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75255 Paris Cedex, France; and ‡School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel

Communicated by Robert J. Silbey, Massachusetts Institute of Technology, Cambridge, MA, December 22, 2007 (received for review November 14, 2007)

Subdiffusive motion of tracer particles in complex crowded environ-
ments, such as biological cells, has been shown to be widespread. This
deviation from Brownian motion is usually characterized by a sub-
linear time dependence of the mean square displacement (MSD).
However, subdiffusive behavior can stem from different microscopic
scenarios that cannot be identified solely by the MSD data. In this
article we present a theoretical framework that permits the analytical
calculation of first-passage observables (mean first-passage times,
splitting probabilities, and occupation times distributions) in disor-
dered media in any dimensions. This analysis is applied to two
representative microscopic models of subdiffusion: continuous-time
random walks with heavy tailed waiting times and diffusion on
fractals. Our results show that first-passage observables provide tools
to unambiguously discriminate between the two possible microscopic
scenarios of subdiffusion. Moreover, we suggest experiments based
on first-passage observables that could help in determining the origin
of subdiffusion in complex media, such as living cells, and discuss the
implications of anomalous transport to reaction kinetics in cells.

anomalous diffusion � cellular transport � reaction kinetics � random motion

In the past few years, subdiffusion has been observed in an
increasing number of systems (1, 2), ranging from physics (3, 4)

or geophysics (5) to biology (6, 7). In particular, living cells provide
striking examples for systems where subdiffusion has been repeat-
edly observed experimentally, either in the cytoplasm (6–9), the
nucleus (10, 11), or the plasmic membrane (12–14). However, the
microscopic origin of subdiffusion in cells is still debated, even if
believed to be caused by crowding effects in a wide sense, as
indicated by in vitro experiments (15–18).

The subdiffusive behavior significantly deviates from the usual
Gaussian solution of the simple diffusion equation, and is usually
characterized by a mean square displacement (MSD) (1) that scales
as ��r2� � t� with � � 1. Such a scaling law can be obtained from
a few models based on different underlying microscopic mecha-
nisms. Here, we focus on two possibilities (a third classical model
of subdiffusion is given by the fractional Brownian motion that
concerns processes with long-range correlations): (i) The first class
of models that we consider stems from continuous time random
walks (CTRWs) (1, 19) and their continuous limit described by
fractional diffusion equations (1, 20). The anomalous behavior in
these models originates from a heavy-tailed distribution of waiting
times (21): at each step the walker lands on a trap, where it can be
trapped for extended periods of time. When dealing with a tracer
particle, traps can be out-of-equilibrium chemical binding config-
urations (22, 23), and the waiting times are then the dissociation
times; traps can also be realized by the free cages around the tracer
in a hard sphere-like crowded environment, and the waiting times
are the life times of the cages (see Fig. 1a). (ii) Another kind of
model for subdiffusion relies on spatial inhomogeneities as exem-
plified by diffusion in deterministic or random fractals such as
critical percolation clusters (24–26). The anomalous behavior is in
this case caused by the presence of fixed obstacles (27) that create
numerous dead ends, as illustrated by De Gennes’s ‘‘ant in a
labyrinth’’ (28) (see Fig. 1b). These two scenarios can be classified

as dynamic (CTRW) and static (fractal) in the nature of the
underlying environment.

Although these two models lead to similar scaling laws for the
MSDs, their microscopic origins are intrinsically different and lead
to notable differences in other transport properties. This has strong
implications, in particular, on transport-limited reactions (29),
which will prove to have very different kinetics in the two situations.
Because most functions of a living cell are regulated by coordinated
chemical reactions that involve low concentrations of reactants
[such as transcription factors or vesicles carrying targeted proteins
(30)], and that are limited by transport, understanding the origin of
anomalous transport in cells and its impact on reaction kinetics is
an important issue.

