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Abstract

We demonstrate a time-lapse video approach that allows rapid examination of the spatio-temporal
dynamics of Dictyostelium cell populations. Quantitative information was gathered by sampling life
histories of more than 2,000 mutant clones from a large mutagenesis collection. Approximately 4%
of the clonal lines showed a mutant phenotype at one stage. Many of these could be ordered by
clustering into functional groups. The dataset allows one to search and retrieve movies on a gene-

by-gene and phenotype-by-phenotype basis.

Background

Spatially and temporally evolving collective dynamics act crit-
ically to coordinate multicellular development. In general,
periodic phenomena are prevalent in transcriptional regula-
tion - for example, in circadian rhythms [1], Msn transcrip-
tion factor regulation in yeast [2] and the pulsatile response
of NF-«B and p53 in tissue culture cells following stimulation
[3,4]. Oscillations seem to be a universal mode of regulation
for morphogenetic cell movements and gene transcription
that requires fine spatial and temporal coordination. Calcium
waves are observed during convergent extension in Xenopus
and are believed to coordinate cell movement [5]. In the case
of somitogenesis, where segmentation is periodic, Notch and
Wnt signaling is coupled to periodic expression of the Notch
components themselves [6,7]. It is expected that the func-
tions of molecular networks will become apparent only when
put into the context of such multicellular organization in time
and space. Biologically relevant readouts with a temporal and
spatial resolution are thus the final layer needed to connect
high-throughput genomics data obtained at the molecular

and cellular level to higher organizational and functional
levels.

A classic experimental paradigm in developmental biology
begins with a mutant phenotype and then asks which aspects
of development are altered. The goal is to relate structure to
function, first at the molecular, then the cellular, and finally
the whole-organism level. The current richness of informa-
tion for a few model organisms is testimony to the success of
this approach. With the explosion of genome sequences, it is
becoming realistic to rapidly map out relations between gen-
otype and molecular level phenotype using large-scale assays
at the level of transcription and translation. Efforts to com-
plement such bottom-up approaches by high-throughput
screens based on observational phenotypes at the cellular
level have recently been reported in yeast, nematode, and
cells in tissue culture [8]. These studies have largely concen-
trated on the analyses of cell growth, division, and morphol-
ogy, either through a growth-curve analysis of batch cultures
[9,10] or by the analysis of morphology at a single to the few
cell level by microscopy [11-15]. However, a comparable

Genome Biology 2007, 8:R144

-
o
®
e
I
o
o
-
I
4
0
8
8
[o]
>



http://genomebiology.com/2007/8/7/R144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17659086
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/info/about/charter/

R144.2 Genome Biology 2007,

Volume 8, Issue 7, Article R144 Sawai et al.

approach for a multicellular system based on quantitative
real-time dynamic data gathered throughout the entire life
cycle remains largely undeveloped.

Here we report on a first attempt in this direction with Dicty-
ostelium, where solitary growing cells cooperate upon starva-
tion to form a relatively simple and highly differentiated
fruiting body of spore and stalk cells. Pulsatile signaling of the
extracellular attractant cAMP, in addition to directing chem-
otaxis, induces the cAMP signaling components themselves
and plays a critical role in determining the size of the aggre-
gation territory [16] as well as coordinating later morphogen-
esis [17]. We demonstrate that high-throughput profiling of
multicellular dynamics detects functional association
between developmental genes. We combine collection of
movies that covers almost the entire developmental cycle
with quantitative and qualitative phenotyping based on tem-
poral data gathered from the movie collection, and parallel
genotyping of the characterized clones.

Results and discussion

Parallel cell culture and phenotyping

Cell culture was scaled up to systematically follow the growth
and development of as many as a hundred Dictyostelium
clonal populations at a time (Figure 1a). We designed a
robotic system (Figure 1b; see Materials and methods) to cap-
ture both early and later events in the morphogenetic cycle.
Figure 1c summarizes a typical experiment with our wild-type
strain, AX4. Cell-cell signaling mediated by extracellular
cAMP was visualized by detecting optical density fluctuations
that reflect cell shape change in response to passing cAMP
waves [18-20]. By 3 hours after the cells begin to develop, a
few fragments of weak optical-density waves have begun to
emerge from the background (Figure 1c, 3 hours; see also
Additional data file 1 for a movie), a characteristic feature of
self-organization in excitable systems [21]. During the next
few hours, cells show little directed movement and the cell
density is spatially uniform (Figure 1c, 5 hours). The images
were enhanced by subtracting consecutive frames (Figure 1c,
3 hours and 5 hours; right panels compared to the left; Addi-
tional data file 2). Optical density waves quickly develop spi-
ral cores, which become organizing centers for cell territories
by 6.5 hours, when territories of different sizes with aggregat-
ing streams of cells are readily apparent (Figure 1c, 6.5 hours;
see Additional data file 1). By 15 hours these territories have
become rounded masses of cells, the majority of which by 18
hours have reached the motile slug stage, each slug contain-
ing from a few thousand to around 105 cells (Figure 1c, 18
hours; Additional data file 3). By around 40 hours the slugs
have migrated and culminated to form fruiting bodies (Figure
1c, 40 hours).

