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In fission yeast, mating-type switching involves replacing

genetic information contained at the expressed mat1 locus

by that of either the mat2P or mat3M donor loci. Donor

selection is nonrandom, as mat1P cells preferentially use

mat3M for switching, whereas mat1M cells use mat2P.

Switching directionality is determined by the cell-type-

specific distribution of the Swi2–Swi5 complex that, in

mat1P cells, localises to mat3M and, only in mat1M cells,

spreads to mat2P in a heterochromatin-dependent manner.

Mechanisms regulating spreading of Swi2–Swi5 across

heterochromatin are not fully understood. Here, we

show that the fission yeast homologue of CENP-B, Abp1,

binds to the silent domain of the mating-type locus and

regulates directionality of switching. Deletion of abp1

prevents utilisation of mat2P, as when heterochromatin

is disrupted and spreading of Swi2–Swi5 is impaired. Our

results show that, indeed, deletion of abp1 abolishes

spreading of Swi2–Swi5 to mat2P. However, in abp1D
cells, heterochromatin organisation at the mating-type

locus is preserved, indicating that Abp1 is actually re-

quired for efficient spreading of Swi2–Swi5 through het-

erochromatin. Cbh1 and Cbh2, which are also homologous

to CENP-B, have only a minor contribution to the regula-

tion of directionality of switching, which is in contrast

with the strong effects observed for Abp1.
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Introduction

In the fission yeast Schizosaccharomyces pombe, haploid cells

switch mating type by means of a tightly regulated gene

conversion event that involves long distance interactions

between an expressed locus (mat1) with either of two silent

donor loci (mat2 and mat3), which are located 17 and 29 kb

away from mat1, respectively (reviewed in Arcangioli and

Thon, 2004). Mating-type information is contained in

the silent mat2P (plus) and mat3M (minus) loci but it is

expressed only after translocation to the mat1 locus giving

rise to mat1P or mat1M cells, depending on whether mat2 or

mat3 information is expressed at mat1. Silencing at the mat2

and mat3 loci is mediated by heterochromatin that, in the

mating-type region, extends for a 20-kb long domain (Thon

and Klar, 1993; Grewal and Klar, 1997; Noma et al, 2001).

This silenced domain is flanked by two inverted repeats (IR-L

and IR-R) and, in addition to mat2 and mat3, contains a

repeated element (cenH) that is homologous to the centro-

meric dg/dh repeats and nucleates the formation of hetero-

chromatin in an RNAi-dependent manner (Hall et al, 2002).

At the mating-type region, heterochromatin formation is also

induced through an additional RNAi-independent mechanism

that involves binding of the transcription factors Atf1 and

Pcr1 (Jia et al, 2004a).

Mating-type switching initiates during DNA replication

with the introduction of a strand-specific single-strand

break (SSB) imprint at mat1, which was proposed to result

from the incorporation of two ribonucleotides (Vengrova and

Dalgaard, 2004, 2006), and that, in the next round of DNA

replication, is converted into a double-strand break (DSB)

(reviewed in Arcangioli and Thon, 2004). This DSB is, then,

healed by gene conversion using mat2 or mat3 as donors.

Donor selection is, however, not random. In contrast, mat1P

cells preferentially use mat3 as a donor, whereas mat1M cells

use mat2 (reviewed in Arcangioli and Thon, 2004).

Directionality of switching, therefore, ensures that cells

switch to the opposite mating type with a very high fre-

quency. Directionality of switching is determined by the cell-

type specific distribution of the Swi2–Swi5 complex that

promotes recombination (Jia et al, 2004b). In mat1P cells,

Swi2–Swi5 localisation is restricted to a recombination-en-

hancer element (SRE) located adjacently to mat3 so that,

under these circumstances, only mat3 is efficiently used as a

donor. On the other hand, in mat1M cells, Swi2–Swi5 spreads

across the entire mating-type region reaching the mat2 locus

that becomes the preferred donor site due to the structural

constraints imposed by heterochromatin. Spreading of Swi2–

Swi5 in mat1M cells relies on heterochromatin, as it is

abolished in a swi6 mutant without affecting its binding to

SRE (Jia et al, 2004b). As a consequence, in a swi6 mutant

background, mat3 is used as a donor at a much higher

frequency than mat2, so that swi6 mutant cells are predomi-

nantly of the mat1M type. Mutations in several other hetero-

chromatin assembly factors (i.e. crl4, rik1 and sir2) were also

shown to affect directionality of switching (Ivanova et al,

1998; Nakayama et al, 2001; Shankaranarayana et al, 2003;

Tuzon et al, 2004). These observations unveil the essential

contribution of heterochromatin to spreading of Swi2–Swi5.

Heterochromatin-dependent spreading was also reported for

other multi-protein complexes such as SHREC (Sugiyama
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et al, 2007). The mechanisms that regulate spreading of

Swi2–Swi5 across heterochromatin are, however, not fully

understood. Direct interaction with Swi6 likely contributes to

binding of Swi2–Swi5 to heterochromatin, as Swi2 selectively

colocalises with Swi6 and the two proteins interact strongly

in vitro (Akamatsu et al, 2003; Jia et al, 2004b). However, in

vivo, only a small proportion of Swi2 is associated to Swi6

(Jia et al, 2004b), indicating that additional factors must

contribute to binding of Swi2–Swi5 to heterochromatin.

