) can
be used to satisfactorily identify the transition state ensemble of
conformations from the free energy profiles.

Recent studies have shown that even for moderately good
folders the ‘‘real’’ transition state structures form a significant
subset of the states identified from the free energy barrier. One
can question whether the fs determined thermodynamically in
simulations can be compared with the experimentally obtained
kinetic fs. On-going investigations in our research groups on
protein models with different degrees of frustration (off-lattice
simulations by J.-E.S., J.N.O. and C.L.B. and lattice simulations
by H. Nymeyer, N. D. Socci, and J.N.O.) show that for proteins
with sufficiently reduced frustration, the thermodynamic and
kinetic f values are very similar. The very formulation of the
kinetic f values is, after all, based on the thermodynamic
two-state picture. If the free energy cannot be described in terms
of a reaction coordinate as a two-well system separated by a
transition state barrier, then Kramer’s rate expression no longer
holds and the entire foundation of the kinetic f collapses.

The good agreement between the thermodynamic and the
kinetic f values supports the use of experimental f values as
measures of structure in the transition state. We do not claim
that simple reaction coordinates always describe the folding
process. It is an adequate description for systems with smooth
landscapes. As the landscape becomes more rugged, the ther-
modynamic f determined from the free energy surface pro-
jected onto a reaction coordinate will no longer be a suitable
measure of the degree of structure in the transition state.
Analogously, the kinetics will no longer be single exponential
and the rate of folding will not obey Kramer’s expression.

Consequently, kinetic fkin values will be very difficult to inter-
pret in a consistent fashion.

Important and Unimportant Contacts for the Folding Process. The
distribution of f values (Fig. 4) is unimodal and centered on f 5
0.3, with small tails extending to f 5 0 and f 5 0.55. The
distribution of f values lies in between the two extreme scenarios
discussed previously, but resembles more closely the picture of
an unfrustrated folder. The f distribution is not sharply peaked
(as in the topologically and energetically unfrustrated case) but
rather displays a small spread. We conclude that our model for
PA contains a certain amount of intrinsic frustration. This
frustration is topological in nature, as we have designed this
model without energetic frustration. The extent of the topolog-
ical frustration is weak, following from the unimodal (rather
than bimodal) distribution of f values. Most contacts are of
equal importance in the transition state and only very few lie at
the fringe of the f values. These later contacts (f near 0 and 1)
are of particular interest, as they reveal the nature of the
topological frustration in our model and start to provide us with
a structural characterization of the transition state ensemble.

The high f values are located primarily in the turn regions
between helices I and II and between helices II and III. This
observation suggests that the two hairpins are in large part
required in the transition state. The low f values occur for the
long-range contacts between helices I and III, suggesting that
these two helices are rarely in contact in the transition state. We
compared the f values of our minimalist model with the contact
probabilities in the transition state of the all-atom simulation of
Guo and Brooks (15). While such a comparison is not perfect,
we expect a reasonable correlation between the contact proba-
bilities in the transition state and the f values because we are
only considering long-range interactions that are not formed in
the unfolded state. The high contact probabilities are located in
the turn region between helices II and III and between helices
I and II, the very regions we determined to be topologically
frustrated (high f values). In particular, Guo and Brooks (15)
found that contacts 25–35 and 25–36 (using out numbering
scheme) had among the highest probability of forming a contact
in the transition state. We identified similar contacts (26–34 and
27–33) as having high f values. The small contact probabilities
occur between helices I and III, which correspond to our low f
region. Because f values are determined by both topology and
energetics, we would expect a lesser agreement between the
transition state probabilities (from the all-atom simulations) and
the f values (from the minimalist simulation) for those contacts
for which the f value participation is topologically negligible.
The real protein is, however, sufficiently well designed that
despite these limitations, the low contact probabilities in the
transition state and the low f values fall in the same regions.

Fig. 4. Distribution of f values, N(f), at the transition temperature for
thermodynamically and kinetically determined f values.

Fig. 5. Correlation between thermodynamic and kinetic f values.

Table 1. Kinetic and thermodynamic f values at the folding
transition temperature

Contact pair* fthermo fkin

4–37 0.05 0.02
5–23 0.12 0.07
8–19 0.27 0.15
8–37 0.15 0.12
8–41 0.27 0.11
9–19 0.50 0.28
9–20 0.55 0.53

13–44 0.19 0.12
14–44 0.15 0.06
19~40 0.1 0.07
22–40 0.42 0.30
26–34 0.47 0.44
27~33 0.39 0.55

*Helix I (1–10); helix II (16–28); helix III (33–46).
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The qualitative features of folding that we have observed in our
off-lattice simulation seem to be common to all small, fast-folding
a-helical proteins. The general picture of the folding process and of
the transition state is in excellent agreement with the all-atom
simulation of Guo and Brooks (15) as well as with the 3 letter code
27-mer lattice simulation of Onuchic et al. (4, 5). [The 27-mer lattice
model was shown to be equivalent to a 60-residue a-helical protein
by using the law of corresponding states (4, 5).] The agreement
between the all-atom and off-lattice results for PA is not unex-
pected. PA is a highly designed sequence as evidenced by its
experimentally observed two-state folding behavior. It folds very
rapidly to its stable native state, which indicates that energetic
frustration is minimal. A model that neglects the energetic frus-
tration but captures the topology of the protein should be an
adequate representation of PA. This is the essence of our off-lattice
model. Of greater interest is the similarity between our results and
those of the lattice model, where the shape of the f distribution is
essentially the same. In both cases, we recover a relatively broad
unimodal distribution, with tails extending to low and high values.
The transition state ensemble for small fast-folding helical proteins
would therefore appear to be determined mostly topologically
rather than energetically.

The concepts of energetic and topological frustration intro-
duced and explored in this paper are pertinent to the design of
fast-folding, stable proteins. It is important to emphasize that
any frustration, whether topological or energetic, is a detriment
to the folding process. A successful method for protein design
will target the minimization of frustration through amino acid
substitutions by iteratively ‘‘optimizing’’ the f value distributions
to be more central and unimodal. While elimination of energetic
frustration (e.g., kinetic folding traps) through mutations has
been appreciated in the past, minimizing frustration associated
with the specific topology to which the protein is folding is less

well understood. In principle one can use the same ideas of
introducing amino acid substitutions to achieve the ‘‘best’’ f
value distribution for a given folded topology. However, it is
clear that all conceivable structures may not be appropriate
targets for design. Beyond some critical level of topological
frustration it may be impossible to find a good sequence for some
topologies. This may be why it is anticipated that only a finite
number of fold motifs exist in nature (46). Objectives of our
ongoing work are to provide a more quantitative understanding
of this relationship.

Also emerging from our studies is the relationship between the
extent of frustration in a protein and the nature of the folding
reaction coordinates. In a minimally frustrated system, a number
of ‘‘global coordinates’’ (such as the number of native contacts)
correlate well with the energy and extent of folding, and can be
used as suitable folding coordinates. As the system becomes
more frustrated, these coordinates begin to deviate from this
simple relationship and are no longer adequate to describe the
folding mechanism; additional, and often more detailed, coor-
dinates are necessary to describe folding in this situation. When
topological frustration plays a dominant role in the folding
mechanism, it becomes imperative to consider details of the
specific final topology of the protein in developing an optimal set
of coordinates to describe the folding mechanism.
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