The entire video clip from the first stage of our analysis can be
summarized by wavelet analysis, where wave frequency and
power spectrum are plotted as a function of time (see Materi-
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als and methods) [16]. The wavelet power spectrum (Figure
1d; z-axis in pseudocolor) represents the strength of the signal
oscillating at the specified periodicity (s) (Figure 1d; y-axis) as
the system develops in time (Figure 1d; x-axis). A typical anal-
ysis with wild-type cells is illustrated in Figure 1d. At t = 150
minutes, long-period (15 min) features have begun to emerge.
The wave period evolves slowly and smoothly to t = 275 min-
utes, levels off for 50 minutes, then abruptly switches off as
cells migrate to form well defined territories. At approxi-
mately t = 400 minutes a second long-period feature
emerges, corresponding to the cell streaming pattern seen in
Figure 1c at 6.5 hours. These results are in good agreement
with observations on wild-type cells grown under conven-
tional culture conditions [16], and provide us with a quantita-
tive summary of the first 12 hours of development.

Phenotype clustering

We have sampled 1,800 insertional mutants, hereafter
referred to as the 'unbiased set' from an ongoing large-scale
mutagenesis project [22], and 400 or so containing many pre-
viously isolated mutants (see Materials and methods). In
addition to the quantitative features just described for the
early developmental stages, qualitative features such as cell
morphology during axenic growth, slug motion/morphology
and fruiting body structure (Table 1) were obtained from the
movies and observation of the samples by microscopy. From
these features, a phenotype matrix p;;was obtained (see Mate-
rials and methods). The matrix is a digital representation of
whether or not strains exhibited aberrant behavior at each
stage of development.

In Figure 2a, the mutants have been categorized on the basis
of the phenotype matrix and using a hierarchical clustering
method [23]. Our first result is that 83% of the total number
of mutant clones (1870 of 2257) cannot be distinguished from
wild type (blue-green in Figure 2a), possibly because the
insertion is in an intergenic region, or the mutated gene exists
redundantly, or it is nonessential for growth and develop-
ment under the present conditions. The second noticeable
feature of these data is the number of strains clustered at the
bottom of Figure 2a (139 clones appearing with two or more
yellow boxes) and sparsely distributed elsewhere. Many of
these exhibited slow vegetative growth and the low cell-den-
sity effect associated with it despite multiple attempts to grow
them. This phenotype may be largely due to a systematic bias
carried over from the parent, as most of them are from the
same transformant set. After removing these clones from the
dataset, we estimate that 1 to 2% are defective in genes that,
while permitting vegetative growth on bacteria, interfere with
normal growth in axenic medium. For several mutants in this
category, we were able to confirm the observed behavior inde-
pendently by disrupting the gene by homologous recombina-
tion (data not shown). The third feature of this dataset is the
remaining strains with developmental phenotypes, repre-
senting 4% of the clones in the unbiased mutant set (76
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Automated image acquisition and phenotyping of clonal populations. (a) Over 2,000 insertional mutant clones were subjected to parallel culture and
phenotyping using the flow chart shown here. (b) The gantry robotic system. The darkfield optics are positioned below the samples, the digital camera
above. (c) Snapshots of movies from wild-type AX4 cells at representative stages of development. Images were captured every 40 sec from each well for
10.5 h after plating for a total of 800 frames. Later stages of morphogenesis were then followed for 28.5 h by bright-field illumination. During this period,
images were captured at |27-sec intervals, also for a total of 800 frames from each well. The images in the first column were obtained from a 16.8 mm x
12.6 mm area by averaging five frames taken approximately 66 msec apart for noise reduction. Successive averaged frames were then subtracted to obtain
the wave images in the second column (3 and 5 h). Bright-field optics were used for the second half of the imaging session to follow slug motion (11 h).
After the run was over, the final culminant morphology was checked under a dissecting microscope (48 h). (d) The wavelet portrait. For the first 10.5 h, a
time course of strength of the signal oscillating at the specified periodicity s was obtained from averaged wavelet transformations of pixel intensities as a
function of time (see main text for details). Wavelet power spectrum is color coded, and the slow increase in frequency, then abrupt termination, followed
by long-period features caused by cell streaming and territory formation, are indicated by arrows.

strains out of 1,799) and 32% in the previously characterized
mutant set.

Strains that exhibited almost no development, or aberrant
behavior throughout all developmental stages, are clustered
at the top of Figure 2a (expanded in Figure 2b; N = 30). This

cluster includes a group of 'developmentally null' mutants in
which genes such as mkpA, piaA, yakA and dagA are dis-
rupted. Other groups include DG1105, DG1037, DG1122 from
an earlier screen (W. Loomis, unpublished work), as well as
another group that includes the protein kinase A pathway
genes rdeA and regA (described in detail below). These
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Phenotypic characters used in the analysis

Annotated stage Wild-type features

Examples of mutant features

Growth Growth, attachment, cell size

Wave 5 min periodicity terminates at 6-7 h after starvation
Aggregation Cell streaming with or without late break up

Mound Round mounds giving rise to slugs

Slug Migration with a smooth persistent trajectory

Fruiting body Wild-type culminant structure

Slow growth, no attachment, large cells

Slow oscillations, rapid onset, early termination,

Cell clumping, partial developmental arrest, early break up
Arrest, multiple tips, disintegrating mound

Slow migration, arrested migration

Short stalk, long stalk, other aberrant morphology

Phenotype was scored subjectively by comparison of qualitative features of the strain for each stage of development shown above against those of
the parental wild-type AX4 strain. For each sample run, these characters were checked by eye from the movies and observation of the samples by
microscopy. On the basis of these features, the phenotype matrix p;; was obtained for further analyses (see Materials and methods).

mutants not only show early developmental defects, they also
continue to exhibit aberrant behavior until mound formation,
and are either stalled or show further aberrant behavior dur-
ing slug migration and culmination. The above mutant clus-
ters are followed by a cluster consisted of mutants with
similarly severe phenotype plus growth-stage defects (Figure
2¢).

