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Describing at a genomic scale how mutations in different genes
influence one another is essential to the understanding of how
genotype correlates with phenotype and remains a major chal-
lenge in biology. Previous studies pointed out the need for accu-
rate measurements of not only synthetic but also buffering inter-
actions in the characterization of genetic networks and functional
modules. We developed a sensitive and efficient method that
allows such measurements at a genomic scale in yeast. In a pilot
experiment (41 genome-wide screens), we quantified the fitness of
140,000 double deletion strains relative to the corresponding
single mutants and identified many genetic interactions. In addi-
tion to synthetic growth defects (validated experimentally with
factors newly identified as genetically interfering with mRNA
degradation), most of the identified genetic interactions measured
weak epistatic effects. These weak effects, rarely meaningful when
considered individually, were crucial to defining specific signatures
for many gene deletions and had a major contribution in defining
clusters of functionally related genes.

epistasis � functional genomics � genetic screen � mRNA decapping �
Saccharomyces cerevisiae

Following the completion of the genomic sequence for Sac-
charomyces cerevisiae, a systematic gene deletion library was

built as a tool to link genes to functions and phenotypes. Yet, the
phenotypic consequences of single deletions are rarely sufficient
to define the function of genes. Moreover, very little is known of
the phenotypic influences that different mutations have on each
other. A large panel of responses can be observed when com-
bining mutations, from aggravating to neutral, buffering, and
even alleviating effects. Several high-throughput genetic screen
methods, such as SGA (synthetic genetic array), dSLAM, and
SLAM (synthetic lethality analyzed by microarray) (1–3), ana-
lyze the growth defect of combining a given query mutation with
every gene deletion from the library of tagged nonessential yeast
knockouts. These approaches are useful in identifying the strong
synthetic defects that are seen for only a minor fraction of all of
the possible gene deletion pairs (�0.5%) (4). However, they are
not suited to evaluating more general buffering relationships
between genes. Yet, recent studies have demonstrated the
importance of accurate measurements of the complete spectrum
of genetic interactions to define functional gene modules (5, 6).
Broader quantitative measurements of genetic interactions are
obtained in epistatic miniarrays (E-MAPs) (5, 7) but at the
expense of coverage, because the E-MAP results depend on
high-density genetic interaction matrixes made possible by fo-
cusing on logically connected gene subsets. Here, we present a
method that we call GIM for ‘‘genetic interaction mapping,’’
which is not limited to a subset of genes, and allows sensitive and
quantitative measurements of the complete spectrum of genetic
interactions.

Double mutant populations are efficiently obtained by mating
and sporulation. The abundance of individual double mutants in

the query population relative to a reference mutant population
is analyzed on glass slide microarrays that detect and quantify the
tags marking each deletion of the library (8). Besides the strong
synthetic growth defects that could be observed in some of the
screens, GIM’s high sensitivity allowed for the detection of a
larger number of subtle, yet specific, synthetic and epistatic
interactions. These subtle effects had a major impact in defining
genetic interaction profiles when considered over the whole
range of experiments. These profiles were specific for classes of
functionally related genes and allowed functional modules to be
defined. Because GIM screens are easy to scale-up, the method
now makes possible the drawing of a complete quantitative
genetic interaction map for yeast gene deletions.