Here, we describe and analytically calculate the following
transport-related observables, based on first-passage properties,
which allows, as shown below, discrimination between the CTRW
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Fig. 1. Two scenarios of subdiffusion for a tracer particle in crowded
environments. (a) Random walk in a dynamic crowded environment. The
tracer particle evolves in a cage whose typical life time diverges with density.
This situation can be modeled by a CTRW with power-law distributed waiting
times. (b) Random walk with static obstacles. This situation can be modeled by
a random walk on a percolation cluster.
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and fractal models and permits a quantitative analysis of the
kinetics of transport-limited reactions:

1. The first-passage time (FPT), which is the time needed for a
particle starting from site S to reach a target T for the first
time. This quantity is fundamental in the study of transport-
limited reactions (31–33), because it gives the reaction time in
the limit of perfect reaction. This quantity is also useful in
target search problems (34–39) and other physical systems
(40–42). We will be interested in both the probability density
function (PDF) of the FPT, and its first moment, the mean
FPT (MFPT).

2. The first-passage splitting probability, which is the probability to
reach a target T1 before reaching another target T2, in the case
where several targets are available. This quantity permits the
study of competitive reactions (31).

3. The occupation time before reaction, which is the time spent by
a particle at a given site T1 before reaction with a target T2. This
quantity is useful in the context of reactions occurring with a
finite probability per unit of time (43–45). We stress that the
occupation time provides a finer information on the trajectory
of the particle. In particular, the FPT is given by the sum over
all sites of the occupation time. We will be interested in both the
entire PDF of the occupation time and the mean occupation
time.

On the theoretical level, our approach permits the direct evaluation
of nontrivial first-passage characteristics of transport in disordered
media in any dimension, whereas, so far, mainly effective one-
dimensional geometries have been investigated (42). In particular,
we calculate here MFPT, splitting probabilities and occupation time
distribution of a random walk on percolation clusters, and discuss
the potential implications of these results on reaction kinetics in
living cells. These findings could lead to an experimental probing of
the microscopic origin of subdiffusion in complex media such as
living cells.

The article is organized as follows. In the first section, we set the
theoretical framework and give explicit analytical expressions of the
first-passage observables, which are summarized in Eqs. 13–15. We
then apply these results to the two above mentioned models of
subdiffusion, namely the diffusion on fractal and CTRW models. In
the second section, we discuss the relevance of these two models to
describe anomalous transport in complex media such as living cells,
and suggest experiments that could help in discriminating the
microscopic origin of subdiffusion.

Results
Theoretical Framework. By using recent techniques developed in
refs. 40, 46, and 47, we derive general analytical expressions of the
first-passage observables. We consider a Markovian random walker
moving in a bounded domain of N sites, with reflecting walls. Let
W(r, t�r�) be the propagator, i.e., the probability density to be at site
r at time t, starting from the site r� at time 0, whose evolution is
described by a master equation (48):

�W
�t

� LW [1]

with a given transition operator L. We denote by P(r, t�r�) the
probability density that the first-passage time to reach r, starting
from r�, is t. For the sake of simplicity we assume that the walker
performs symmetric jumps and that the stationary distribution is
homogeneous limt3� W(r, t�r�) � 1/N. The propagator and first-
passage time densities are known to be related through (49)

W�rT, t �rS	 � �
0

t

P�rT, t
 �rS	W�rT, t � t
 �rT	dt
 . [2]

Following ref. 40, this equation gives an exact expression for the
MFPT, provided it is finite:

�T� � N�H�rT�rT	 � H�rT�rS		 , [3]

where H is the pseudo-Green function (50) of the domain:

H�r�r
	 � �
0

�

�W�r, t �r
	 � 1/N	dt . [4]

It is also possible to compute splitting probabilities within this
framework. If the random walker can be absorbed either by a target
T1 at r1, or a target T2 at r2, a similar calculation yields:

�T� /N � P1H�r1�r1	 � P2H�r1�r2	 � H�r1�rS	 , [5]

where P1 (resp. P2) is the splitting probability to hit T1 (resp. T2)
before T2 (resp. T1), and �T� is the mean time needed to hit any of
the targets. This equation together with the similar equation
obtained by inverting 1 and 2 and the condition P1 � P2 � 1, give
a linear system of three equations for the three unknowns P1, P2,
and �T�, which can therefore be straightforwardly determined. In
particular, the splitting probability P1 reads:

P1 �
H1s � H22 � H2s � H12

H11 � H22 � 2H12
[6]

where we used the notation Hij � H(ri�rj). This formula extends a
previous result (46, 47) obtained for simple random walks in the
case of general Markov processes.