Another major mutant cluster contains clones showing defec-
tive behavior at the slug and culmination stage, but wild-type
behavior during aggregation (Figure 2d). Particularly notice-
able are five mutants disrupted in tagB/C, mutations in tipA,
tipB, tipC, and tipD, and multiple occurrence of mutants with
insertions in the yelA gene and the dhkA gene. At the bottom
of Figure 2d there are strains that show aberrant behavior in
the early stage of development, but nevertheless form
mounds, then again exhibit deficient slug and fruiting-body
structure. A large number of mutants defective in early sign-
aling are also defective later in development (Figure 2d) even
though they appear to stream normally to aggregation cent-
ers. This suggests either that the gene products are used at
two or more different times during development - for exam-
ple, cAMP metabolism [24] - or that wave phenotype dictates
later aspects of morphogenesis in a way we do not yet fully
understand. Finally, some strains exhibited aberrant behav-
ior during the early signaling to aggregation stages, but no
striking phenotypes during later stages (see Additional data
file 4). These strains may be contrasted with those exhibiting
defects only at the slug stage (see Additional data file 4) or the
culmination stage (Figure 2e), such as those disrupted in the
cellulose synthase gene dcsA (Figure 2e).

We noticed that independent clones disrupted in the same
gene co-cluster, providing strong validation of our profiling
approach. In general, the developmental stages observed for
most of the published mutants examined here agree with the
literature. Mutants previously characterized as aggregation
minus fail to aggregate, and stalk-defective mutants fail to
make stalks. A caveat of the present coarse-grained represen-
tation is that similarities in the more detailed phenotypes are
not reflected in clustering. We should note that detailed phe-
notypes, such as the break up of aggregation territories seen

in chemotaxis-defective mutants of erkA [25], mekA [26] and
phdA, [27] and long stalks in dhkA [28] also agree well with
known mutant phenotypes.

However, not all of the phenotypes were consistent with the
literature. This includes V31742 from the new unbiased
mutant set carrying an insertion in dstA, a gene encoding the
STATa transcription factor, which under our assay conditions
was defective only from the slug stage on, whereas a delay ear-
lier in development has been reported [29]. There were also
some that exhibited phenotypes undocumented in the litera-
ture. For the two most conspicuous clones (disrupted in splA
and lvsB), we showed that the phenotype could not be reca-
pitulated by an independent knockout. In these cases, a sec-
ondary mutation introduced by the REMI vector is the likely
cause of the observed defects. While it is possible that some of
the differences between independent isolates are due to sub-
tle differences in cell density and the growth condition at the
outset of each experiment, we note that phenotyping was
repeated two or more times, and thus it is likely that the clus-
tering reflects either differences traceable back to mutant
gene structure or the highly plastic nature of the mutant phe-
notype (for example, tipC, modA, yelA).

Early wave features

Several wavelet parameters serve to characterize the wild-
type phenotype of early cAMP signaling. The peak of the aver-
aged wavelet power spectrum was traced, and the time of the
cessation of signaling t,,q was determined. The resulting one-
dimensional data can be clustered, yielding a group of sam-
ples that failed to exhibit normal oscillation patterns (Figure
34, and see the next section). We have done this by first plac-
ing sample runs into four groups using K-mean clustering of
the wavelet transform (see Figure 3a), then removing possible
pleiotropic effects during the growth phase by cross-verifica-
tion with the phenotype cluster. A similar analysis using
hierarchical clustering yields a continuous profile without
apparent structure or organization. The first two clusters in
Figure 3a contain samples with slight differences in the onset
that is within that observed in the wild type. The third cluster
in Figure 3a, with delayed wave-onset time, contains mostly
low-density samples, whereas samples in the last cluster
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Figure 2

Phenotypic clustering based on the timing of mutant behavior. (a) 2,257 strains were assigned phenotype vectors according to the stage-specific mutant
defect. Color indicates the phenotype index g; (see main text for details). A correlation coefficient was used as the phenotype similarity metric. Average
linkage clustering was performed on q; with zero offset. (b) Expanded view of developmentally null and other severely impaired mutant clusters. (c) Mid-
to late- stage developmental mutant cluster. The table on the right lists the corresponding V-strain IDs in addition to the dictyBase ID and gene name of
the disrupted locus. A complete dataset is provided in the form of associated array tree correlations (ATR), complete data table (CDT), gene tree
correlations (GTR) and exported raw data files (Additional Data Files 5-8). The movies and other original data can be viewed online by following the
hyperlinks provided.
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Figure 3