Results
Description of the Method. Our GIM strategy is described in Fig.
1. It combines features from both the SGA (1) and SLAM (2)
approaches. In the SGA method, individual mutants of the
deletion library are individually combined with the query mu-
tation by a mating and sporulation strategy. In the GIM method,
the double mutants are also generated by mating and sporulation
but in a single pool combining all nonessential gene deletions of
the collection. In addition, the selection of the haploid double
mutants is performed in rich liquid medium in a single step, using
a novel haploid-specific marker that allows for the simultaneous
selection of the query mutation and of haploid cells. This marker
was developed after testing several promoters of genes specifi-
cally expressed in haploid cells. We observed that strong pro-
moters, such as those of the MFA1/YDR461W or MF�1/
YPL187W genes, conferred very poor selectivity for haploid cells
in association with the nourseothricin antibiotic resistance gene,
NatR (nat1, GenBank gi:300195; data not shown). In contrast,
the weak MF(ALPHA)2/YGL089C promoter (prMF�2) allowed
excellent selectivity for MAT� haploid cells when associated with
NatR [see supporting information (SI) Fig. S1 A]. The query
mutation strains can be easily obtained by homologous recom-
bination replacement of the KanR cassette with the new
prMF�2-NatR cassette in any MAT� strain from the systematic
deletion collection (see Fig. S1B). After selection of the diploids,
sporulation is performed in batch. Haploid double mutants are
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selected and grown in a single pool for a controlled number of
generations in rich liquid medium containing nourseothricin and
geneticin. The SLAM and dSLAM methods also work with
double mutant pools but require high-efficiency transformation/
recombination to introduce the query mutation in the library
and double mutants are selected on plates, not allowing a strict
control of the number of cell divisions. To detect subtle fitness
defects, we chose to perform competitive growth of the double
mutants for a relatively large number of generations (18 dou-
blings). Although the cultures of the pools can be conducted by
successive dilutions, better reproducibility and sensitivity were

obtained when the cultures were performed at a constant cell
density by continuous dilution using a multiple microfermenter
battery (9).

Similarly to the SLAM approach, the estimation of the
individual double mutants’ relative growth rates was performed
by using bar-code DNA microarrays. DNA regions encompass-
ing the deletion-specific tags were amplified by PCR from the
cultures and quantified in comparison with the tags amplified
from a reference population (see Fig. 1 and SI Methods). The
intensity of the signal measured on microarrays for each double
mutant in the query population, when compared with a refer-
ence population, allowed an estimation of the relative proportion
of cells of a given double mutant in each population after 18
doublings of competitive growth. Normalized results are ex-
pressed as log2(Q/R) where Q represents the signal intensities of
the tags marking a given mutant when combined with the query
mutation and R the signal from the same mutant when intro-
duced in a reference strain (see SI Methods). In each screen, two
reference experiments with one or two different control dele-
tions (ymr326c�, yfr057w�, or yel068c�) were generated in
parallel to the query populations by submitting reference strains
to an identical procedure. To validate their neutrality, we used
each reference deletion as a query mutation in GIM screens and
verified that the log2(Q/R) value was never �1 (Fig. S1C).

Identification of Novel Factors Interfering with mRNA Decapping. To
illustrate the sensitivity and reproducibility of the GIM screens,
the results of a typical experiment, performed by using the
deletion of EDC3 (an enhancer of mRNA decapping) as a query
mutation, are shown in Fig. 2. The deletion of EDC3 was
previously shown to be synthetic lethal at 30°C with double
mutants of genes involved in mRNA decapping and degradation
(dcp1-2 ski3� or dcp2-7 ski8�). Critically diminished decapping
activity in these mutant combinations correlates with a cellular
growth defect (10). The presence of EDC3 is also essential for
decapping mediated autoregulation mechanisms that control the
levels of the RPS28B mRNA (11) and YRA1 pre-mRNA (12).

To have a global view of the results obtained in an edc3�
screen, we plotted the log2(Q/R) of every double mutant in
relation to the genomic position of the deleted prey ORFs (Fig.
S1D). For a robust estimation of the values, two reference
deletions were used in independent hybridizations for most
experiments. In addition, for most of the query mutations, the
experiments were performed twice independently. The values
obtained in these two independent experiments were highly
correlated, indicating good reproducibility of the GIM screens
(see Fig. 2 A for an example).

To estimate how the log2(Q/R) correlate with visible growth
defects, the double mutants showing the strongest synthetic
effects in our screens with edc3� were tested individually on
plates (Fig. 2B). Only the double mutants with the strongest
log2(Q/R) exhibited a visible phenotype. We also tested the
edc3� rps28a� double mutant that exhibited the lowest
log2(Q/R) value (�2.5) and found that edc3� partially sup-
pressed the slow growth phenotype induced by rps28a�, as
expected (11).