In this paper, we show that Abp1 binds at the mating-type

locus and regulates directionality of switching. In abp1D
cells, mat3 is preferentially used as a donor as when, in

swi6D or crl4D cells, spreading of Swi2–Swi5 to mat2 is

abolished due to disruption of heterochromatin. Our results

show that deletion of abp1 impairs spreading of Swi2–Swi5 to

mat2 without disrupting heterochromatin organisation

at the mating-type region, indicating that Abp1 is actually

required for efficient spreading of Swi2–Swi5 across

heterochromatin.

Abp1 is homologous to CENP-B, an evolutionarily con-

served sequence-specific DNA-binding protein that associates

to centromeric heterochromatin (Murakami et al, 1996;

Halverson et al, 1997). In S. pombe, Cbh1 and Cbh2 are

also homologous to CENP-B and, together with Abp1, have

redundant functions in the regulation of various nuclear

processes (Halverson et al, 1997; Lee et al, 1997; Baum and

Clarke, 2000; Ireland et al, 2001; Nakagawa et al, 2002).

However, the contribution to the regulation of directionality

of mating-type switching is specific to Abp1, as deletion of

cbh1 or cbh2 shows no effects on switching. Interestingly,

Abp1 also appears to have an important function in DNA

replication (Murakami et al, 1996; Locovei et al, 2006),

suggesting a possible link between spreading of Swi2–Swi5

and DNA replication.

Results

Abp1 regulates directionality of mating-type switching

Efficiency of mating-type switching can be monitored by

staining with iodine vapours (Bresch et al, 1968; Thon and

Klar, 1993; Jia et al, 2004b). Efficient switching results into

colonies containing an homogeneous mixture of cells of

opposite mating types that, when grown in sporulation

medium, can readily mate and sporulate giving rise to

colonies staining dark with iodine vapours due to the accu-

mulation of starch products occurring during sporulation. In

contrast, cells showing poor mating-type switching form

light-staining colonies. Deletion of abp1 in a switching-effi-

cient homothallic h90 strain (Figure 1A) results in a strong

decrease in its ability to mate and sporulate. abp1D cells form

colonies staining much lighter with iodine than wild-type h90

colonies (Figure 1B). Actually, the frequency of spores ob-

served in abp1D colonies is as low as 0.4% of total cells,

whereas in wild-type colonies is approximately 81%. These

results indicate that mating-type switching is very inefficient

in abp1D cells.

As discussed above, a first step in mating-type switching is

the generation of a strand-specific SSB imprint that, latter, is

converted into a DSB. A number of factors (swi1, swi3 and

swi7) are known to participate in the formation of this SSB/

DSB imprint (reviewed in Arcangioli and Thon, 2004). Abp1

could also participate in this process, as it contains a DDE

domain with significant homology to the catalytic domains of

the pogo family of transposases (Ireland et al, 2001). To test

this possibility, we performed Southern blotting analysis to

determine the presence of the SSB/DSB imprint in abp1D
cells (Figure 1C). In these experiments, genomic DNA was

digested with HindIII, which generates a 10.4-kb fragment

spanning the mat1 locus (Figure 1A). Presence of the SSB/

DSB imprint results in cleavage of this HindIII fragment into

two fragments of 5.4 and 5.0 kb, respectively. It must be

noticed that, though many cells contain only a SSB at this

position, it is converted into a DSB during DNA isolation due

to sharing forces (Arcangioli, 1998). Bands reflecting forma-

tion of the SSB/DBS imprint are readily detected in abp1D
(Figure 1C, lanes 2–5) as well as in wild-type h90 cells

(Figure 1C, lane 1), indicating that deletion of abp1 does

not affect generation of the imprint.

Next, we analysed whether inefficient switching of abp1D
cells is the consequence of a deregulation on directionality of

switching, so that they are unable to use either mat2 or mat3

as a donor locus. To test this possibility, we carried out

quantitative multiplex PCR analysis using primers that spe-

cifically determine the presence at the expressed mat1 locus

of either mat2 (mat1P) or mat3 (mat1M) information (Jia

et al, 2004b) (Figure 1D). In wild-type h90 cells, efficient

mating-type switching results in equal utilisation of mat2 or

mat3 as a donor, so that bands representing mat1P and

mat1M cells are roughly of the same intensity (M/P ratio of

0.9570.06) (Figure 1D, lanes 1–3). In contrast, abp1D cells

are predominantly of the mat1M type, which contains

mat3 information at mat1 (M/P¼ 3.0370.06) (Figure 1D,

lanes 4–6). Ectopic expression of Abp1 from an episomal

vector reverts the switching defect of abp1D cells

(M/P¼ 1.2470.01) (Figure 1D, lanes 7 and 8). These results

indicate that Abp1 regulates directionality of switching, so

that abp1D cells preferentially use mat3 as a donor.

To further confirm the contribution of Abp1 to the regula-

tion of directionality of mating-type switching, we analysed

the effects of deleting abp1 in an h09 background. In h09 cells,

mating-type information contained at the donor mat2 and

mat3 loci is swapped, so that mat3 contains plus (P) infor-

mation (mat3P), whereas mat2 contains minus (M) informa-

tion (mat2M) (Figure 2A) (Thon and Klar, 1993). Switching is

determined by the chromosomal position of the donor loci

with respect to mat1 rather than by the actual genetic

information contained at mat1 (Thon and Klar, 1993). As a

consequence, in h09 cells, switching does not replace mating

information at mat1, as mat1M cells preferentially use

mat2M as a donor and, vice versa, mat1P cells use mat3P,

resulting in non-productive switching. Consistent with that,

h09 colonies stain lightly with iodine and show a low fre-

quency of sporulation (Figure 2B). As shown in Figure 2C,

the h09 strain used in these experiments is predominantly of

the mat1M type (M/P¼ 2.4370.17) (Figure 2C, lanes 1–3). In

this h09 strain, deletion of abp1 results also in a preferred

utilisation of mat3P, so that abp1D cells become predomi-

nantly mat1P (M/P¼ 0.8270.12) (Figure 2C, lanes 4–6).