Beyond their own interest, the splitting probabilities allow us to
obtain the entire distribution of the occupation time (45) Ni at site
i for general Markov processes. Denoting Pij(i�S) the splitting
probability to reach i before j, starting from S, we have P(Ni � 0) �
PiT(T�S), and for k � 1:

P�Ni � k	 � E1E2�1 � E2	
k�1, [7]

where

E1 � PiT�i�S	 �
HiS � HTT � HST � HiT

Hii � HTT � 2HiT
, [8]

and E2 is the probability to reach T starting from i without ever
returning to i, which reads (45):

E2 �
1

Hii � HTT � 2HiT
. [9]

In particular, the mean occupation time is then given by

�Ni� � HiS � HiT � HTT � HST. [10]

We stress that Eq. 7 gives the exact distribution of the occupation
time for all regimes. It follows in particular that the large time
asymptotics of the occupation time distribution is exponential.
Actually one can argue in the general case that the FPT is also
exponentially distributed at long times. This comes from the fact
that the transition operator L has a strictly negative discrete
spectrum for a finite volume N (see ref. 48).

Eqs. 3, 6, and 10 give exact expressions of the first-passage
observables as functions of the pseudo-Green function H. The key
point is that, as shown in ref. 40, H can be satisfactorily approxi-
mated by its infinite space limit, which is precisely the usual Green
function G0:

H�r�r
	 � G0�r�r
	 � �
0

�

W0�r, t �r
	dt , [11]
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where W0 is the infinite space propagator. Following ref. 40, we
assume that the problem is scale invariant and we use for W0 the
standard scaling (24):

W0�r, t �r
	 � t�df/dw�� �ri � r
 �
t1/dw 	 , [12]

where the fractal dimension df characterizes the accessible volume
Vr � rdf within a sphere of radius r, and the walk dimension dw
characterizes the distance r � t1/dw covered by a random walker in
a given time t. The form (Eq. 12) ensures the normalization of W0
by integration over the whole fractal set. Note that the MSD is then
given by ��r2� � t� with � � 2/dw. A derivation given in ref. 40 then
allows us to extract the scaling of the pseudo-Green function H, and
eventually yields for the MFPT:

�T� � 

N�A � Br dw�df	 for dw � df

N�A � B ln r	 for dw � df

BNrdw�df for dw � df

[13]

where explicit expressions of A and B are given in ref. 40. We stress
that, in the case of compact exploration (dw 
 df), the MFPT
depends on a single constant B. Indeed, the constant A introduced
in ref. 40 can be shown to be actually 0 in this case of compact
exploration in scale invariant media. In fact, the previous analysis
of the pseudo-Green functions also permits us to obtain explicit
expressions of the splitting probabilities and mean occupation
times:

P1 � 

A � B�r1S

dw�df � r2S
dw�df � r12

dw�df	

2�A � Br12
dw�df	

for dw � df

A � B ln�r2Sr12/r1S	

2�A � B ln�r12		
for dw � df

1
2

��r2S/r12	
dw�df � �r1S/r12	

dw�df � 1	 for dw � df,

[14]

and

�Ni� � 

A � B�r iS

dw�df � r iT
dw�df � rST

dw�df	 for dw � df

A � B ln�r iTrST/r iS	 for dw � df,

B�r iT
dw�df � rST

dw�df � r iS
dw�df	 for dw � df,

[15]

where rij � �ri � rj� is different from 0. Note that the entire
distribution of Ni is obtained similarly by estimating E1 and E2 as
defined by Eqs. 8 and 9. Strikingly, the constants A and B do not
depend on the confining domain and can be written solely in terms
of the infinite space scaling function �. We point out that in the case
of compact exploration the expression of the splitting probability is
fully explicit and does not depend on �. Eqs. 13–15 therefore
elucidate the dependence of the first-passage observables on the
geometric parameters of the problem, and constitute the central
theoretical result of this article. We discuss the implications of these
results on explicit examples in the next paragraph.