Early cell-cell signaling. (a) The wavelet transform was further reduced to a one-dimensional representation by tracing the peak of the averaged wavelet
power spectrum as a function of time t. The traced data were then subjected to K-mean clustering. The bottom cluster comes from experimental runs
where the normal 5-min optical-density oscillations were not detected. Other clusters are wild type with respect to signaling periodicity but are grouped
according to the difference in wave onset. The second cluster from the bottom shows large deviations in the timing and consists mainly of samples with
low cell density. (b) The frequency of the optical-density oscillations before termination is narrowly distributed and highly reproducible. (c) The wavelet
power spectrum, on the other hand, follows a log-normal distribution. (d) The number of spiral cores in an area of 2.1 cm2and (e) the time of cessation
of the periodic signaling follow a Gaussian distribution (shown as a dashed curve). (f-i) Scatter plots indicate relations between these measures that reflect
properties of the self-organizing pattern formation from random initial conditions (see main text for details). Correlation coefficients are (f) -0.20, (g) 0.05,
(h) -0.37 and (i) 0.15 respectively. Original data are provided as Additional data files 9-13.

failed to establish waves. There is a faint secondary peak
above the first peak in the wavelet portrait that signifies a
deviation from the symmetric sinusoidal form of oscillation.
Although these secondary peaks may be important to charac-
terize mutants with altered forms of oscillation, such as stmF
[30], we have confined our analysis here to the main
frequency.

On the basis of the samples that fell into the top three clusters
in Figure 3a, we sought to obtain the distribution of the cAMP
wave phenotype in order to gain insights into the underlying

self-organizing mechanism. At t = t,,4, the main frequency 1/
s = 1/s* and the peak wavelet power spectrum was extracted.
Figure 3b records the distribution of maximum frequency 1/
s* of the optical density oscillations. The maximum frequency
is narrowly distributed, with an average of 0.24/min
(standard deviation (SD) + 0.03). This is equivalent to cells
reaching approximately a 4.2-min period oscillation, in
agreement with previous studies [18,31,32]. Compared with
the tight distribution of signal frequencies, the wavelet power
spectrum follows a log-normal distribution, with mean 0.197
(SD * 0.132) (Figure 3c). Cessation of oscillations t,,4is well

Genome Biology 2007, 8:R144
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fitted by a Gaussian distribution (Figure 3e). A tight fre-
quency distribution and a broad (log-normal) amplitude dis-
tribution have also been reported recently in the p53 system
[33] and may be a widespread feature of nonlinear oscilla-
tions in cells.

The number of spiral wave cores, which is a good measure of
the number of cell territories that will later form, also follows
a Gaussian distribution (Figure 3d). This distribution is most
plausibly explained by the fact that core formation is intrinsi-
cally stochastic in nature [16,34]. It is also likely that the
observed distribution depends on sample to sample variabil-
ity in cell density which may correlate with the oscillation fre-
quency (see below), although the number of aggregation
centers is known to be relatively insensitive to cell density
above 400 cells/mmz2[35], and our experiments were carried
out at around 7,000 cells/mm?2. To exclude such complica-
tions, the data in Figure 3b-i were obtained from selected
samples exhibiting spiral wave propagation where the grow-
ing cells had reached confluence and showed no growth
defects (N = 1,639; top three clusters in Figure 3a). We
noticed that the number of aggregates exceeds the number of
spiral cores because streams tend to break up just before
aggregation completes. The extent of late stream break up
was highly variable from sample to sample, even for the same
strain, and therefore this phenotype was not considered as a
robust trait for further annotation.

Spiral wave formation is a complex phenomenon that
depends on the developmental trajectories of the cells; that is,
how the mode of signaling [36], sensitivity to the signal [16]
and Kkinetics of signaling [32] develop in time. We investi-
gated this aspect by displaying the related data as scatter plots
(Figure 3f-i). We note the following. First, when the system
develops quickly, there is a weak tendency for the oscillation
frequency to be smaller (Figure 3f). Second, there appears to
be a weak positive correlation between the amplitude and t, 4
(Figure 3g) and a negative correlation between the amplitude
and the frequency at t,, 4 (Figure 3h). Heterogeneity in the sig-
naling response has been reported at the single cell level
[37,38]. Because our analysis is based on data from groups of
cells, wavelet amplitude mainly reflects the coherence among
the cells of the periodic cytoskeletal rearrangement upon
cAMP stimulation. The data, therefore, suggest that the cells
are participating in periodic signaling more heterogeneously
when the system takes a shorter time to reach the streaming
stage, and/or when it reaches a high-frequency oscillation
state. We see that in high-frequency samples, more spiral
cores are observed (Figure 3i). From the slope, there is
roughly a fivefold increase in maximal number of spiral cores
as the frequency increases from 0.17/min to 0.25/min. This is
difficult to explain simply by scaling of the territory pattern
with wavelength alone, because one can only expect an
increase of approximately 1.5-fold. Rather, the data suggest a
causal relationship between the formation of spiral cores and
heterogeneity in cell excitability.

Genome Biology 2007, Volume 8, Issue 7, Article R144

Pulsing and slow-oscillator mutants

As described above, early-stage mutants that failed to exhibit
the typical developmental time course in optical-density
oscillations can be systematically picked up by the clustering
of the wavelet transform (Figure 3a, the bottom cluster). The
mutants detected in this way display a range of severity in sig-
naling defects. For example, V10233 (Figure 4a) is disrupted
in the piaA gene, which encodes a TOR (target of rapamycin)
complex protein that is required for the cAMP pulse-induced
activation of adenylyl cyclase [39]. Neither optical-density
waves nor signs of aggregation are visible, as expected from
the known null phenotype of piaA mutants. V10285 (DG1105;
dictyBase ID: DDB0220018) shows local pulsatile waves, and
development at this stage is prolonged (Figure 4b). V10199
(DG1037; dictyBase ID: DDB0191301) shows slow oscilla-
tions of extended duration (Figure 4c), and development
appears to be arrested during early aggregation. Owing to the
long period of the optical-density oscillations, the wavelength
of the spirals is extended, and therefore only a few spiral wave
territories appear. Finally, V10682 is able to develop after
growth and starvation on bacterial plates, but on non-nutri-
ent agar, development is delayed from early aggregation on
(Figure 4d). Optical-density wave onset is late, and wave peri-
odicity remains long and never reaches the characteristic 5-
min oscillation. The gene disrupted in this strain (dictyBase
ID: DDB0218077) encodes a protein homologous to the con-
served clc6/7 type chloride channel family protein [40].