Concomitantly, abp1D cells stain darker with iodine than

wild-type h09 cells and sporulation is partially rescued, from

7 to 15% (Figure 2B).

Next, we asked whether Abp1 actually binds to the mating-

type locus. To address this question, we performed chromatin

immunoprecipitation (ChIP) experiments from cells carrying
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HA-tagged Abp1 (Figure 3). In these experiments, the

presence of Abp1 was determined at several regions spanning

the entire silent domain of the mating-type locus (Figure 3A).

Crosslinked material was immunoprecipitated with aHA anti-

bodies and analysed by PCR using appropriate primers to

amplify specific bands of the indicated mating-type regions

(Figure 3A, bands ir, r2, c1, c2, l1 and l2), and, in the same

reaction, with a second set of primers to amplify a control

DNA fragment of similar length corresponding to the act1

gene (Figure 3A, bands act). As shown in Figure 3A, only one

of the regions analysed (l1) was found significantly enriched

in the immunoprecipitated material, indicating binding of

Abp1 to this region. Region l1, which spans approximately

500 bp, maps immediately upstream to the cenH element. To

confirm binding of Abp1 to this region, and to narrow down

its binding site, we analysed presence of Abp1 at different

regions flanking l1 (Figure 3B, regions p1, p2 and p4), as well

as within it (Figure 3B, region p3). As shown in Figure 3B,

immunoprecipitation with aHA antibodies results in enrich-

ment of region p3, but not the rest. Altogether, these results

indicate that Abp1 binds to the silent domain of the mating-

type locus, with a major binding-site centred around region

l1, close to the cenH element. Similar results have been

recently reported by others (Cam et al, 2007).

Directionality of mating-type switching is not

compromised by deletion of cbh1 and/or cbh2

In S. pombe, Cbh1 and Cbh2 are closely related to Abp1

having redundant functions in the regulation of several

cellular processes (Halverson et al, 1997; Lee et al, 1997;

Baum and Clarke, 2000; Ireland et al, 2001; Nakagawa et al,

2002). In particular, all three proteins show synergistic effects

on the regulation of centromeric silencing and chromosome

segregation (Nakagawa et al, 2002). Therefore, it is possible

that Cbh1 and Cbh2 would also contribute to the regulation

of directionality of mating-type switching. To address this

abp1∆∆h90

0.4%81%

wt abp1∆

mat1P

mat1M

M 1 2 3 4 5 6

h90

mat1 mat2P mat3M

DSB

17 kb 11 kb

HindIII HindIII10.4 kb

5. 4 kb 5 kb

wt abp1∆
4321

DSB
5.4 kb

5.0 kb

10.4 kb (mat1)

4.2 kb (mat3)

}

5

M/P=0.95±0.06 M/P=3.03±0.06

7

M/P=1.24±0.01

pREP81–Abp1

8

Figure 1 Analysis of the effects on mating-type switching of deleting abp1 in a homothallic h90 strain. (A) Schematic representation of the
structural organisation of the mating-type region in an h90 strain. The positions of mat1, mat2P and mat3M loci are indicated. The position of
the SSB/DSB imprint, contained within the 10.4-kb HindIII fragment spanning the mat1 locus, is also indicated. (B) Iodine staining of wild-type
(h90) and abp1D colonies. Before staining, colonies were grown in sporulation medium at 251C for 3 days. Numbers below each panel indicate
the frequencies of sporulation. Similar results were obtained with several independent abp1D colonies. (C) Presence of the SSB/DSB imprint
was determined by Southern blot analysis of a wild-type (lane 1) and four independent abp1D strains (lanes 2–5). Genomic DNA was digested
with HindIII and probed with a 9-kb DNA fragment, which spans the mat1 locus and contains mat3M information at mat1, so that it also
detects a 4.2-kb HindIII band corresponding to the mat3M locus. Bands arising from cleavage at the SSB/DBS imprint of the 10.4-kb HindIII
fragment are indicated (DSB). (D) Quantitative multiplex PCR determination of the predominant mating type adopted by wild-type (wt, lanes
1–3) and abp1D cells (lanes 4–6). PCR reactions were performed using appropriate primers to amplify mat1M and mat1P sequences
simultaneously. For each strain, three 10-fold dilutions of the PCR products were analysed. Similar results were obtained with several
independent abp1D colonies. Lanes 7 and 8, correspond to abp1D cells transformed with plasmid pREP81–Abp1 to express Abp1. In this case,
single dilutions of the PCR products obtained from two independent isolates are shown. The positions of the bands corresponding to mat1P and
mat1M are indicated. The M/P ratios (7s.d.) are indicated below the corresponding lanes.
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possibility, we examined the effects on mating-type switching

of deleting cbh1 and cbh2 in h90 cells (Figure 4). cbh1D and

cbh2D cells stain dark with iodine (not shown) and show

high frequencies of sporulation (B80%), indicating that they

do not have major defects in directionality of mating-type

switching. Quantitative multiplex PCR analysis confirmed

these results (Figure 4A). In cbh1D and cbh2D cells,

the bands corresponding to mat1P and mat1M are of

almost equal intensity (M/P¼ 0.9570.05 and 0.9970.03)