Synthetic growth defects such as those measured for edc3�
lsm12� or edc3� pbp4� were thus too weak to be readily discernible
on plates, yet they appeared to be reproducible. To test reciprocity,
we performed screens with the newly identified gene deletions as
query mutations. Fig. 2C shows the results of the experiment
performed with an lsm12� query strain. The overall amplitude of
genetic interactions observed with lsm12� was weak when com-
pared with the edc3� screens. Strikingly, edc3� and the deletion of
the adjacent dubious ORF YEL014W (called edc3�* because it
consists of a deletion of the 3� UTR of EDC3 and always behaved
similarly to edc3� in the screens) exhibited the strongest synthetic
growth defects [lowest log2(Q/R) values] with lsm12�. Interest-
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Fig. 1. The genetic interaction mapping (GIM) method. (A) The generated
double-mutant haploid strains contain the resistance markers and the oligo-
nucleotide tags for the query gene deletion and for a gene deletion from the
collection. (B) Schematics of the GIM method. For every screen, two experi-
ments are run in parallel, one with the query gene deletion strain and another
with a reference deletion. Reference deletions were chosen to affect dubious
ORFs, for which no significant effect on growth has been observed, either
alone or in combination with any other deletion (see Fig. S1C). The query and
reference deletions are tagged with a haploid-specific nourseothricin resis-
tance marker. The strains are transformed with a plasmid that bears a hygro-
mycin resistance cassette for diploids selection. Each of these strains is then
mated with a pool of strains containing all of the viable strains from the MATa
haploid gene deletion collection. The diploids are selected by using hygro-
mycin and kanamycin resistance. Following sporulation of the heterozygous
diploids, the MAT� double mutant spores are selected and grown for �18
generations in rich liquid medium (YPD) containing nourseothricin and ge-
neticin. Cells are collected and the tags marking the deletions of the pool are
amplified by PCR and labeled with Cy3 or Cy5. Microarrays are used to measure
the relative abundance of double mutants within the query versus the refer-
ence populations.
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ingly, pbp1�, which exhibited a synthetic growth defect when
combined with edc3�, showed a strong positive log2(Q/R) value in
combination with lsm12�. Lsm12 and Pbp1 were recently shown to
physically interact (13). The positive genetic interaction observed
between pbp1� and lsm12� is thus likely to illustrate the epistatic
interactions observed between mutants affecting proteins of the
same complex (5). Indeed, the growth defect induced by a mutation
can be masked by the growth defect of the query mutation (or vice
versa). Because the query and reference populations are not grown
for the same period but for the same number of doublings, epistatic
(buffering) interactions result in positive values in the screens (for
an example and explanations of this effect, see Fig. S2). Positive
values thus correspond to either epistatic (buffering) or suppressive
(alleviating) interactions.

The results of screens performed with other deletions that
showed synthetic growth defects with edc3� (scd6�, edc1�,
pbp1�, and pbp4�) as query mutations are summarized in a
matrix (Fig. 2D; see also Fig. S3), which is symmetrical, dem-
onstrating the reciprocity of the interactions. From all of these
observations, we conclude that our approach is simple, is very
sensitive, and can measure not only strong synthetic growth
defects but also weak genetic interactions.

Functional Validation of Synthetic Interactions. The above results
identified new genetic interactions between EDC3 and SCD6,

PBP1, LSM12, PBP4, and EDC1. With the exception of Pbp4, the
other proteins, Scd6/Lsm13, Lsm12, Pbp1, and Edc3/Lsm16,
share a common Lsm (like Sm) domain (14) thought to mark
their involvement in RNA processing (15). Edc1 was previously
described as an enhancer of decapping, like Edc3 (16).

To identify protein associated with Scd6, we performed both
a two-hybrid screen and a tandem affinity purification (17)
experiment. In agreement with the newly identified genetic
interactions, Scd6 was found to be associated with different
factors involved in mRNA decapping: Edc3, Dcp1, Dcp2, and
Dhh1 (Fig. S4A and Table S1; for a summary of the interactions
from this work and the literature, see Fig. 3A). Scd6 also
colocalizes with the decapping factor Dcp2 within P bodies (18).
These observations suggest the appealing hypothesis that the
wild-type growth of the edc3� strain is due to the redundant
function of Scd6 and not to a minor role of Edc3 in mRNA decay,
as previously suggested (10).