PKA pathway mutants and optical-density waves

In contrast to the mutants described above, all of which are
strongly defective in early signaling, two strains (V10258 and
V30230) that exhibit notably altered wave and aggregation
phenotype (Figure 5b, c) are found together in the clustered
array (Figure 2b). In these mutants, waves propagate for very
short distances before annihilating when they crash into each
other. Compared with wild-type behavior (Figure 5a), peri-
odic signaling begins early in both strains, and the signaling
duration is abbreviated to 1 hour (Figure 5, magenta bar in
right panels). Cells aggregate precociously, forming small
mounds with very little evidence of streaming toward a spiral
center. Furthermore, the aggregation process is completed in
3 hours. These features are clearly seen in the wavelet analysis
(Figure 5, right panels). We note the striking similarity of the
wavelet portrait for these two strains.

Strain V30230 and V10258 carry an insertion in the regA and
rdeA genes, respectively. The regA gene encodes an intracel-
lular cAMP phosphodiesterase with a response regulator
domain at the amino terminus [41,42], and the rdeA gene
encodes the only known histidine phosphotransfer domain
protein in Dictyostelium discoideum. A biochemical study
has shown directly that a receiver domain of RdeA relays
phosphate groups to the amino-terminal response regulator
domain of RegA and that phosphodiesterase activity of RegA
is stimulated by phosphorylation of the amino-terminal
receiver domain [42]. We have recently shown that PKA
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(a) v10233
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Figure 4

Representative samples with defects in early development. The severity of the signaling phenotype ranges from the absence of optical-density waves to
delayed slow oscillations. Frame-subtracted images at t = 6-8 h are shown on the left and the original images at t ~10 h are shown in the center. Wavelet
portraits are on the right. (a) V10233 (piaA) shows no sign of periodic signaling. (b) V10285 (DG 105) shows local pulsatile activity, whereas (c) V10199
(DG1037) and (d) V10682 (clcD) are slow oscillators with incomplete aggregation or delayed aggregation, respectively. Data shown are from mutant
clones recreated by homologous recombination.
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(a) wild type AX4
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Figure 5

The screen identifies mutants with accelerated development. Frame-subtracted images at t = 2-4 h (left) and the raw images at t = 5-8 h (center). Wavelet
portraits are shown on the right. (a) Wild-type AX4; (b) V30230 (regA); (c) V10258 (rdeA). The signaling period is emphasized by the magenta bar above

each portrait.

pathway mutants show similar crowded-wave phenotypes
due to the emergence of abnormally large numbers of spiral
cores, and thus this independent isolation of insertions in
rdeA and regA is an important confirmation of a recent model
of pattern formation that incorporates coupling of external
cAMP oscillations to internal cAMP levels [16]. Other geno-
typed mutants related to this pathway were those with inser-
tions in dhkA, dhkC, dhkJ and acrA. Mutants in dhkC
(V10588) show early slow waves reminiscent of other previ-
ously studied PKA pathway mutants pkaR- [16] or dhkK
(D1125N) [43] (data not shown). In contrast, dhkA and acrA
show mutant phenotypes only at later stages consistent with
their specific roles during slug to culmination stage. A mutant
in dhkJ was found in the wild-type cluster.

Slug mutants

The slug is a multicellular structure consisting of anterior pre-
stalk cells and posterior prespore cells that migrates towards
favorable environments for culmination. Studies suggest that
propagating waves of cAMP not only direct cell aggregation
during the early stage of development, but may also coordi-
nate cell migration in the slug stage [17,44]. Slug migration
velocity is typically of the order of several hundred microme-
ters per minute; therefore its characterization is difficult
without time-lapse imaging.

Our dynamical profiling approach reveals mutants with coor-
dination defects. A mutant V10633 of a putative GATA
activator (dictyBase ID: DDB0220467) forms chubby slugs
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Figure 6

The screen uncovers mutants with aberrant slug motion. The multicellular slug phenotype is often difficult to see in cells feeding on bacterial lawns (left-
hand panel) because development is asynchronous and the slug stage is transient. The middle panels are snapshots from our automated imaging system
taken at around 24 h. Slug trajectories over a 28.5-h period were obtained by first binary thresholding the movies and then tracking the center of mass by
multiple particle tracking using Image] (right-hand panel). Data shown are from mutant clones recreated by homologous recombination.

that are mostly developmentally arrested at this stage (Figure
6b, right panel). Migration is almost absent, as is evident
from the slug trajectories (Figure 6b right panel). Some slugs
do culminate to form fruiting bodies with small spore heads.
The video records allow one to discriminate mutants with
such behavior from those that proceed to the slug stage but
show deficient migration. In V30524 (Figure 6c¢), the slugs
move with less path persistence compared to wild type (Fig-
ure 6a). V30524 carries an insertion in an open reading frame
(dictyBase ID: DDB0187422) that encodes an arginine-N-
methyltransferase, a conserved PRMT5 family protein
involved in post-translational modification of proteins
involved in RNA processing, DNA repair, and transcriptional
regulation [45].