(Figure 4A, lanes 1–6), indicating that, in these mutant

backgrounds, both mat2 and mat3 are efficiently used as

donor locus during mating-type switching, which is in con-

trast to the strong donor preference observed in abp1D cells

(M/P¼ 3.0370.06). Similarly, cbh1Dcbh2D double mutants

show no significant defects on directionality of switching

(M/P¼ 0.9870.01) (Figure 4A, lanes 7–9). On the other

hand, in abp1Dcbh1D and abp1Dcbh2D double mutants,

mat3 is also the preferred donor locus, as in abp1D cells

(Figure 4B). It must be noticed, however, that abp1Dcbh1D
and abp1Dcbh2D double mutants show significantly higher

M/P ratios than abp1D cells, suggesting a synergistic coop-

eration to regulate switching directionality. Actually, it was

recently shown that Abp1 interacts both with Cbh1 and Cbh2

and that, in the mating-type locus, Cbh1 colocalises with

Abp1 (Cam et al, 2007). Moreover, binding of Cbh1 to

chromatin appears to depend on Abp1 but not vice versa

(Cam et al, 2007). Altogether, these observations indicate that

Abp1 has a major function in the regulation of mating-type

switching, whereas Cbh1 and Cbh2 have only minor con-

tributions that, most likely, depend on Abp1.

h09

mat1 mat2M mat3P

DSB

17 kb 11 kb

abp1∆h09

mat1P

mat1M

M/P=2.43±0.17 M/P=0.82±0.12

h09 abp1∆

32 541 6M

15%7%

Figure 2 Analysis of the effects on mating-type switching of delet-
ing abp1 in h09 cells. (A) Schematic representation of the structural
organisation of the mating-type region in an h09 strain. The posi-
tions of mat1, mat2M and mat3P loci are indicated. The position of
the SSB/DSB imprint is also indicated. (B) Iodine staining of wild-
type (h09) and abp1D colonies. Numbers below each panel corre-
spond to the frequencies of sporulation. (C) Quantitative multiplex
PCR determination of the predominant mating type adopted by
wild-type h09 (lanes 1–3) and abp1D cells (lanes 4–6). PCR reactions
were performed as in Figure 1D. The M/P ratios (7s.d.) are
indicated below the corresponding lanes.
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Figure 3 Abp1 localises to the silent domain of the mating-type locus. (A) Binding of Abp1–HA at the silent domain of the mating-type locus
was determined by ChIP-analysis using aHA antibodies. Immunoprecipitated material was analysed by multiplex PCR using primers specific
for the indicated regions of the mating-type locus (bands ir, r2, c1, c2, l1 and l2) (see Supplementary Table SII for a description of the primers
used) and, in the same PCR reaction, primers that amplify a fragment of similar length of the act1 locus (bands act), used as control. (B) Similar
experiments as those described in (A) but with primers designed to amplify shorter DNA fragments flanking region l1 (bands p1, p2 and p4) or
contained within it (bands p3). In this case, a shorter fragment from the act1 gene was used as control (bands act(s)). Lanes WCE correspond to
PCR products obtained from the input material before immunoprecipitation. Lanes aHA correspond to the products obtained from the
immunoprecipitated material. Numbers below each lane correspond to the ratio of the corresponding mating-type-specific band with respect to
the control act1 band.
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Heterochromatin organisation of the mating-type

region is preserved in abp1D cells

Heterochromatin organisation of the mating-type region is

essential for the efficient utilisation of mat2 as a donor (Jia

et al, 2004b). On the one hand, in mat1M cells, heterochro-

matin mediates spreading of the Swi2–Swi5 complex to mat2,

so that it can be used as template for gene conversion. In

addition, although in mat1M cells Swi2–Swi5 is also present

at mat3, heterochromatin provides a higher order structure

that makes mat2 the preferred donor loci. As a consequence,

mutations that disrupt heterochromatin organisation prevent

efficient utilisation of mat2 as a donor and, therefore, alter

directionality of switching in a similar way as deletion of

abp1 does (Figure 5A) (Jia et al, 2004b).

These observations point out the possibility that the

switching defects observed in abp1D cells could reflect a

contribution of Abp1 to heterochromatin assembly at the

mating-type locus. Actually, Abp1 was reported to have a

modest contribution to heterochromatin assembly at centro-

meres, as centromeric silencing was found to be slightly

reduced in abp1D cells (Nakagawa et al, 2002). To test this

hypothesis, we analysed the effects of an abp1D deletion on
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Figure 4 Analysis of the effects on mating-type switching of
deleting cbh1 and cbh2 in h90 cells. (A) Quantitative multiplex
PCR determination of the predominant mating type adopted by
cbh2D (lanes 1–3), cbh1D (lanes 4–6) and cbh1Dcbh2D cells (lanes
7–9). (B) Quantitative multiplex PCR determination of the predo-
minant mating type adopted by abp1Dcbh2D (lanes 1–3) and
abp1Dcbh1D cells (lanes 4–6). PCR reactions were performed as
in Figure 1D. The M/P ratios (7s.d.) are indicated below the
corresponding lanes.
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Figure 5 Heterochromatin organisation of the mating-type region is not disrupted in abp1D cells. (A) Quantitative multiplex PCR determina-
tion of the predominant mating type adopted by wild-type (lanes 1–3), swi6D (lanes 4–6) and crl4D cells (lanes 7–9). PCR reactions were
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with strain SPG27, where the entire cenH element was replaced by ura4þ . In this case, the results obtained with four independent abp1D
isolates are presented. (D) Swi6 deposition at the silent domain of the mating-type region was determined in wild-type (lanes wt) and abp1D
cells (lanes abp1D) by ChIP analysis using aSwi6 antibodies. Immunoprecipitated material was analysed as in Figure 3 with primers to
amplify specific bands of the IR-R and IR-L regions (bands IRr and IR), the cenH element (bands cenH/c1) and a region just left of mat3 (bands
mat3/r2) (see Supplementary Table SII for a description of the primers used). Lanes swi6D correspond to immunoprecipitation experiments
performed with aSwi6 antibodies in a swi6D strain, missing Swi6. Lanes – correspond to mock immunoprecipitation experiments in which no
antibodies were added. Numbers below each lane correspond to the ratio of the corresponding mating-type-specific band with respect to the
control act band.
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heterochromatin-mediated silencing at the mating-type locus.