A prediction of this hypothesis is that the growth impairment
observed in the edc3� scd6� double mutant is accompanied by
a strong defect in mRNA decapping. To test this prediction, we
used the unstable MFA2 mRNA marked with an oligo(G) tract
(MFA2pG) under the control of a galactose inducible promoter
(19). The absence of the small pG intermediate RNA in the
experiment performed with the edc3� scd6� strain compared
with the wild type or the corresponding single mutants (Fig. 3B)
indicated that the 5� to 3� degradation pathway was impaired in
this double mutant. Analysis of the full-length transcripts indi-
cated that deadenylation proceeded normally but the deadeny-
lated form accumulated in the edc3� scd6� double mutant (Fig.
S4 B and C), excluding the hypothesis of an enhanced 3� to 5�
decay. Altogether, these results are fully consistent with the
hypothesis that Scd6 affects, directly or indirectly, the 5� to 3�
mRNA degradation pathway.

As for Scd6, the Pbp1, Lsm12, or Pbp4 factors had not been
previously linked to mRNA decapping. Pbp1, Pbp4, and Lsm12
were recently found to be part of the same complex (13). We
focused our analysis on PBP1, which showed the strongest
synthetic growth defect with edc3�. In contrast to edc3� scd6�,
the synthetic growth defect observed when combining edc3�
with pbp1� was not correlated with strong changes in MFA2pG
mRNA degradation (Fig. S4D). In addition, Pbp1-eGFP did not
accumulate in cytoplasmic foci upon glucose deprivation (data
not shown). To investigate whether the observed genetic inter-
action between edc3� and pbp1� is nevertheless linked to the
decapping function of Edc3, we tested whether the depletion of
Pbp1 exhibited a synthetic growth defect with a dcp1-2 mutant.
Such an effect is expected to be enhanced in a ski8� background
[impairment of the cytoplasmic exosome activity (20)] in which
a compromised decapping activity becomes rate-limiting for
growth. As a control, and in agreement with previous reports
(10), repression of EDC3 in this genetic context resulted in
growth impairment (Fig. 3C Left). Pbp1 was toxic when over-
expressed. Nevertheless, when the weak TetO2 promoter was
used at 25°C, repression of PBP1 upon addition of doxycycline
resulted in further growth inhibition in the presence of the
dcp1-2 mutation (Fig. 3C Right). Thus, the depletion of Pbp1 led
to a synthetic growth inhibition when combined with two inde-
pendent mutants compromised in decapping, edc3� or dcp1-2.
Pbp1 thus genetically interacts with mRNA decapping factors
and therefore may have some role, probably in association with
Lsm12 and Pbp4, in mRNA degradation. In conclusion, all of the
factors identified in the edc3� screens seem to interfere, directly
or indirectly, with mRNA turnover.