Diffusion on Fractal Model. Critical percolation clusters (see Fig. 1b)
constitute a representative example of random fractals (24, 25, 51).
Here, we consider the case of bond percolation, where the bonds
connecting the sites of a regular lattice of the d–dimensional space
are present with probability p. The ensemble of points connected by
bonds is called a cluster. If p is above the percolation threshold pc,
an infinite cluster exists. If p � pc, this infinite cluster is a random

fractal characterized by its fractal dimension df. We consider a
nearest-neighbor random walk on such a critical percolation cluster,
with the so-called ‘‘blind ant (49)’’ dynamics: on arrival at a given
site s, the walker attempts to move to one of the adjacent sites on
the original lattice with equal probability. If the link corresponding
to this move does not exist, the walker remains at site s. This walk
is characterized by the walk dimension dw. In the example of the
three-dimensional cubic lattice, one has df � 2.58 . . . , and dw �
3.88. . . (25) and the motion is subdiffusive with � � 2/dw � 0.51. For
a given critical percolation cluster, namely, for a given configuration
of the disorder, the theoretical development of previous paragraph
holds, and the first-passage observables are given by the exact
expressions (Eqs. 3, 6, and 10). However, the variations between
different realizations of the disorder have to be taken into account,
and averaging has to be performed to obtain meaningful quantities.
It is shown in Materials and Methods that expressions 3, 6, and 10
actually still hold after disorder averaging.

Fig. 2 shows that the simulations fit very well the expected scaling.
Both the volume dependence and the source–target distance
dependence are faithfully reproduced by our theoretical expres-
sions, as shown by the data collapse of the numerical simulations.

If the bond concentration p is above the percolation threshold pc,
a correlation length 	�(p � pc)�
 appears, where 
 � 0.87 for d �
3. At length scales smaller than 	, the percolation cluster is fractal,
with the same fractal dimension df as the critical percolation cluster,
and diffusion is anomalous. At length scales larger than 	, the fractal
dimension of the percolation cluster recovers the space dimension
d and diffusion is normal (24).

Along the lines of the previous section, we thus expect the
pseudo-Green function H to scale as rdw�df for r � 	, and as rd�2 for
r 
 	. More explicitly, on the example of the MFPT, we expect for
the three-dimensional cubic lattice

�T� � � BNr1.36. . . for r � 	

N�A
 � B
 /r	 for r � 	
[16]

Similarly, the other first-passage observables display a cross-over
between these two regimes around 	. The simulations do show very
well the transition between the two regimes (see Fig. 2d).

CTRW Model. The CTRW is not necessarily Markovian, unlike the
fractal case, and therefore the methodology above cannot be
applied directly. The distribution of the FPT for CTRWs was
however obtained recently in ref. 52. We here briefly recall these
results, and derive analytical expressions of the other observables.
The CTRW is a standard random walk with random waiting times,
drawn from a PDF �(t). The CTRW model has a normal diffusive
behavior if the mean waiting time is finite. For heavy-tailed
distributions such that

��t	 �
�
�

��1 � �	t1�� for t 


 , [17]

the mean waiting time diverges for � � 1 and the walk is subdif-
fusive since the MSD scales like ��r2� � t� with � � � (see refs. 1
and 3). Here, 
 is a characteristic time in the process. We focus on
the representative case of a one-sided Levy stable distribution (49)
�(t), which satisfies Eq. 17 and whose Laplace transform is �̂(u) �
exp(�
� u�) (0 � � � 1).