In these experiments, we used several reporter strains carry-

ing an ura4þ gene inserted at different locations across the

silent heterochromatic domain of the mating-type locus

(Figure 5B, top). In all these strains, the reporter ura4þ

gene is strongly silenced (Grewal and Klar, 1997; Thon

et al, 2002), so that they grow poorly in the absence of uracil

and strongly in the presence of fluoroorotic acid monohydrate

(FOA) (Figure 5B, rows wt). In all these cases, silencing is

relieved in swi6D or crl4D mutants (Figure 5B, rows swi6D
and crl4D), which show extremely poor growth in the pre-

sence of FOA. Deletion of abp1, however, does not result in

any significant relief of silencing, as indicated by the robust

growth observed in the presence of FOA (Figure 5B, rows

abp1D). Moreover, in the absence of uracil, both wild-type

and abp1D cells show similar growth. The effect of deleting

abp1 was also analysed in strain SPG27, where the entire

cenH element was replaced by ura4þ (Figure 5C). In this

strain, silencing is less strong as it relies mainly on the Atf1–Pcr1

pathway (Grewal and Klar, 1996). As a consequence, SPG27

cells show significant growth both in the absence of uracil

and in the presence of FOA (Figure 5C, row wt), being more

sensitive to slight changes in the levels of heterochromatin

assembly factors. As shown in Figure 5C, in this strain,

silencing is slightly reinforced in abp1D cells, as shown by

the reduced growth observed in the absence of uracil

(Figure 5C, rows abp1D). Concomitantly, growth in the

presence of FOA increases. In these experiments, several

independent abp1D isolates were analysed for each reporter

strain and they all showed very similar effects.

ChIP analysis confirmed these results (Figure 5D). In

these experiments, Swi6 distribution at the silent chromatin

domain of the mating-type locus was determined in wild-type

(wt) and abp1D cells. Swi6 deposition was analysed at

the IR repeats, as well as at a region of the cenH element

(c1) and at a region just left from mat3 (r2) (Figure 5D,

bands IRr, IR, cenH/c1 and mat3/r2). Both in wild-type and

abp1D cells, immunoprecipitation with aSwi6 antibodies

results in a similar enrichment of the four mating-type-

specific bands indicated above (Figure 5D, lanes wt and

abp1D), when compared to similar immunoprecipitation

experiments performed in a swi6D strain, missing Swi6

(Figure 5D, lanes swi6D), or when no antibodies were

added (Figure 5D, lanes –). These results show that, in

abp1D cells, Swi6 deposition at the mating-type region is

not decreased to any significant extent.

Altogether, these observations indicate that deletion of

abp1 does not disrupt heterochromatin organisation at the

mating-type region. In contrast, in the SPG27 strain, silencing

appears to increase in abp1D cells, suggesting that deletion

of abp1 actually reinforces heterochromatin-dependent

silencing at the mating-type locus.

The switching defect of abp1D cells is suppressed in

swi2D and swi5D mutants

In abp1D cells, mat3 is the preferred donor locus during

mating-type switching (Figure 1). It is known that donor

selection depends on the functionality of the Swi2–Swi5

complex (Jia et al, 2004b). Swi5 is a general DNA recombina-

tion/repair factor that forms a complex with Rhp51/Rad51, a

DNA recombination factor that is also required for mating-

type switching (Akamatsu et al, 2003; Grishchuk et al, 2004).

Localisation of Swi5 to the mating-type locus depends on

Swi2 that binds to the SRE located adjacent to mat3 and, only

in mat1M cells, spreads to mat2 (Jia et al, 2004b). Therefore,

these two factors cooperate to promote recombination and to

regulate directionality of mating-type switching.

To analyse whether the switching defect of abp1D cells

depends on Swi2–Swi5, we determined the effects of deleting

abp1 in swi2D and swi5D mutants. As reported earlier (Jia

et al, 2004b), mat2 is the preferred donor locus both in swi2D
(M/P¼ 0.5670.13) and swi5D cells (M/P¼ 0.6470.12)

(Figure 6B and D). In these mutant backgrounds, deletion

of abp1 does not alter donor selection as a similar preference

for mat2 is observed in swi2Dabp1D (M/P¼ 0.5670.14)

(Figure 6B) and swi5Dabp1D double mutants (M/P¼
0.7770.16) (Figure 6D), which also show low sporulation

frequencies (Figure 6A and C). These results indicate that

preferred utilisation of mat3 in abp1D cells depends on the

functionality of the Swi2–Swi5 complex.