GIM as a Genome-Wide Approach. We conducted 73 screens per-
formed with 41 different query mutations (32 duplicates) chosen
within genes involved in several RNA metabolism pathways. Of
the 4,821 strains initially present in the pool, 3,812 exhibited a
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Fig. 2. Reproducibility and sensitivity of GIM. (A) Comparison of two inde-
pendent screens with edc3� as a query mutation and ymr326c� as a reference.
Arrows point to the values obtained for mutants that were subsequently
tested on plates. (B) Plate assays for double deletions with edc3�. Dilution
series of sporulated cultures of double mutants obtained by combining either
the query mutation edc3�::prMF�2NatR (arrowhead) or the control mutation
ymr326c�::prMF�2NatR (asterisk) and the indicated deletions (‘‘Control’’ rep-
resents the deletion of YEL068C, another reference). Cultures were grown
at 23°C on rich medium containing geneticin and nourseothricin. The deletion
of the dubious ORF YPR130C was called ‘‘scd6�*’’ because it overlaps the
scd6� deletion and thus constitutes an independent mutation of SCD6. (C) As
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signal-to-noise ratio above background in more than half of the
experiments (see Dataset S1 and SI Methods). We improved the
direct genetic interaction results by introducing a synthetic
growth defect (SGD) score that introduces, in addition to the
direct log2(Q/R) value, parameters reflecting the specificity of
the interaction, both within a single experiment (kurtosis of the
log2 values and rank within a given screen) and within the whole
dataset [median of the log2(Q/R) for a given target deletion in
all screens]. The SGD score was computed as the linear com-
bination of these values, where their respective weights were
optimized based on a logistic regression model with a manually
selected list of specific interactions as target (Dataset S2; and see
SI Methods). We arbitrarily defined three threshold values, 6.5,
5, and 3.5 times the standard deviation of the SGD scores,
corresponding to high (176 pairs; 182 pairs including the recip-
rocal interactions—176/182), medium (258/265), and lower con-
fidence (622/634) categories (Dataset S3). The performance of
the SGD scores was compared with the similar measures from
a recent extensive quantitative study of epistasis conducted in
matrix (E-MAP) (5). We tested 41 query mutations against 3,812
target mutations, giving rise to �140,000 reproducible measure-
ments, whereas in the largest E-MAP published set, 745 mutants
were tested, generating data for �150,000 double mutants. Thus,
although they have different structures, both series of data are
of comparable size. 1,972 pairs of deletions were tested in both
datasets and had both an SGD and E-MAP score (Fig. 4A). The
two sets of data were found to be very highly correlated (P �
10�15; Kendall correlation test), thus providing independent
validation of our method on a large scale. For a few cases with
strong or medium SGD scores but not selected by the E-MAP
screens, an aggravating phenotype could be observed for the
mutant combinations on plates (see Fig. S5A for examples).
Note, however, that some discrepancies between the results

obtained with the two methods can result from differences
between growth conditions (mid-log liquid medium versus
growth on plates). In addition, pairs with weaker SGD scores
might not exhibit a detectable phenotype on plates, as shown in
Fig. 2 A and B. Reproducibility of the screens was also assessed
by the good correlation of values obtained for reciprocal pairs,
when available (Fig. S5B and Dataset S1). We conclude that
large-scale GIM screens give reliable and sensitive estimates of
synthetic growth effects.

Genetic Interaction Profiles Provide Specific Functional Signatures.
One of the recurrent features of the screens was the presence of
a relatively large number of both negative and positive log2(Q/R)
values, representing aggravating and buffering (or alleviating)
effects, respectively. The GIM technique is thus sensitive to
positive and negative epistasis, similarly to E-MAP, but on a
whole-genome scale. Because the assay is sensitive, a number of
target mutations exhibited weak interactions with at least some
of the query mutations, thus generating genetic interaction
profiles (GIPs) for these mutants. To what extent would two
independent mutations of the same genes exhibit similar GIPs in
our screens? Such independent mutations are already present in
the yeast deletion library because a number of deletions of
‘‘dubious’’ ORFs overlap deletions of verified ORFs. We filtered
the set of analyzed strains to retain only those deletions that
showed a log2(Q/R) with an absolute value �1 (at least 3%
change in generation time) in at least one of the performed
screens. One-fourth of the tested mutations, 1,095 target genes,
were thus selected for further analysis. This dataset contained 51
pairs of overlapping deletions. We calculated the Pearson cor-
relation coefficient of the series of log2(Q/R) values for each pair
of mutants as a measure of similarity of GIPs. Strikingly, the
correlation coefficients calculated for the overlapping deletion
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interactions between EDC3 (Left) or PBP1 (Right) and the decapping enzyme DCP2 in a cytoplasmic exosome mutant background (ski8�). EDC3 and PBP1 were
placed under the control of the doxycycline repressible TetO2 promoter (25) in ski8� or ski8�, dcp1-2 double mutants (10). After growth at 25°C, 10-fold dilution
series of cultures at the same optical density were spotted on YPD complete medium without or with doxycycline (4 �g/ml; �Dox/�Dox) and incubated at 25°C
or 30°C as indicated.
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pairs were globally shifted to very high correlation values when
compared with the complete distribution of Pearson coefficients
(Fig. 4B). Likewise, we observed very high Pearson correlation
coefficients between the GIPs of genes encoding interacting
proteins, as compiled by Collins et al. (21), confirming that
functionally connected genes have similar GIPs (Fig. 4B). We
can thus conclude that, because GIM measures weak yet repro-
ducible genetic interactions, performing the screens with 41
independent query mutations generated specific GIPs for up to
one-fourth of the tested mutations.