We now derive the relation between the FPT to the site rT,
starting from rS for the standard discrete-time random walk and
the CTRW. Denoting �(t) the probability density of the FPT for the
CTRW, and Q(n) the probability density of the FPT for the
discrete-time random walk, n being the number of steps, one has
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��t	 � 

n�1

�

Q�n	�n�t	, [18]

which is conveniently rewritten after Laplace transformation as

�̂�u	 � Q̂�e�n
�u�
	, [19]

where Q̂(z) � ¥n�1
� Q(n)zn is the generating function of the

discrete-time random walk.
Several comments are in order. (i) The small u limit shows that

the MFPT is infinite, and the long-time behavior of �(t) is directly
related to the MFPT of the discrete-time simple random walk:

��t	 �
�
�

��1 � �	t1�� �n�. [20]

It should be noted that as soon as Q̂(z) is exactly known (such as for
d � 3 in the large N limit; see ref. 52), the entire distribution of the
FPT can be obtained. (ii) Because splitting probabilities are time-
independent quantities, they are exactly identical for CTRW and

standard discrete-time random walks, and are therefore given by
Eq. 14 with the space dimension d and the walk dimension dw � 2.
(iii) The same decomposition as Eqs. 18 and 19 holds for the
distribution �i(ti) of the occupation time ti of site i, where the
distribution of the occupation time F(Ni) for the discrete-time
random walk has to be introduced. This yields

�i�t	 �
�
�

��1 � �	t1�� �Ni� . [21]

Interestingly, as F(Ni) is explicitly given by Eq. 7, the entire
distribution of the occupation time can be derived.

We emphasize that a proper definition of the mean values of the
first-passage observables (namely the MFPT and the mean occu-
pation time) is provided by introducing a truncated distribution
(with cutoff tc) of waiting times in place of �(t). Because this allows
the definition of a mean waiting time 
m � C �0

tc t�(t)dt (where C
normalizes the truncated PDF), the MFPT is then given by �T� �

m�n�, and the mean occupation time reads �ti� � 
m �Ni�.

Note that our results show that the first-passage observables scale
with the geometric parameters N and r exactly as a simple random
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Fig. 2. Numerical simulation of first-passage observables for random walks on three-dimensional percolation clusters. All of the embedding domains have
reflecting boundary conditions. (a) MFPT for random walks on 3-dimensional critical percolation clusters. For each size of the confining domain, the MFPT,
normalized by the number of sites N, is averaged both over the different target and starting points separated by the corresponding chemical distance, and over
percolation clusters. The black plain curve corresponds to the prediction of Eq. 15 with dw

c � dc
f � 1. (b) Splitting probability for random walks on 3-dimensional

critical percolation clusters. The splitting probability P1 to reach the target T1 before the target T2 is averaged both over the different target points T2 and over
the percolation clusters. The chemical distance ST1 � 10 is fixed whereas the chemical distance ST2 � T1T2 is varied. The black plain curve corresponds to the explicit
theoretical expression 14 with dw

c � df
c � 1. (c) Occupation time for random walks on critical percolation clusters. For each size of confining domain, the

occupation time of site T1 before the target T2 is reached for the first time is averaged over the different target points T2 and over the percolation clusters. The
chemical distance ST1 � 10 is fixed whereas the chemical distance ST2 � T1T2 is varied. The black plain curve corresponds to the prediction of Eq. 15 with dw

c �

df
c � 1. (d) The MFPT for random walks on percolation clusters above criticality for a 25 � 25 � 25 confining domain. The MFPT, normalized by the number of

sites N, is averaged both over the different target and starting points separated by the corresponding chemical distance, and over the percolation clusters.
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walk. Their scaling dependence is therefore given by Eqs. 13–15,
where df is the space dimension d and dw � 2.

Discussion
We first discuss the relevance of the two models, CTRW and
diffusion, on fractals to describe anomalous transport in confined
systems such as the cytoplasm and membrane of living cells. The cell
is known to be a highly complex and inhomogeneous molecular
assembly, composed of numerous constituents that may vary widely
from one cell type to another. Here, we wish to distinguish between
two types of effects on transport in cellular medium. First, the
overall density of free proteins and molecular aggregates is very
high, be it in the cytoplasm or in the plasma membrane. In such a
crowded environment, a tracer particle is trapped in dynamic
‘‘cages’’ whose life times are broadly distributed at high densities
and leading to Eq. 17. This dynamic picture therefore fits the
hypothesis of the CTRW model. Second, the cytoskeleton is made
of semiflexible polymeric filaments (such as F-actin or microtu-
bules) that can be branched and cross-linked by proteins. This
scaffold therefore acts as fixed obstacle constraining the motion of
the tracer. Moreover, the cytoplasm can be compartmentalized by
lipid membranes that further constrain the tracer. Such environ-
ment with obstacles can be described in a first approximation by a
static percolation cluster. How could one discriminate between
these two mechanisms having markedly different physical origins?