Deletion of abp1 abolishes spreading of Swi2 across

heterochromatin

Efficient utilisation of mat2 as a donor depends on spreading

of the Swi2–Swi5 complex across the entire silent heterochro-

matic domain of the mating-type locus so as to reach mat2

swi2∆∆ swi2∆abp1∆
1 2 3 1 3

swi5∆ swi5∆abp1∆ 

mat1P
mat1M

swi2∆ swi2∆abp1∆

5% 1%

swi5∆ swi5∆abp1∆

9% 5%

M/P=0.56±0.13 M/P=0.56±0.14 M/P=0.64±0.12 M/P=0.77±0.16

2 1 32 1 32

Figure 6 Analysis of the effects on mating-type switching of deleting abp1 in swi2D (A, B) and swi5D (C, D) cells. (A, C) Iodine staining of the
indicated strains. Numbers below each panel correspond to the frequencies of sporulation. (B, D) Quantitative multiplex PCR determination of
the predominant mating type adopted by each of the indicated strains. PCR reactions were performed as in Figure 1D. The M/P ratios (7s.d.)
are indicated below the corresponding lanes.
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(Jia et al, 2004b). Therefore, it is possible that deletion of

abp1 affects spreading of Swi2–Swi5 across heterochromatin.

To address this question, we performed ChIP experiments to

determine the effects of deleting abp1 on the distribution of

Swi2 across the silent domain of the mating-type region

(Figure 7). For this purpose, Swi2 was myc tagged in both a

stable M-strain (mat1smto) (Engelke et al, 1987) and a stable

P-strain (mat1PD17) (Arcangioli and Klar, 1991). It was

reported earlier (Jia et al, 2004b) that, in a P-strain, Swi2

distribution is constrained to mat3, whereas in an M-strain, it

spreads to mat2. In these experiments, we determined the

presence of Swi2 at two different sites located within mat2

(l2 and l3), as well as at two locations surrounding mat3

(r1 and r2) and at the region corresponding to the major

Abp1-binding site (l1), located between mat2 and cenH

(Figure 7A). Consistent with previously reported results by

others (Jia et al, 2004b), in the M-strain, Swi2 associates with

all these five locations (Figure 7B, lanes wt in M-strain, and

Figure 7C), whereas in the P-strain, it is found enriched only

at the mat3 region, especially at region r1 that spans the SRE

(Figure 7B, lanes wt in P-strain, and Figure 7C). In the

M-strain, deletion of abp1 strongly alters the distribution of

Swi2, so that, in abp1D cells, Swi2 is detected at mat3

locations (r1 and r2), but not at mat2 (l3 and l2) or at region

l1 (Figure 7B, lanes abp1D in M-strain, and Figure 7C).

In contrast, in the P-strain, deletion of abp1 does not

significantly alter the distribution of Swi2, so that, in this

case, it is detected only at mat3 locations, both in wild-type

and abp1D cells (Figure 7B, lanes wt and abp1D in P-strain,

and Figure 7C). Swi5 distribution is also likely to be affected

in abp1D cells, as binding of Swi5 to the mating-type region,

as well as its spreading through heterochromatin, is known to

depend on the presence of Swi2 (Jia et al, 2004b). Altogether,

these results indicate that, in the mating-type locus, Abp1 is

required for efficient spreading of the Swi2–Swi5 complex

across heterochromatin.

Discussion

Here, we have shown that, in the fission yeast S. pombe,

Abp1 contributes to the regulation of directionality of mating-

type switching. A model to account for the results reported

here is summarised in Figure 8. Directionality of switching

depends on the cell-type-specific distribution of the Swi2–

Swi5 complex that binds to the SRE located adjacent to mat3

and, only in mat1M cells, spreads to mat2 (Jia et al, 2004b).

As a consequence, mat1P cells preferentially use mat3 as a

donor (Figure 8A) and, vice versa, mat1M cells use mat2

(Figure 8B), thus ensuring efficient switching. Here, we

have shown that deletion of abp1 abolishes spreading of
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Figure 7 Deletion of abp1 impairs spreading of Swi2–Swi5 to mat2. The effects of deleting abp1 on the distribution of Swi2–myc along the
silent domain of the mating-type locus were determined in both a stable M-strain (mat1smto) and a stable P-strain (mat1PD17) by ChIP
analysis using a-myc antibodies. (A) Regions of the silent domain of the mating-type locus where the presence of Swi2–myc was analysed (see
Supplementary Table SII for a description of the primers used). (B) ChIP analysis corresponding to wild-type (wt) and abp1D cells derived from
either a stable M-strain (panel M-strain) or a stable P-strain (panel P-strain). Material obtained after immunoprecipitation with a-myc
antibodies was analysed as described in Figure 3 using primers specific for the indicated regions (bands r1, r2, l1, l2 and l3). Lanes WCE
correspond to PCR products obtained from the input material before immunoprecipitation. Lanes a-myc correspond to the products obtained
from the immunoprecipitated material. Numbers below each lane correspond to the ratio of the corresponding mating-type-specific band with
respect to the control act band. (C) Quantitative analysis of the results shown in (B). For each of the mating-type-specific regions analysed, the
relative fold of enrichment of the corresponding band in the immunoprecipitated material with respect to the input material (WCE) is presented
for both wild type (wt) and abp1D cells in a stable M or P background.
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Swi2–Swi5 to mat2 and, therefore, abp1D cells are unable to

use mat2 as a donor locus during switching. It was shown

that spreading of Swi2–Swi5 to mat2 is mediated by the

heterochromatin organisation of the mating-type locus (Jia

et al, 2004b), so that mutants of heterochromatin assembly

factors (i.e. swi6D and crl4D) are also unable to use mat2 as a

donor (Figure 8C). However, we have shown here that

heterochromatin organisation at the mating-type locus is

preserved in abp1D cells. Moreover, our results also show

that, in abp1D cells, utilisation of mat3 as a donor depends on

swi2 and swi5, indicating that deletion of abp1 does not affect

the functionality of the Swi2–Swi5 complex. Altogether, these

results indicate that Abp1 is actually required for efficient

spreading of Swi2–Swi5 across heterochromatin at the mat-

ing-type locus (Figure 8D).