Note that we did not base our phenotypic scoring on the abil-
ity of slugs to sense light or thermal gradients, and therefore
we have probably missed genes implicated in these processes
for example, gefL [46] (Additional data file 5). Another pho-
totaxis mutant that was nevertheless scored (Figure 2d,
abpC) may be more severely impaired in morphogenesis
because of other defects [47].

Conclusion
We have shown that parallel phenotyping in a screen based

on macroscopic multicellular dynamical features of over
2,000 clonal Dictyostelium populations is possible in a
relatively short time by combining parallel cell culture, auto-
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mated high-throughput time-lapse imaging, and quantitative
and qualitative phenotyping of multicellular behavior. The
time-lapse movies contain a wealth of information that
reflects the ability of individual cells to attach to the substra-
tum, signal to one another, perform directional movement
towards an attractant, form a multicellular body, migrate as a
whole, and differentiate to construct the final culminant. In
this study, we have shown how such a readout can be
obtained for a simple multicellular organism, annotated, and
stored in a form of streaming video that can easily be linked
to a genome database [48].

The current study achieved a comparative assay of mutant
phenotype under uniform environmental conditions. We
showed that mutants disrupted either in the same gene, genes
in a common signal transduction pathway, or genes known to
cause a similar morphological defect, such as mutants in tip
genes [49], can be clustered solely on the basis of a Boolean
matrix of the affected developmental stage without any refer-
ence to the specific defects observed. The number of major
mutant cluster categories was on the order of the number of
developmental stages, N;. Assuming random insertion in the
mutagenesis, the expected number of developmental genes in
each cluster (V) is approximately N,=(GxP)/(Nxr) where
G is the number of genes in the genome, P is the mutant fre-
quency and r is the frequency of the coding regions in the
genome. We found P = 0.04, which is larger than an estimate
of 0.3-1% of the clones exhibiting visible developmental aber-
rations [50], suggesting increased sensitivity of mutant detec-
tion by our current scheme. Substituting the predicted
number of genes in the genome [51] (G = 1.25 x 104; r = 0.7)
we estimate a total of 720 genes which when disrupted should
exhibit a mutant phenotype during development under our
assay, and that a major mutant cluster should on average
comprise around 120 genes. This is in line with an estimate of
100-150 genes essential for early development [52]. Our total
estimate of developmental genes in Dictyostelium is double
the earlier estimate of 300 genes [52], and about half the
number of genes reported to affect zebrafish morphogenesis

[53].

Multicellularity is achieved through the coordinated action of
cellular processes such as cell growth and death, cell-cell sig-
naling, cell movements, and cell adhesion, which leads to dif-
ferentiation of cell types and morphogenesis of a multicellular
structure. Although the transitions from unicellular eukaryo-
tes to multicellular ones seem to have occurred independently
many times during the course of evolution [54,55], what we
know about the requirement for such transitions is very lim-
ited [56,57]. How many genes are necessary? What form of
networks of genes and proteins are required? When
combined with other systematic phenotype analyses [58,59]
and sequencing of related social amoeba species now under
way, a complete time-lapse movie set and functional grouping
of knockout mutants of every gene in the Dictyostelium dis-
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coideum genome would have a major impact on our under-
standing of life-cycle evolution.

Materials and methods

Cell culture

Clones of random insertional mutants generated by restric-
tion-enzyme-mediated insertion (REMI) [60] and wild-type
D. discoideum cells were grown on fresh lawns of Klebsiella
aerogenes on SM agar for 3 to 4 days. The cells were picked
from a feeding-front of a plaque into 2 ml growth medium (PS
medium 11; 10 g Special Peptone (Oxoid, Basingstoke, UK), 7
g Yeast Extract (Oxoid), 15 g d-glucose, 0.12 g
Na,HPO,-7H,0, 1.4 g KH,PO,, 40 pg vitamin B12, 80 pg folic
acid) supplemented with 1 x Antibiotic-Antimycotic (Gibco;
Invitrogen, Carlsbad, CA). Typically, 30 clones were cultured
in parallel using five six-well plates (Costar 3506; Corning,
Lowell, MA). After incubation at 22°C for one day, bacteria
and other debris were removed by gentle shaking followed by
aspiration of the medium. Fresh PS medium was then added
and the cell density was readjusted if necessary. The cells
were allowed to attach to the bottom of the plate and incu-
bated at 22°C for another 24 h. Cell density in the initial inoc-
ulation was typically 2 x 106 cells/well. Under these
conditions, wild-type AX4 cells attach robustly to the plate
surface and appear non-polarized. They grow and divide
about three times at a doubling time of approximately 12 h
before reaching confluency at 7 x 10 cells/well.

Growth medium was then removed and the cells were resus-
pended in 1 ml DB (10 mM KH,PO,/Na,HPO,, 2 mM MgSO,,
0.2 mM CaCl,; pH 6.5) and transferred to a 1% agar (Gibco
Bactoagar) surface prepared in six-well plates where they
were allowed to settle for 15 min to form a monolayer. Super-
natant was removed and the plates were allowed to dry for 15
min in a sterile hood.