To what extent can these profiles be used to predict gene
function? We chose an evaluation method based on the Gene
Ontology (GO) annotations developed by Myers et al. (22) and
their ‘‘gold standard’’ set consisting of pairs of genes sharing a
common GO term (positive set) and pairs of genes that are
unlikely to share the same GO term (negative set). A relative
measure of precision can be obtained as TPs/(TPs � FPs) where
TPs and FPs represent the number of selected gene pairs found
in the positive and negative sets, respectively (true positive and
false positive pairs). To minimize the effects of some target
mutations that showed large absolute log2(Q/R) values in many
screens and were thus highly correlated despite a lack of obvious
functional link, we introduced a specificity correction factor to
generate what we call the GIP score. This score was derived from
the Pearson correlation coefficient between GIPs and favored
the correlations between profiles that were similar to only a small
number of other profiles (see SI Methods). Based on the corre-
lation with GO, we arbitrarily defined three threshold GIP score
values that distinguished high, medium, and low confidence
classes for prediction of functional association (Fig. 4C and
Dataset S4). GIP scores were found to have a considerably
higher predictive value for functional relationship between genes
than SGD scores.

Importantly, approximately one-half of the genes in the
selected GIP pairs exhibited no strong synthetic interactions in
any of the screens (they were absent from selected SGD pairs).
Analysis of the hierarchical clustering of the log2(Q/R) for the

set of 1,095 gene deletions as defined in Fig. 4B gives some clues
for explaining this observation (Fig. S6). Although some clusters
of functionally related genes were based on strong direct syn-
thetic growth defects (see Fig. S6B for an example with splicing
related genes), some highly correlated gene profiles were essen-
tially defined by epistasis [positive log2(Q/R) ratios]. Fig. S6C
shows such an example with ribosomal protein genes. In addi-
tion, some clusters of strongly correlated genes do not rest on any
strong genetic interactions but rather on the combination of
many weak effects. These weak genetic interactions did not pass
the significance threshold when taken individually yet are glo-
bally sufficiently reproducible to provide GIPs robust enough to
predict functional connections. An example of such a cluster
grouping genes involved in peroxisome function can be seen in
Fig. S6D. This example also illustrates that genes completely
unrelated to the starting query mutations are sensitive to the
approach, expanding the spectrum of functional predictions that
can be obtained with even a relatively modest number of screens.

Discussion
Several recent large-scale experiments demonstrated the power
of genetic interaction screens for function prediction when
applied at a large scale. The first approaches described, SGA (1,
4) or SLAM and dSLAM (2, 3), were applied to the complete,
unbiased mutant collection, but only relatively crude quantita-
tive fitness defects were measured. The E-MAP method (7)
added precise quantitative measurements of both aggravating
(negative) and alleviating (positive) interactions. If the E-MAP
approach proved extremely powerful in exploring defined cel-
lular pathways, it is intrinsically not designed for uncovering
unpredicted functional gene connections because its principle
imposes the limitation of the analysis to rationally selected
subsets of genes.