Further work is required to determine the precise molecu-

lar mechanism(s) underlying the contribution of Abp1 to

heterochromatin-mediated spreading of the Swi2–Swi5 com-

plex. However, our results and those recently reported by

others (Cam et al, 2007) indicate that Abp1 binds to the

mating-type locus, where a major Abp1-binding site maps

close to the cenH element. In addition to the mating-type

locus, Abp1 also localises to multiple other sites, including

Tf2 retrotransposons, centromeric dh repeats and some

autonomously replicating sequences (ARS) (Cam et al,

2007). Binding at the mating-type locus strongly suggests a

direct contribution to spreading of Swi2–Swi5. In this con-

text, Abp1, which is a sequence-specific DNA-binding protein

that recognises AT-rich DNA (Murakami et al, 1996;

Halverson et al, 1997; Kikuchi et al, 2002), is likely to be

involved in recruitment of factors that facilitate such spread-

ing. Actually, in the mating-type locus, Abp1 was shown to

contribute to recruitment of the HDAC Crl3 (Cam et al, 2007),

a component of SHREC (Sugiyama et al, 2007), that is

required for heterochromatin assembly at the mating-type

locus (Ekwall and Ruusala, 1994; Yamada et al, 2005).

However, Abp1–Crl3 interaction does not appear to have a

major contribution to heterochromatin assembly at the mat-

ing-type locus as, on the one hand, our results indicate

that deletion of abp1 does not impair silencing and/or

Swi6 deposition at the mating-type locus and, moreover, in

abp1D cells, high levels of Crl3 are detected at the silent

domain of the mating-type region (Cam et al, 2007). Whether

recruitment of Crl3 accounts to any extent for the contribu-

tion of Abp1 to the regulation of mating-type switching

remains, however, to be determined. On the other hand, the

possibility that Abp1 would directly mediate binding of the

Swi2–Swi5 complex appears unlikely, as no specific enrich-

ment of Swi2 is detected at the major Abp1-binding site of the

mating-type locus. We cannot, however, exclude the possibi-

lity that Abp1 might bind additional sites within the mating-

type locus, as both our binding studies and those performed

by others (Cam et al, 2007) do not cover the entire locus.

Actually, several potential Abp1-binding sites are found with-

in the mating-type locus (Murakami et al, 1996; Halverson

et al, 1997; Thon et al, 1999; Baum and Clarke, 2000).

Abp1 is known to participate in the regulation of multiple

processes. In particular, Abp1 was shown to contribute to

silencing of Tf2 retrotransposons through the recruitment of

Crl3 and a second HDAC, Crl6 (Cam et al, 2007). Interestingly,

silencing of Tf2 retrotransposons does not depend on Swi6,

nor it does require other heterochromatin factors such as

Crl4, Rik1 and Chp1 (Greenall et al, 2006), indicating that,

also in this case, Abp1 is not involved in heterochromatin

assembly.

At centromeres, it was proposed that Abp1 contributes to

heterochromatin assembly, as it binds to several sites located

within centromeric heterochromatin (Baum and Clarke, 2000;

Cam et al, 2007), and deletion of abp1 results in a modest

relief of centromeric silencing, which is enhanced in

abp1Dcbh1D cells (Nakagawa et al, 2002). These observa-

tions are in contrast with our results showing that, at the

mating-type locus, Abp1 is not required for heterochromatin

assembly and silencing. In contrast, silencing at the mating-

type locus appears to be slightly reinforced in abp1D cells.

Most likely, this apparent contradiction is the consequence of

disruption of centromeric heterochromatin, which could in-

crease intracellular levels of silencing factors favouring their

deposition at other heterochromatic sites, such as the mating-

type locus. Similar effects were reported in Saccharomyces

cerevisiae for sir4 mutants, where telomeric silencing is

reduced and, concomitantly, silencing at the rDNA locus

increases (Smith et al, 1998). The molecular basis of the

contribution of Abp1, as well as of Cbh1 and Cbh2, to

heterochromatin assembly at centromeres is, however, not

fully understood.

Finally, Abp1 is also likely to participate in DNA replica-

tion, as it was found to interact physically with Cdc23

(MCM10), a protein implicated in the initiation of DNA

replication (Locovei et al, 2006). Consistent with a role in

DNA replication, abp1D cells grow slowly, due to a delay in S-

phase, and abp1 interacts genetically with a number of genes

involved in DNA replication, including cdc23, orc1 and orc2.

Actually, Abp1 was first identified on the basis of its specific

binding to ARS (Murakami et al, 1996) and it associates with

some ARS in vivo (Cam et al, 2007). All these observations
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Figure 8 Model to account for the contribution of Abp1 to the
regulation of directionality of mating-type switching. In mat1P cells,
the Swi2–Swi5 complex localises to mat3 (A) and, only in mat1M
cells, spreads to mat2 (B), allowing its use as a donor during
switching. Spreading of Swi2–Swi5 to mat2 is mediated by hetero-
chromatin being abolished by mutations in heterochromatin assem-
bly factors (i.e. swi6D and crl4D), which prevent use of mat2 as a
donor (C). In abp1D cells, heterochromatin organisation of the
mating-type locus is preserved but spreading of Swi2–Swi5 to
mat2 is impaired and, as a consequence, mat2 is not efficiently
used as a donor during switching (D).
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strongly support a contribution of Abp1 to DNA replication.