Mutant clones

The life cycle of 2,257 mutagenized clones was analyzed.
Clones were of two major types. To test the generality of our
approach, we analyzed a collection of mutants generated by
restriction-enzyme-mediated insertional (REMI) mutagene-
sis, many of which have been published. These strains came
from the Loomis and Shaulsky laboratories. They are num-
bered V00262 to V10300. To test our methods to discover
new mutants with developmental phenotypes by unbiased
random REMI mutagenesis, we analyzed a subset of an exten-
sive collection developed at Baylor. This is the V10301-V11139
and V30000-V31999 series. Whenever the phenotype devi-
ated from wild type, the time-lapse experiment was repeated,
with the result that 882 clones were examined more than
once. Of these, 357 were repeated two or more times. REMI
mutagenesis provides a convenient and relatively unbiased
way to conduct genome-wide forward genetic screens, allow-
ing the investigator to rapidly identify the insertion site by
plasmid rescue and inverse PCR. The insertion sites for the
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entire set were determined at Baylor University [22]. Those
with suspected aberrant phenotypes were resequenced at
Princeton University on a strain-by-strain basis (see below).

Plasmid rescue, inverse PCR and homologous
recombination

Genomic DNA was prepared by a salting-out method [61]
from cells shaken overnight in phosphate buffer (20 mM
KH,PO,/Na,HPO, pH 6.5). Approximately 1 ug of DNA was
cut with the six-cutter restriction enzymes EcoRI, Clal, BglIl
or Spel (New England Biolabs, Ipswich, MA). Digested DNA
was electrophoresed in 1% TAE agarose gels and used for
Southern blot analysis. Plasmid pBSRA Bgl was cut with
BamHI and HindIII and the resulting 1.4-kb fragment con-
taining the Blasticidin resistance cassette [62] was P32-
labeled and used as a probe. Digests that yielded a specific
band of 6 to 12 kbp were chosen for plasmid rescue. DNA (6
ug) was cut and then circularized using T4 DNA ligase (New
England Biolabs). The ligation reaction was purified and used
to transform electro-competent SURE cells (Stratagene, La
Jolla, CA). Clones were selected on LB ampicillin plates and
three clones were typically picked for plasmid DNA prepara-
tion and sequencing. Sequencing reactions were performed
from both ends of the inserted vector pBSR1 [63] using T7
and SP6 primers.

For inverse PCR, approximately 100 ng of DNA was first
digested with Rsal, which recognizes sites close to both ends
of the inserted vector pBSR1. The digest was heat inactivated,
purified using silica columns (PCR purification kit; Qiagen,
Valencia, CA) and circularized with T4 DNA ligase. Using the
circularized DNA as a template, two PCR reactions were per-
formed to amplify flanking DNA from the ends of the inserted
vector. The primers for the T7 end were (T7) 5'-TAATAC-
GACTCACTATAGGG-3' and (InvT7R2) 5'-CTGCACTAC-
CAATCGCAATGG-3'. For the SP6 side, they were (InvSp6L)
5'- GCCGCGTTCTAACGACAATA-3' and (InvSp6R) 5'-TCAT-
ACACATACGATTTAGGTGACA-3'. Positive PCR reactions
were purified using silica columns (PCR purification kit; Qia-
gen) and sequenced using T7 or SP6 primers. For some PCR
samples, sequencing reactions were performed after cloning
the PCR product into TOPO pCR2.1 vector (Invitrogen). The
sequence was parsed and BLAST-searched against the Dicty-
ostelium chromosome sequence using EMBOSS [64] with a
script written in Perl [65] and then manually inspected to
identify insertion positions.

We were able to identify the insertion sites of the vector for
approximately 80% of the 300 clones that were examined
more than once. For the other 20%, Southern analysis
revealed that there were no appropriate six-cutters available
for plasmid excision, and/or where inverse PCR failed. Of the
344 different clones genotyped in Princeton, the two ends of
the inserted vector were found at separate loci in 42 cases.
Such anomalous insertion events have also been reported fol-
lowing REMI mutagenesis in Saccharomyces cerevisae [66].
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For those mutants described in detail, gene disruption was
repeated by homologous recombination using the isolated
plasmid obtained by the methods described above. Wild-type
AX4 was electroporated with the linearized plasmid following
a standard protocol [67]. Positive clones were selected in PS
medium supplemented with 10 ug/ml Blasticidin S (MP Bio-
medicals, Solon, OH) and recombination was verified by PCR.

Time-lapse imaging and database constuction

An imaging robot was constructed using industrial automa-
tion assemblies. It is a gantry system, with two x-y instrument
platforms ganged together, one positioned above the sample
holding area, the other below, each driven by digital servo
drives (Gemini GV; Parker Automation, Cleveland, OH) (Fig-
ure 1b). The drives are operated through a programmable
two-axis servo controller (6K2; Parker Automation). The
servo tuning and axis-control programs were written using
Motion Planner software (Parker Automation). The upper
gantry platform houses a 1/3-inch format CCD camera (LCL-
903HS; Watec, Orangeburg, NY) with a macro lens. The dark-
field illumination optics consisting of a fiber-optics light
guide and lenses, is mounted on the lower platform. Although
this is a belt-driven system, feedback loops in the controllers
allowed positioning over the 2 m x 2 m sample platform with
a reproducibility of around 100 um rms (root mean square).
Time interval fluctuation measured at a single well for both
the first and second time intervals was typically 0.1 sec
(standard deviation). The robot was housed in a light-tight
room at a constant temperature of 22°C. Six-well plates were
placed on a stage that can hold up to 100 accurately aligned in
the x-y plane. Images from a 16.8 mm x 12.6 mm area from
each well were captured and transferred to a computer, where
they were digitized and stored in 640 by 480 pixel 8-bit gray-
scale TIFF format using a frame grabbing board (L.G-3; Scion
Corporation, Frederick, MD). Image files were written to a
high capacity hard-disk system (Xserve RAID; Apple
Computer).