The first-passage observables derived earlier make it possible to
distinguish between the two models of subdiffusion, as summarized
in Table 1. (i) The first-passage time has a finite mean and
exponential tail for the fractal model, whereas it has an infinite
mean and a power-law tail in a CTRW model. Analyzing the tail of
the distribution of the FPT therefore provides a first tool to
distinguish the two models. Because experiments can only find the
first-passage up to a certain time, we need to use the above-
mentioned truncated means to define the MFPT for CTRW. In this
case, the scaling of the MFPT for CTRW with the source–target
distance is the same as for a simple random walk, and can be
distinguished from the scaling of the MFPT on random fractals.
These two scalings are strikingly different for d � 3: the CTRW
performs a noncompact exploration of space (dw � 2 � 3 � d)
leading to a finite limit of the MFPT at large source–target distance,
whereas exploration is compact for a random walker on the
percolation cluster (dw 
 df) leading to a scaling � rdw�df of the
MFPT. We highlight that this feature could have very strong

implications on reaction kinetics in cells. Indeed, in the cases where
the fractal description of the cell environment is relevant, our
results show that reaction times crucially depend on the source–
target distance r. The biological importance of such dependence on
the starting point was recently emphasized in ref. 39 on the example
of gene colocalization. However, when the CTRW description of
transport is valid, reaction times do not depend on the starting point
at large distance r. (ii) The splitting probabilities for the CTRW
model and for the fractal models have different scalings with the
distance between the source and the targets. As mentioned previ-
ously the difference is more pronounced for d � 3: the probability
to reach the furthest target T2 vanishes as r�(dw�df) for the fractal
model, r being the distance ST1 with the notations of Fig. 3, but it
tends to a constant for d � 3 according to the CTRW model. As
discussed earlier, this could have important consequences for the
kinetics of competitive reactions in cells. (iii) As for the occupation
time, both its distribution and the scaling of the conditional mean
with the distances ST1 and ST2 can be used to distinguish between
models. The advantage of the mean occupation time is that it can
still discriminate between the models after averaging over initial
conditions, and could therefore be used even with a concentration
of tracers.

We now briefly discuss potential experimental utilizations of
first-passage observables. The schematic setup that we propose to
measure these observables relies on single-particle tracking tech-
niques (see Fig. 3). We consider a single tracer, either a fluorescent
particle or a nanocrystal, moving in a finite volume such as a living
cell, a microfluidic chamber, or vesicle. A laser excitation defines
the starting zone S. As soon as the tracer enters S a signal is detected
and a clock is started. Similarly, a second laser excitation defines the
target zone T1 and allows the measurement of the FPT of the tracer
at T1. In the same way, a third laser can detect a second target T2:
counting the time spent by the tracer in T2 before reaching T1 gives
exactly the occupation time. Splitting probabilities are straightfor-
wardly deduced.

Finally, this theoretical framework can be extended to cover
more realistic situations. First, subdiffusion could result in some
systems from a combination of both the dynamic (CTRW) and
static (diffusion on fractal) mechanisms. Interestingly, our ap-
proach can be adapted to study the example of CTRWs on a fractal
that models such situations (54). Indeed, the same decomposition
as in Eq. 18 holds in this case and shows that the dependence of the
first-passage observables (defined with truncated means if needed)
on the source–target distance is exactly the same as in the case of
a standard discrete-time random walk on the fractal, and therefore
gives access to the dimensions dw and df of the fractal. In turn, the
tail of the distribution of the FPT is in this case reminiscent of the
single-step waiting time distribution defining the CTRW as shown
by Eq. 20 (see also ref. 54). First-passage observables therefore
permit us, in principle, to isolate and characterize each of the
CTRW and fractal mechanisms even when they are both involved
simultaneously. Second, in various systems subdiffusion occurs over
a given time scale or length scale, crossing over to the regular
diffusive behavior. Both models can be adapted to capture this
effect. In the fractal model the fractal structure persists up to the
cross-over length scale (which is the correlation length 	 in perco-

S

T

T1

2

Fig. 3. Schematic proposed set-up to measure first-passage observables.