We describe here a simple method that allows the sensitive and
quantitative measure of a large number of aggravating and
alleviating genetic interactions. The identified strong effects
correlated very well with the results of previous screens but were
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Fig. 4. GIM provides robust, specific genetic interaction profiles that correlate with function. (A) SGD scores, centered on 0, and E-MAP scores (5) for the 1,972
pairs of deletions for which the synthetic growth defects were measured by both methods were plotted, with dotted lines indicating the arbitrarily defined
strong, medium, and weak SGD scores as well as the E-MAP threshold value for significant genetic interactions. (B) To evaluate the reproducibility of genetic
interaction profiles and their correlation with protein–protein interactions, we calculated the Pearson correlation coefficient for all of the possible 598,965 pairs
of combinations of the 1,095 selected target gene deletions. The frequency distribution of the correlation coefficients (continuous line) was compared with the
frequency distribution of a randomized set (dashed line). Subsets of pairs for known interacting proteins (21) (gray bars; ‘‘interacting pairs’’) or for deletions that
overlap (open bars; ‘‘overlapping pairs’’) showed a highly skewed distribution with most of the values having strong positive correlation (P � 10�15; �2 test). (C)
The performance of both SGD and GIP scores in predicting functional association of genes was assessed by comparison with a Gene Ontology (GO) ‘‘gold
standard’’ (22). To estimate both the coverage and the functional predictive value of the identified genetic interactions, we plotted, at different thresholds of
the two scores, precision [number of predictions found as true in the gold standard (TP, true pairs) divided by the sum of TP and the number of predictions scored
as false in the gold standard (FP)] against the number of distinct genes found in the corresponding pairs. The estimated precision and coverage of data derived
from SGD scores are shown as crosses, and data derived from correlation of genetic interaction profiles (GIP scores) are shown as filled circles. Coverage and
precision for data obtained in a large-scale (132 query mutations) SGA genetic screen (4) is shown by a diamond.
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restricted to the partners of the 41 query genes. In contrast, the
subtle effects quantified by GIM, considered over the whole
range of experiments, had a major impact in defining genetic
interaction profiles specific for functionally related hit genes.
Moreover, when using the GO gold standard to estimate the
precision of functional predictions associated with gene pairs, we
defined associations for five times more genes using the simi-
larity of GIPs than with direct synthetic interactions. This
difference is dramatically reflected by the fact that, when
compared with an SGA analysis involving 132 query mutants (4),
we report genetic interactions for about five times fewer mutants,
yet the GIP analysis allowed us to predict functional associations
for a similar number of genes at the same precision level (Fig.
4C). In conclusion, an unexpected outcome of the GIM strategy
is the crucial contribution of weak interactions in defining
functional links between genes involved in various cellular
processes, many of them unrelated to the pathways assigned to
the query genes.

When using our data in a graphical network representation,
we observed groups of genes (modules) mostly formed by GIP
interactions. Connections between modules mainly consisted of
SGD links (Fig. S7). Based on the GO terms shared by the genes
forming the modules, specific cellular processes could be as-
signed to many subnetworks. In addition to annotated factors,
many modules contained uncharacterized genes that are likely to
be connected to the same pathway. These modules are linked to
processes as various as translation, chromatin modification, and
vesicle-mediated or nucleocytoplasmic transport.

The coverage and precision of the functional links defined on
the basis of GIM results should increase by performing addi-

tional screens and using query mutations affecting different
cellular pathways. In addition, the flexibility of the GIM method
will allow a large panel of different growth conditions to be
tested extensively.

Materials and Methods
The query strains were generated starting with the mutants from the system-
atic deletion library in the MAT� background (BY4742) (8), by changing the
KanMX4 marker to the prMF�2NatR marker upon transformation with the
restriction digest of the specifically designed plasmid pGID3 (see above, SI
Methods, and Fig. S1B). The query strains were transformed with a plasmid
carrying the hygromycin resistance marker (pGID1) (23) and mated in mass
with the pooled MATa yeast deletion library (KanR). The diploids were selected
for hygromycin and kanamycin resistance. After sporulation, the MAT� dou-
ble mutants haploid cells were directly selected for combined nourseothricin
and kanamycin resistance in standard rich liquid medium (YPD; see also Fig. 1)
and grown at constant turbidity for 18 generations. Labeling of PCR products
that amplified the upstream and downstream deletion tags was performed
with Cy3 or Cy5, end-labeled oligonucleotides. Yeast glass slide oligonucleo-
tides microarrays (SLRI-Yeast-Barcode-13k; A-MEXP-714 EBI ArrayExpress)
were used to estimate the proportion of each double mutant in the screen as
compared with a screen performed in parallel with a ‘‘neutral’’ deletion
(ymr326c�, yfr057w�, or yel068c�). A detailed description of the GIM screen
protocol, data analyses, and additional protocols can be found in SI Methods
and Table S2.
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