Image acquisition, frame stacking and frame subtraction
were accomplished using Java-based plug-in applications
written for ImageJ [68]. These files were encoded in MPEG-4
format using ImageJ and Quicktime Pro (Apple Computer)
for easy viewing over the Internet using a streaming server.
Subtracted movie files were encoded at 12 frames/sec. The
first and second half of the original movies were encoded at
48 and 36 frames/sec, respectively. Movie files, wavelet data
and annotation data were stored on a MySQL server. Data
acquisition, data management and statistical analyses using
the MySQL database were performed with web-based queries
written in PHP and the R statistical package [69]. Raw data
can be found on our website [70].

Woavelet transform and phenotype clustering

Wavelet analysis was performed as described [16] with some
modification. Briefly, from the original TIFF movie files,
time-series p (x, y; t) of average pixel intensity from 3 x 3
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pixel areas at coordinate (x, y) were sampled from a mesh of
20 pixel intervals (M = 2,048 sites). From the time-series,
normalized wavelet power spectra averaged over space were
obtained by

2
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where At is the time interval of the time series po(x, y; t) with
variance o2, and yis the Morlet wavelet:

() = /4 explio,n-12 /2]

where @, = 6. These procedures were automated and inte-
grated with image acquisition. Feature extraction from the
wavelet analysis was performed using a script written in Perl
that traces the peak of the wavelet power spectrum as a func-
tion of time. A running average with a time interval of 6.7 min
was used to remove short time-scale fluctuations. The result-
ing trace data were clustered using a K-means algorithm with
the Euclidean distance as a similarity metric.

For each developmental stage - growth, early wave, aggrega-
tion, mound, slug and fruiting body - deviation from repro-
ducibly robust wild-type behavior at each stage was noted
(Table 1). This information was ranked into four different cat-
egories p;=-1,-1/2,00r 1, where i € [1,6] stands for ordered
developmental stage (for example, i = 1 is the growth stage)
and j represents the sample number. Category p; = 1 is thus
the value for a given wild-type phenotype, and p;; < 1 signifies
the severity of the mutant phenotype. p;= -1 corresponds to a
null phenotype, meaning that a developmental stage-specific
behavior and morphology was completely absent, either
because of developmental arrest at that particular stage, or at
a preceding stage. p;;= -1/2 is assigned when a clear deviation
from wild-type behavior could be identified (for example,
slow oscillations, short stalk, and so on). A phenotypic score
of p;;= 0 was assigned when the phenotype could not be dis-
tinguished from phenotypic fluctuations exhibited from
experiment to experiment with wild-type cells. Many clones
(V10546-V10646, V10676-V10696, V30001-V30896,
V31301-V31596) systematically showed late slug behavior
characterized by loss of cells from the slug posterior and early
culmination. These were assigned p; = 0 and treated as wild
type for clustering purpose. Multiple sample runs were aver-
aged by taking the maximum

Ns
qsj = I?ix by

for strain s with N, repeated runs. Although this filtering
approach loses some information relative to simple mean
averaging, it supplies a more rigorous justification for the
claim that a given strain is defective in some aspect of devel-
opment. Hierarchical clustering was performed by Cluster
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3.0 [71] using Pearson correlation as a similarity metric. The
mean of all pairwise distances were used during clustering.
The resulting trees were visualized by Java TreeView [72].

Additional data files

Additional data is available online with this paper. Additional
data file 1 is a time-lapse movie in MPEG-4 format of wild-
type AX4 taken during the first 10 hours of development.
Additional data file 2 is a video in MPEG-4 format consisting
of frame-subtracted images of the data shown in Additional
data file 1. Additional data file 3 is a time-lapse movie in
MPEG-4 format of the later stages of development of the
same sample as shown in Additional data file 1. Additional
data file 4 is a figure giving a blow-up view of other mutant
clusters found in Figure 2a. Additional data files 5, 6, 7 need
to be in a folder before opening the CDT file (Additional data
file 6) with Treeview. For a link to the movies, paste into Java
Treeview (under Settings—Presets—Gene Url Presets) the
URL http://www.dictybase.org/phenotype/movies/
remote_search_public.php?strain_id=HEADER. Additional
data file 5 is a GTR file for Figure 2a. Additional data file 6 is
a CDT file for Figure 2a. Additional data file 7 is a JTV file for
Figure 2a. Additional data file 8 is the original raw data plus
hyperlink to the online movies for Figure 2a. The value of
phenotype index is doubled for easier viewing in Java
Treeview. Additional data files 9, 10, 11 need to be in a folder
before opening the CDT file with Treeview. Additional data
file 9 is a KGG file for Figure 3a. Additional data file 10 is a
CDT file for Figure 3a. Additional data file 11 is a JTV file for
Figure 3a. Additional data file 12 is the raw data for Figure 3a.
Additional data file 13 is a database file for Figure 3b-i.
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