Table 1. Comparison of first-passage observables for CTRW and fractal models for d � 3

First-passage observable CTRW model Fractal model

FPT distribution � 1/t��1 � e�Ct

(Conditional) mean FPT � N (1 � C/r) � CNr�

Splitting probability P1 �
1 � C�r1S

�1 � r2S
�1 � r12

�1	

2�1 � Cr12
�1	

�
1
2

��r2S/r12	
� � �r1S/r12	

� � 1	

(Conditional) mean occupation time �N1� of site T1 �1�C(r1S
�1 � r1T

�1 � rST
�1

) �C(r1T
� � rST

� � r1S
� )

For the cubic lattice � � 1.3. C is a constant to be redefined on each panel.
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lation clusters above criticality), and the waiting time distribution
for the CTRW model has a Levy-like decay until the cross-over time
scale, after which the decay is faster so that the mean waiting time
becomes finite. The MFPT will exist in both of these modified
models, but the CTRW model leads to a normal scaling of the
MFPT with the volume and the source–target distance: namely, it
corresponds to the results of the simple random walk, with the same
time step as the mean waiting time. However, a truncated fractal
structure would lead to the same scaling on larger scales, but to a
scaling as in Eq. 15 at smaller scales. The small-distance behavior
of the MFPT can thus discriminate the two models. The same
conclusion holds for the splitting probabilities and occupation
times: the small-length behavior will also differ.

Our approach therefore permits us to explore the scaling of
first-passage observables for two representative models of subdif-
fusion as a methodology to discriminate between underlying mech-
anisms for subdiffusion and to gain insight into the microscopic
origin of subdiffusion and the nature of transport-limited reactions
in complex systems.

Materials and Methods
Disorder Average in the Diffusion on Fractal Model. We will denote by X� the
average of X over the disorder, and assume that all configurations have the same
volume N, which is a nonrestrictive condition in the large N limit since N is
self-averaging. Eqs. 3, 6, and 10 then show that averaging the first-passage

observablesamounts toaveragingthepseudo-Greenfunction,andtherefore the
propagator invirtueofEq.4. In thecaseofarandomwalkonacriticalpercolation
cluster it has been shown that the propagator has a multifractal behavior (25).
This means that the propagator W(r, t) has a very broad distribution, and is not
self-averaging: its typicalvalue isnot itsaveragevalue,which isdominatedbyrare
events. In particular, a scaling form of the averaged propagator is not available.
However, this difficulty can be bypassed if one considers the chemical distance x,
i.e., the step length of the shortest path between two points. Indeed, in the
chemical space, the propagator does have a simple fractal scaling (25, 51) and in
the infinite volume limit the averaged propagator W� 0(x, t) satisfies the scaling
form 12 (see ref. 25). Note that this property is shared by most random fractals
(25), and makes the chemical distance space a powerful tool to calculate disorder
averages. The formalism derived in the previous section can therefore be used,
andthescaling lawsof theMFPT, splittingprobability,andmeanoccupationtime
averaged over the disorder are given in chemical space by Eqs. 13-15, where r is
to be replaced by the chemical distance x. Note that, in the chemical space, the
fractaldimension isgivenbydf

c �df /dmin andwalkdimension isdw
c �dw /dmin.The

dimension dmin is the fractal dimension of chemical paths and permits us to
recover the dependence on the Euclidian distance r through the scaling (24) x �
rdmin, with dmin � 1.24 in the case of the three-dimensional cubic lattice (24).

These scaling laws for the first-passage observables can be tested numerically.
We simulated in Fig. 2 several critical percolation clusters on the three-
dimensional cubic lattice embedded in the confining domain, and we averaged
for each set of chemical distances {xij} the desired observable over all configura-
tions of source and targets yielding the same set {xij}.
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