Therefore, it is possible that the contribution of Abp1 to the

regulation of mating-type switching is linked to DNA replica-

tion. At the mating-type locus, DNA replication has an

essential function in the establishment of the SSB/DSB im-

print that triggers recombination and gene conversion. After

switching, the pattern of localisation of Swi2–Swi5 must be

modified accordingly to the new mating information located

at mat1. It is tempting to speculate that relocalisation of

Swi2–Swi5 might take place during the next round of DNA

replication, where Abp1 could exert an effect as a licensing

factor that facilitates spreading of the complex in mat1M cells

but not in mat1P cells.

Abp1, as well as the closely related Cbh1 and Cbh2

proteins, show significant homology to human CENP-B

(Murakami et al, 1996; Halverson et al, 1997; Lee et al,

1997; Ireland et al, 2001). Homology is high at the N-terminal

half, which contains the DNA-binding domain and mediates

sequence-specific DNA recognition, and the DDE domain,

which has putative endonuclease activity being similar to the

catalytic domain of pogo transposases (Ireland et al, 2001).

However, the C-terminal domain, which mediates protein–

protein interactions, is less well conserved. Abp1, Cbh1 and

Cbh2 have redundant functions in the regulation of several

processes (Halverson et al, 1997; Baum and Clarke, 2000;

Ireland et al, 2001; Nakagawa et al, 2002; Cam et al, 2007). In

most cases, however, single mutants show only weak phe-

notypes that are strongly enhanced in double mutants. In

contrast, the contribution of Abp1 to the regulation of direc-

tionality of mating-type switching is strong and specific,

indicating that it constitutes a major function of Abp1.

Materials and methods

Media, genetic procedures and cytological procedures
S. pombe cells were grown in complete medium (YES) or Edinburgh
minimal medium (EMM), according to standard procedures.

To estimate the efficiency of switching, individual colonies
grown on sporulation medium were exposed to iodine vapours
according to Thon and Klar (1993). The frequency of sporulation
was determined from a 3-day-old culture by phase-contrast
microscopy visualisation.

The effect of deleting abp1 on silencing at the mating-type was
determined by plating 10ml of serial 10-fold dilutions of fresh
growing cultures in EMM plates lacking uracil (�URA) or
supplemented with 1mg/ml of 5-FOA.

Strains and plasmids
Strains used in these experiments are summarised in Supplemen-
tary Table SI. abp1DHKAN, abp1DHNAT, abp1DHHPH,
cbh1DHNAT, cbh2DHKAN, swi2DHKAN and swi5DHKAN deletions
were obtained by replacing the entire ORF of the corresponding
gene with PCR products carrying KanMX6, NatMX6 or HphMX6
markers obtained from pFA6a plasmids (Bähler et al, 1998; Hentges
et al, 2005; Van Driessche et al, 2005), using appropriate primers
containing a region of approximately 80 nt of homology to either

side of the insertion site. Abp1 was tagged with 3HA and Swi2 with
13myc using plasmids pFA6a–3HA and pFA6a–13myc, respectively
(Bähler et al, 1998; Van Driessche et al, 2005). To express Abp1 in
abp1D cells, plasmid pREP81 was used (Basi et al, 1993).

Southern analysis
For Southern analysis, 20 mg of genomic DNA was digested with
HindIII, run on a 0.6% agarose-TBE gel and blotted onto a nylon
membrane (Hybond-Nþ ; Amersham Biosciences). A 9-kb SalI–SphI
mat1M fragment, obtained from plasmid pON177 (Styrkársdóttir
et al, 1993), was 32P-labelled with Ready-To-GoTM DNA Labeling
Beads (Amersham Biosciences) and used as a probe. This fragment
spans the region corresponding to the mat1 locus and contains
mat3M information at mat1, so that, in addition to the 10.4-kb
HindIII fragment of the mat1 locus, it also recognises a 4.2-kb
fragment corresponding to the mat3M locus.

Quantitative multiplex PCR analysis
Switching efficiency was analysed by quantitative multiplex PCR
analysis of genomic DNA to determine the genetic content at the
mat1 locus (Jia et al, 2004b). Primers used in these experiments
were MT1 (common to mat1P and mat1M) 50-AGAAGAGAGAGT
AGTTGAAG-30; MP (mat1P specific) 50-ACGGTAGTCATCG
GTCTTCC-30 and MM (mat1M specific) 50-TACGTTCAGTAGACGTA
GTG-30. Serial dilutions (10-fold) of the products obtained after
PCR amplification were run on a 1.5% agarose-TBE gel, stained
with 0.5mg/ml ethidium bromide and captured using a Syngene
GeneGenius System (Syngene, Cambridge, UK) equipped with
GeneSnap version 6 gel documentation software. GeneTools version
3 software (Syngene) was used for quantitative analysis.

ChIP experiments
ChIP experiments were performed as described elsewhere (Pidoux
et al, 2004). When the distribution of Swi6 was determined, IP was
carried out with rabbit polyclonal aSwi6 antibodies (Abcam no.
14898) and ProteinA-SepharoseTM CL-4B beads (GE Healthcare no.
17-0780-01). In the case of Abp1–HA, rabbit polyclonal aHA
antibodies (Abcam no. 9110) and ProteinA-agarose beads (Upstate
no. 16–157) were used and, for Swi2, we used goat polyclonal a-
myc antibodies (Abcam no. 9132) and ProteinG-PLUS-Agarose
beads (Santa Cruz Biotechnology; SC-2002). PCR products were run
on 2% agarose-TBE gels, visualised with 0.5mg/ml ethidium
bromide and captured using a Syngene GeneGenius System
(Syngene) equipped with GeneSnap version 6 gel documentation
software. GeneTools version 3 software (Syngene) was used for
quantitative analysis. Primers used are summarised in Supplemen-
tary Table SII.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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